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Hexatic smectic phase with algebraically decaying bond-orientational order
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The hexatic phase predicted by the theories of two-dimensional melting is characterized by the power-law
decay of the orientational correlations, whereas the in-layer bond orientational order in all the hexatic smectic
phases observed so far was found to be long range. We report a hexatic smectic phase where the in-layer bond
orientational correlations decay algebraically, in quantitative agreement with the hexatic ordering predicted by
the theory for two dimensions. The phase was formed in a molecular dynamics simulation of a one-component
system of particles interacting via a spherically symmetric potential. The present results thus demonstrate that
the theoretically predicted two-dimensional hexatic order can exist in a three-dimensional system.
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I. INTRODUCTION

The theory of two-dimensional (2D) melting by Kosterlitz,
Thouless, Halperin, Nelson and Young (KTHNY) [1] predicts
the existence of a distinct new phase intervening between a
solid and a liquid. This phase, called hexatic, is a 2D fluid
characterized by a quasi-long-range bond orientational order
(BOO) (decaying as power law) and short-range (exponentially
decaying) positional correlations. The hexatic phase predicted
by the KTHNY theory has been observed in a number of real
2D systems [2], but the attempts to find it in three-dimensional
(3D) systems have so far been unsuccessful. Nevertheless, its
terminology has been carried over to 3D liquid crystals [3]
to describe the bond-ordered liquid states found in the axially
stacked layers of some smectic liquid crystals [4–6]. These
smectic phases, called hexatic smectics, were thus suggested
to be the 3D analog of the 2D hexatic phase conjectured
by the KTHNY scenario [7]. It has to be stressed, however,
that this analogy is purely heuristic. The principal difference
between the two phases is that the hexatic smectics exhibit
true long-range in-layer BOO in contrast to its power law
decay in the 2D hexatic phases. This difference was tentatively
attributed to the interaction between the smectic layers and the
effect of anisotropic forces [7], but the nature and the origin of
the long-range BOO in the hexatic smectic phases still elude
comprehensive understanding.

Particle simulations have been actively used to understand
the formation mechanism of the smectic liquid crystals in
terms of the molecular-level properties [8]. Following the
seminal work of Onsager [9], it was commonly believed that
formation of smectic phases is driven by the packing entropy of
anisometric (rodlike) mesogenic molecules [10]. Accordingly,
a rodlike particle shape was assumed in the computer models
of smectic phases [11,12]. However, to our knowledge, no

*alfredometere2@gmail.com

unconstrained simulation of a hexatic smectic phase has so
far been reported [13].

Two questions of general conceptual interest arise in this
context: (1) Is the anisometry of the mesogenic molecules
a prerequisite for producing a smectic mesophase and, in
particular, a hexatic smectic phase? (2) Can the true long-range
BOO observed in the hexatic smectic phases be related to the
specific shape of their constituent molecules and the anisotropy
of the intermolecular forces?

In this article, we report a molecular-dynamics simulation
addressing these questions. It is demonstrated that a single-
component system of particles interacting via a spherically
symmetric potential forms an equilibrium hexatic smectic
mesophase where the in-layer BOO decays as a power law,
in quantitative agreement with the KTHNY theory prediction.

II. MODEL AND SIMULATION

We investigated a molecular-dynamics model of 50 000
identical particles confined to a cubic box with periodic
boundary conditions interacting via the pair potential shown
in Fig. 1. The functional form of the potential energy for two
particles separated by the distance r is

V (r) = a1(r−m − d)H (r,b1,c1) + a2H (r,b2,c2), (1)

H (r,b,c) =
{

exp
(

b
r−c

)
r < c

0 r � c
. (2)

The values of the parameters are presented in Table I. The
simulation reduced units are those used in the definition of the
potential.

This pair potential represents a modification of an earlier
reported one [14] that was found to produce a Cr-B crystalline
phase. The main difference between the two potentials is that
in the present one the long-range repulsion is extended to a
significantly larger distance. In that earlier simulation the latter
parameter was found to determine the interlayer spacing.
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FIG. 1. Pair potential.

III. RESULTS

The system’s phase behavior was investigated at a constant
number density ρ = 0.41. The temperature was changed in a
stepwise manner, performing a comprehensive equilibration
after each step which typically amounted to 107 time steps.
The simulation started by equilibrating an isotropic liquid
state at sufficiently high temperature T = 3.0. Figure 2 shows
system’s energy and pressure as functions of temperature.
Upon cooling, both quantities exhibited a discontinuity at
T = 1.15, followed by another one at T = 0.95. The latter was
accompanied by a sharp drop in the diffusion rate (Fig. 2 inset)
indicating the formation is a solid state; this was identified
as a Cr-B crystalline phase (Fig. 3). Upon reheating, the
described temperature variations of the pressure and energy
were reproduced. Each observed singularity was found to be
accompanied by a hysteresis, a signature of the first-order
nature of the respective transition.

The observed phase behavior thus demonstrates the exis-
tence of a distinct equilibrium fluid phase interposed between
the isotropic liquid and the Cr-B crystalline phase, separated
from each of the latter two phases by a first-order transition.
The general view of its instantaneous configuration presented
in Fig. 4 suggests that this is a smectic liquid crystal composed
of uniaxially stacked layers with a liquid-like in-layer diffusion
(Fig. 2 inset). We note that its estimated interlayer spacing is
consistent with the long-range repulsion distance of the pair
potential (Fig. 1).

In order to understand the exact nature of this smectic
mesophase we performed a detailed analysis of its in-layer
structure. As a first step in the structure characterization we
calculated the structure factor S(Q) representing the scattered
intensity in the diffraction experiments. It is defined as

S(Q) = 〈ρ(Q)ρ(−Q)〉 (3)

TABLE I. Values of the parameters for the pair potential used in
this simulation [Eq. (1), Fig. 1].

m a1 b1 c1 a2 b2 c2 d

12 113 2.8 1.75 2.57 0.3 3.1 1.4

FIG. 2. Temperature variation of the pressure and energy at the
number density ρ = 0.41. Squares: cooling; triangles: heating. Inset:
The Arrhenius plot of the diffusion coefficient.

FIG. 3. An axial view of the Cr-B crystal formed as a result of
the phase transition upon cooling, at T = 0.8. The sixfold positional
symmetry of the configuration is apparent.
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(b)

(a)

FIG. 4. (a) A view of the simulated smectic phase, adjacent
layers are discriminated by shade. (b) The axial density variation
in the simulated hexatic smectic phase configuration at T = 1. The
interlayer distance is consistent with the long-range repulsion distance
of the pair potential.

where ρ(Q) is the Q component of the spatial Fourier transform
of the instantaneous number density distribution of a system
of N particles:

ρ(Q,t) = 1√
N

N∑
k=1

exp[−iQrk], (4)

rk being the position of particle k, and 〈 〉 denoting ensemble
averaging.

A spherically averaged static structure factor can be calcu-
lated from the spherically invariant radial distribution function
g(r) as

S(Q) = 1 + 4πρ

∫ ∞

0
[g(r) − 1]

sin(Qr)

Qr
r2 dr. (5)
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FIG. 5. (a) S(Q) of a single layer calculated in the layer plane, pre-
sented by isointensity contours. The lowest level contour corresponds
to S(Q) = 3.4, the increment is 0.3. (b) Bond angle distribution. Solid
line and dash-dotted line, respectively: one layer at T = 1.0 and at
T = 1.1. Dashed line: entire system, T = 1.0.

As a first step in the structure analysis, we calculated the S(Q)
intensity pattern on the reciprocal-space sphere of the radius
corresponding to the position of the prominent peaks of the
spherically averaged structure factor. This made it possible to
determine the global symmetry of the configuration and the
axis orientation.

Having established the global uniaxial symmetry of the
configuration and the axis orientation, we then calculated S(Q)
in the layer plane Qz = 0, Qz being the axis coordinate.
Figure 5(a) shows S(Q) for a single layer averaged over 104

time steps. It exhibits a pronounced azimuthal modulation in
the form of six diffuse arcs characteristic of the diffraction
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patterns of hexatic smectic phases. Their radial position can be
identified as Q = 4π/(a

√
3) where a = 0.99 is the estimated

in-layer nearest neighbor distance. We notice that this distance
is in good agreement with the position of the first potential
minimum (Fig. 1). In this way, the short repulsion and the long
repulsion parts of the pair potential act, respectively, as the
length and the diameter of the mesogenic molecules forming
the real smectic phases: the former define the interlayer particle
packing, whereas the latter define the interlayer spacing.

The sixfold angular symmetry of the diffraction pattern
is a necessary but not sufficient condition for identifying the
simulated phase as a hexatic smectic. To get further evidence
for the hexatic nature of its in-layer structure we calculated
the bond-orientation distribution, which is shown in Fig. 5(b).
The bonds were defined as the pairs of particles within a
layer separated by the nearest-neighbor distance a as indicated
above. The angles presented in the statistics were measured
between the bonds and an axis chosen in the layer plane.
The statistics was calculated for an ensemble of configurations
produced within a simulation run of 104 time steps. The bond
angle distribution for a single layer at T = 1.0 demonstrates a
pronounced sixfold modulation with the amplitude consistent
to that observed in the azimuthal variation of S(Q) [Fig. 5(a)].
The amplitude of the distribution modulation for the same layer
at T = 1.1 is significantly smaller, as well as the one calculated
for the entire system.

Next, we analyze the pattern of the local sixfold BOO in a
layer configuration. For each particle position rj we calculated
a vector

�(rj ) = 1

Nk

Nk∑
k=1

ei6θjk , (6)

where θjk is the angle formed by the bond linking particle j

with its nearest neighbor k relative to an arbitrary axis, and Nk

is the number of the nearest neighbors. Figure 6(a) shows the
distribution of these vectors in a layer at T = 1.0. Each vector
�(rj) is represented by a dot; the dot’s size is proportional to
|�(rj)|, and the vector orientation is indicated by the dot’s
color, according to the scale. The distribution exhibits an
apparent domain structure. A cluster of coherent hexagonal
order percolates through the entire layer, which can account
for the sixfold symmetry breaking both in the diffraction
pattern and in the bond-angle distribution. In addition, there
are twinning domains of hexagonal order rotated by 30◦ and
15◦ with respect to the main domain. These domains can also
be discerned in the pattern of bonds produced for the same
particle of a layer configuration Fig. 7.

The identifying feature of the hexatic phase according to the
KTHNY theory is the algebraic decay of its BOO. The latter
can be quantified as

g6(r) =
〈∑N

k �=j�(rj )�(rk)δ(r − |rj − rk|)
〉

〈∑N
k �=j δ(r − |rj − rk|)

〉 , (7)

where N is the number of particles, and angle brackets denote
ensemble averaging with respect to all particles. Figure 6(b)
shows g6(r) calculated for an ensemble of configurations of
a single layer produced in a simulation run of 104 time steps.
It is compared with the radial distribution function g(r) [15]
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FIG. 6. (a) The local BOO distribution in a layer at T = 1. Each
dot represents a particle; the size of the dot representing particle j

is proportional to |�(rj )|; its shade indicates Re[�(rj )] according to
the scale. (b) Solid line: BOO correlation function g6(r); dashed line:
g(r) − 1, both at T = 1; dash-dotted line: an asymptotic power-law
fit.

expressing the decay of the positional correlation. We find that
the calculated g6(r) asymptotically decays as a power law,
in agreement with the prediction of the KTHNY theory for
the 2D hexatic [1], whereas g(r) decays exponentially. These
results explicitly prove that the layers of the simulated smectic
represent 2D hexatic phases as defined by the theory.

It is common to evaluate the degree of hexatic order in the
experimentally studied hexatic smectic phases using the BOO
parameter defined as

C6 =
〈

1

N

∣∣∣∣∣
N∑
i

�6(ri)

∣∣∣∣∣
〉
. (8)

We have calculated this parameter within the same layer for
which we calculated g6(r) that was shown in Fig. 6, as a
function of temperature. Angle brackets denote averaging over
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FIG. 7. The pattern of the nearest-neighbor bonds in a layer. There
are discernible domains of coherently oriented local hexagonal order.
Another prominent element of the pattern are the squares (filled in the
plot) which provide the mutual 30◦ rotation of the apparently twinning
hexagonally ordered domains.

the ensemble of configurations produced within the simulation
run of 10 000 time steps. The results are presented in Fig. 8.

Figure 9 presents a layer configuration highlighting the
variations in the particle positions in the third dimension
perpendicular to the layer plane. The results demonstrate that
vast majority of the particles remain within a narrow layer with
their axial coordinates deviating from the layer plane by not
more than 0.4a, a being the closest interparticle distance within
the layer as defined above. The remaining particles deviate
from the layer plane within the margin of 0.9a. These results
are apparently consistent with the axial variation of the particle
density shown in Fig. 4.

In order to investigate the anisotropy of the particle diffusion
in the hexatic smectic phase we separately calculated its axial

FIG. 8. BOO parameter C6 of a layer as a function of temperature
averaged over the ensemble of configurations produced within the
simulation run of 10 000 time steps. Squares and triangles, respec-
tively: cooling and heating of the hexatic formed from the isotropic
liquid state. Circles: the hexatic phase formed by melting the Cr-B
crystalline phase.

FIG. 9. The particle configuration of the layer shown in Fig. 7.
The axial coordinates zi of the light shaded particles are within the
interval |zi − z0| < 0.4a, z0 being the average axial coordinate of the
particles of the layer, a being the closest interparticle distance within
the layer. Darker shaded particles: 0.4a < |zi − z0| < 0.9a.

component D⊥ and the intralayer component D‖. It is found
that the ratio of these two components is generally temperature
independent within the temperature range where the hexatic
smectic phase was observed, and it is about D⊥/D‖ ≈ 0.5.
Assuming that the intralayer diffusion is dominated by the par-
ticle hopping to the interstitial positions of the local hexagonal
configurations, the ratio of the interlayer hopping frequency
to that of the intralayer hopping can be estimated as ≈0.016.
This result is consistent with the result of the experimental
measurements on a hexatic smectic phase where the frequency
of the interlayer jumps was found to be about 100 times lower
than the frequency of the intralayer jumps [16].

In order to establish the exact low-temperature boundary of
the simulated hexatic smectic phase at ρ = 0.41, we cooled it
to the temperature T = 0.98 where it was observed to lose its
stability with respect to the crystalline phase. Following the
process of crystallization at that temperature, we interrupted it
after 700 000 time steps at the stage of partial crystallization
which was discerned from the energy reduction. This partially
crystallized state was then heated to two higher temperatures,
T = 0.99 and T = 1. The energy evolution shown in Fig. 10
demonstrates that at T = 0.99 the crystallization process
continued, whereas at T = 1 the hexatic smectic phase has
been restored. This result demonstrates that T = 0.99 belongs
to the stable crystal domain, while at T = 1 the hexatic smectic
phase is stable with respect to crystallization.

IV. DISCUSSION

Three conceptually significant aspects of this study deserve
to be remarked upon.

First, the finding that a system of identical particles in-
teracting via a spherically symmetric potential can form a
hexatic smectic phase changes the basic model of smectic
phases, thereby advancing our understanding of the causes
underlying the occurrence of particular structures in the phase
transformations of liquid crystals.
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FIG. 10. 1 and 2, respectively: equilibrium states of the hexatic
smectic phase at T = 1 and T = 0.99 produced by cooling. 3: crys-
tallization process in the smectic hexatic phase cooled to T = 0.98.
4 and 5, respectively: the results of the heating of the hexatic smectic
phase partially crystallized at T = 0.98 to T = 1 and T = 0.99. The
dashed vertical line indicates the moment of time when the heating
was started.

Second, the observed algebraic power-law decay of the in-
layer BOO in a hexatic smectic phase formed by a system of
particles with spherically symmetric interaction suggests that

the true long-range BOO that has so far been found in the
hexatic smectics can be attributed to the rodlike shape of their
constituent molecules and the anisotropy of the intermolecular
forces.

Third, the hexatic phase predicted by the KHTNY theory of
2D melting has so far not been found to our knowledge in a 3D
system. The smectic phase we report here demonstrates the in-
layer hexatic order that quantitatively agrees with the theory’s
prediction. This is an indication that the theory’s application
scope can include 3D systems.

We note that the pair potential we report is similar to
that predicted for colloidal systems [17] (amended with steric
repulsion) suggesting that a hexatic smectic phase can be
formed by spherical colloidal particles with an appropriately
tailored interaction, as microgels or through a cosolute [18].

V. CONCLUSION

In summary, we report a hexatic smectic phase formed in a
molecular dynamics simulation of a one-component system of
particles interacting via a spherically symmetric potential. In
contrast to the hexatic smectics observed so far, its BOO decays
algebraically in quantitative agreement with the KTHNY the-
ory prediction for the 2D hexatic phase. The present results thus
demonstrate that the theoretically predicted two-dimensional
hexatic order can also exist in a three-dimensional system.
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