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Transient dynamics of electric double-layer capacitors:
Exact expressions within the Debye-Falkenhagen approximation
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We revisit a classical problem of theoretical electrochemistry: the response of an electric double-layer capacitor
(EDLC) subject to a small, suddenly applied external potential. We solve the Debye-Falkenhagen equation to
obtain exact expressions for key EDLC quantities: the ionic charge density, the ionic current density, and the
electric field. In contrast to earlier works, our results are not restricted to the long-time asymptotics of those
quantities. The solutions take the form of infinite sums whose successive terms all decay exponentially with
increasingly short relaxation times. Importantly, this set of relaxation times is the same among all aforementioned
EDLC quantities; this property is demanded on physical grounds but not generally achieved within approximation
schemes. The scaling of the largest relaxation timescale τ1, that determines the long-time decay, is in accordance
with earlier results: Depending on the Debye length, λD , and the electrode separation, 2L, it amounts to τ1 �
λDL/D for L � λD and τ1 � 4L2/(π 2D) for L � λD , respectively (with D being the ionic diffusivity).
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I. INTRODUCTION

Understanding the time-dependent formation of electric
double layers (EDLs) in response to varying external influences
is a fundamental problem of relevance to diverse fields includ-
ing electrochemistry [1,2], colloid science [3,4], biophysics
[5,6], and microfluidics [7]. Moreover, the speed with which
EDLs can form in so-called electric double-layer capacitors
(EDLCs) crucially determines the feasibility of these devices
for energy storage [8] and conversion of energy [9,10]. The
starting point in any classical treatment of dynamics in ionic
fluids are the Poisson-Nernst-Planck (PNP) equations—a set
of coupled differential equations that capture the time-varying
electric potential and ionic densities [11]. Then, the canonical
model setup (see Fig. 1) for studying ionic dynamics is that of
an electrolyte confined by two parallel flat electrodes separated
over a distance 2L. With this setup, people have studied the
formation of EDLs in reaction to a sudden change in chemical
environment [12] and in the temperature at the electrodes [13].
But the canonical problem, especially after the seminal paper
of Bazant et al. [14], is that of an electrolyte subject to a
suddenly applied potential difference between the electrodes
(Ref. [14] also contains an exhaustive historical review on prior
work on diffuse charge dynamics). Later work has considered
electrode porosity [15], heat production caused by finite ionic
currents [16], and adsorption [17,18] and Faradaic reactions
[19,20] at the electrode surfaces. Moreover, with various
analytical and numerical techniques, people have studied the
PNP equations at large applied potentials [14,17,18,21–25],
giving rise, i.a., to neutral salt diffusion, which is of spe-
cial interest to many practical situations and applications.
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However, in modern supercapacitive devices, nanoporous
carbon electrodes are charged to such high potentials (up
to ≈2.5 V) that steric repulsions between the ions and the
electrodes and between the ions themselves start affecting the
local ionic densities, leading for instance to ionic layering
perpendicular to the electrode surfaces [26]. Since such effects
cannot be captured with the original PNP equations, later work
developed various modifications to these equations [27,28]
or resorted to dynamical density functional theory [29] or
simulations [30,31] to describe ionic relaxation under strong
confinement and at high potentials.

Notwithstanding these efforts to develop ever more accurate
descriptions of ionic relaxation in situation relevant to practical
applications and devices, the present manuscript concerns with
the first model problem posed in Ref. [14]: the model EDLC
of Fig. 1 subject to a suddenly applied potential smaller than
the thermal voltage. Under these conditions, the PNP equations

x = − xL = Lx = 0

ΨΘ(t) −ΨΘ(t)

FIG. 1. A model EDLC consisting of a 1:1 electrolyte and two flat
electrodes separated over a distance 2L. Here �(t) is the Heaviside
function that takes the time t as an argument; at t = 0, a potential
difference 2� is applied.

2470-0045/2018/97(5)/052616(11) 052616-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.97.052616&domain=pdf&date_stamp=2018-05-30
https://doi.org/10.1103/PhysRevE.97.052616


MATHIJS JANSSEN AND MARKUS BIER PHYSICAL REVIEW E 97, 052616 (2018)

give rise to the Debye-Falkenhagen (DF) equation [cf. Eq. (4)]:
a drift-diffusion equation for ionic charge density [32]. This
equation has been solved under various assumptions and
ansatzes [14,17,18]. Specifically, Ref. [14] applied a Laplace
transform on the time variable of the DF equation, which
transforms the PDE for the local ionic charge density into
an ODE [cf. Eq. (5)], which is easily solvable. However, the
inverse Laplace transform, required to find the real-time ionic
charge density, is notoriously difficult. Reference [14] pro-
ceeded by applying a so-called Padé approximation, essentially
molding the Laplace-transformed ionic charge density into a
form whose inverse Laplace transform is tabulated.

Later works have proposed solutions to the DF equation
[33,34], as well as solutions for limiting cases of high and low
salt content [21]. However, all these works have circumvented
directly performing the inverse Laplace transform on the ionic
charge density because of its perceived analytical difficulty
[14] or asserted impossibility [33]. In this article we show that
this inverse Laplace transformations is, in fact, possible; we
report new expressions for the ionic charge density, the ionic
current density, and the electric field of a model EDLC subject
to a small, suddenly applied potential difference. Our expres-
sions take the form of infinite sums with coefficients depending
on the solutions Mj of a transcendental equation. These
Mj simplify, however, for the limiting case of strong double
layer overlap (λD � L, with λD being the salt concentration-
dependent Debye length), which is relevant, e.g., to nonpolar
solvents that allow very low salt concentrations. In that case,
our expression for the ionic charge density reproduces the
exact solution implicit in Ref. [21]. But our expressions work
equally well away from this limiting case: They are in excellent
agreement with numerical inverse Laplace transformations
for all times and system sizes considered. Importantly, the
aforementioned time-dependent EDLC properties all decay
with the same set of relaxation timescales τj . This property,
not satisfied within the aforementioned Padé approximation
scheme, is physically demanded on the basis of the Poisson
and continuity equations. We confirm previously found scaling
of the long-time relaxation timescale τ1 for thin (λD � L) and
thick (λD � L) double layers, which read τ1 � λDL/D and
τ1 � 4L2/(π2D), respectively.

This article is structured as follows. We describe the setup
and governing equations in Sec. II. Section III reviews the Padé
approximation scheme employed by previous authors, and
highlights its problematic implications. In Sec. IV, we perform
inverse Laplace transformations to obtain exact expressions for
the ionic charge density, ionic current density, and electric field,
which are discussed and compared to earlier results in Sec. V.
Besides concluding remarks, Sec. VI contains suggestions for
future work.

II. SETUP

We consider a cell (see Fig. 1) consisting of a dilute 1:1
electrolyte solution at a constant temperature T bound by two
flat, blocking electrodes at x = −L and x = L, with L much
larger than the size of the electrolyte molecules. We treat the
solvent as a homogenous dielectric background of constant
relative permittivity εr , thus ignoring the possibly intricate
dependence of εr on local ionic concentration, near surfaces,

or when subjected to external fields [35–37]. At sufficiently
large εr and sufficiently small bulk salt concentration ρs , the
essential physics is captured by a mean-field description in
which correlations, image-charge interactions, and (in-plane)
ordering are neglected [38]. The electrodes are assumed to
extend to infinity to facilitate a description in which physical
quantities depend only on the coordinate x perpendicular to the
electrode surfaces. For simplicity, we consider the case without
Stern layers (the Appendix discusses their effect).

The initially homogenous electrolyte is exposed to a sud-
denly applied potential difference 2� over the two electrodes,
after which EDLs form near the electrode surfaces. The
local dimensionless electrostatic potential φ, related to the
local electrostatic potential via multiplication with the thermal
voltage kBT /e (with kB Boltzmann’s constant and e the proton
charge) is governed by Poisson’s equation (in SI units)

∂2
xφ = −4πλBq, (1)

with λB = e2/(4πε0εrkBT ) being the Bjerrum length and ε0

being the vacuum permittivity, respectively. Moreover, q is the
reduced ionic charge density (unit m−3), the difference be-
tween cationic and anionic number densities, that is governed
by a continuity equation,

∂q

∂t
= −∂xI, (2)

with I being the reduced ionic current density (unit m−2 s−1),
the difference between cationic and anionic current densities.
From the reduced quantities q and I we find the ionic charge
density and ionic current density as qe and Ie, respectively. For
brevity, however, from hereon we omit the adjective “reduced”
and speak simply of the ionic charge density q and the ionic
current density I .

Depending on the applied dimensionless electrode potential
� ≡ e�/kBT , different theories can be employed to obtain
expressions for I . For instance, the classical Nernst-Planck
equations are applicable to dilute electrolytes up to roughly the
thermal voltage � = 1. Beyond this value, steric hinderance
among ions, especially near electrode surfaces where ions can
form layered packings [26], must be incorporated via, e.g.,
mean-field modifications [27] or dynamical density functional
theory [29]. The opposite limit of small applied potentials � �
1 gives rise to the Debye-Falkenhagen approximation in which
the sum of locally varying cationic and anionic densities is
roughly 2ρs . With this approximation, and assuming the same
diffusion constant D for both ion species, one easily derives
(see, e.g., Ref. [14]) the ionic current density,

I = −D[∂xq + 2ρs∂xφ], (3)

from the Nernst-Planck equations for the individual ion
species. Henceforth we moreover assume D to be independent
of the local ionic concentrations. As we have assumed the
temperature T to be constant, Eq. (3) does not contain a
thermodiffusive term.

Combining Eqs. (1), (2), and (3) gives rise to the Debye-
Falkenhagen equation [32],

∂q

∂t
= D

[
∂2
x q − κ2q

]
, (4)
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with κ = λ−1
D = √

8πρsλB being the inverse Debye length.
The main task of this article is to determine the transient EDL
formation arising from this equation. However, as Eq. (4) solely
captures ionic drift and diffusion, it cannot be expected to
be reliable on timescales where vibrations and rotations of
individual molecules come into play.

To progress, we apply a Laplace transform on the time
domain, which transforms a function f (t) into f̂ (s) ≡∫ ∞

0 f (t) exp [−ts]dt . We find

∂2
x q̂ = k2q̂(x,s) − q(x,0)

D
, (5)

with k2 = κ2 + s/D. For an initially homogenous electrolyte,
q(x,0) = 0, the antisymmetric solution [q̂(x) = −q̂(−x)] to
Eq. (5) reads

q̂(x,s) = A1 sinh(kx), (6)

with A1 an integration constant to be determined. Inserting
Eq. (6) into Eq. (1) and integrating once yields

−∂xφ̂ = 4πλB

[
A1

k
cosh(kx) + A2

]
. (7)

With Eqs. (6) and (7), we then find the Laplace-transformed
ionic current density,

− Î

D
=A1

k

(
k2 − κ2) cosh(kx) − A2κ

2. (8)

Imposing the ionic current density to vanish at the boundaries,
Î (±L,s) = 0, yields A2 = A1s cosh(kL)/(kκ2D); hence, we
find

Î = A1
s

k
[cosh(kL) − cosh(kx)]. (9)

The electric field Ê = −kBT ∂xφ/e now follows from Eq. (7),

eÊ

kBT
= 4πλB

A1

k

[
cosh(kx) + cosh(kL)

s

κ2D

]
. (10)

Integrating Eq. (10) gives the dimensionless potential,

−φ̂ = 4πλB

A1

k2

[
sinh(kx) + cosh(kL)

s

κ2D
kx

]
, (11)

where the integration constant of this integration is zero due
to antisymmetry of φ̂. A1 is now fixed by the imposed time-
varying surface potential φ(x = −L,t � 0) = �. Its Laplace
transform, φ̂(x = −L,s) = �/s, is inserted in Eq. (11) to find

A1 = �

4πλB

k2

s

1

sinh(kL) + cosh(kL)
s

κ2D
kL

. (12)

This corresponds to Eq. (26) of Ref. [14] (for a vanishing Stern
layer width, λS = 0, and with a minus sign difference since
Ref. [14] applies the opposite potentials at x = ±L).

III. PADÉ APPROXIMATION BEFORE INVERSE LAPLACE
TRANSFORMATION

In order to find the real-time response of an EDLC, at
this point, previous authors [13,14,39] choose to apply Padé
approximations to functions such as the ionic charge density.

The general spirit is to approximate a function ĝ(s) around
s = s̄ by a rational function of the form

ĝpq(s) = α0 + α1(s − s̄) + .. + αp(s − s̄)p

β0 + β1(s − s̄) + .. + βq(s − s̄)q
. (13)

The inverse Laplace transform to the approximated function
ĝpq(s) can then be readily performed to obtain gpq(t).

To get a feeling for the appropriateness of this method,
consider the function g(t) = erf(

√
t) for which ĝ(s) =

1/(s
√

s + 1). A low-order Padé approximation for ĝ(s) around
s̄ = 0 reads for instance ĝ02(s) = 1/s − 1/(2 + s), which
yields g02(t) = 1 − e−2t . Analogously one finds g13(t) = 1 −
1
2 (exp [−2(2 + √

2)t] + exp [−2(2 − √
2)t]). Reference [40]

notes that both g02(t) and g13(t) approximate g(t) fairly well.
Caution should be taken however, if we are interested in
the long-time relaxation of g(t), g(t → ∞) ∼ exp[−t]/

√
t .

Clearly, g02(t) overestimates the relaxation by a factor 2. g13(t)
does better with an overestimation by a factor 1.17.

Regarding our physical system of interest (an EDLC subject
to a potential step), such Padé approximations give rise to ques-
tionable results. Consider, for example, the local charge density
[Eq. (6)]. This function has a pole at s = 0, corresponding to
the long-time limit of q(x,t) [cf. Eq. (21)], and an infinite
amount of poles on the negative real s axis [cf. Sec. IV A 1].
If we choose to apply a Padé approximation on Eq. (6) around
s/(Dκ2) = 0, then we find

q̂02(x,s) = 2ρs�
sinh(κx)

sinh(κL)

1

s[1 + τq(x)s]
, (14a)

τq(x) ≡ λDL

2D

[
3

tanh(κL)
− x

L tanh(κx)
− 2λD

L

]
. (14b)

The inverse Laplace transform of q̂02(x,s) then reads

q02(x,t) = 2ρs�
sinh(κx)

sinh(κL)

{
1 − exp

[
− t

τq(x)

]}
. (15)

We note that, for x = −L, Eq. (14b) corresponds to Eq. (30)
of Ref. [14] for the case of vanishing Stern layer thickness. For
future reference we report τq(−L) for limiting cases of κL,

τq(−L) =
{

λDL
D

[
1 − 1

κL
+ O

(
exp[−2κL]

)]
, κL � 1,

L2

D

[
1
3 + 1

45 (κL)2 + O
(
(κL)4

)]
, κL � 1.

(16)

As the approximated function q̂02(x,s) is most accurate around
s/(Dκ2) = 0 (the point around which we expanded), we find
that, at long times, Eq. (15) correctly relaxes to the Debye-
Hückel ionic charge density. The first pole s1 of q̂(x,s) that
one encounters departing from s/(Dκ2) = 0, i.e., the pole
with the largest (least negative) real part, determines the long-
time relaxation of q(x,t). Clearly, the accuracy of the Padé
approximation q̂02(x,s ≈ s1) around that pole depends on its
distance from s/(Dκ2) = 0.

Remarkably, while the pole structure of q̂(x,s) does not de-
pend on x, the pole structure of its Padé approximation q̂02(x,s)
does, leading to an x-dependent decay time τq . Ultimately, this
x dependence arises because, in determining the coefficients
α0, . . . ,αp,β0, . . . ,βq of the Padé approximation, a linear
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system of p + q + 2 equations has to be solved, which acquire
x dependence from the numerator in Eq. (6). Consequently,
analogous approximations to the the ionic current density and
electric field exhibit decay times τI and τE with τq �= τI �= τE

[41]. However, it follows from Eqs. (1) and (2) that all these
timescales should be equal. Physically speaking, compared to
the ionic dynamics, the electromagnetic field readjusts itself
instantaneously to always follow suit [Eq. (1)], and changes
in ionic charge density cannot be faster or slower than the
concomitant ionic current densities [Eq. (2)]. In order to avoid
such unphysical features as x-dependent relaxation times or
different timescales for related quantities, which will persist
regardless of the chosen orders p and q, we will not rely on
Padé approximation schemes in the following.

IV. EXACT INVERSE LAPLACE TRANSFORMATION

We report expressions for the inverse Laplace transforms
of the ionic charge density [Eq. (6)], the ionic current density
[Eq. (9)], and the electric field [Eq. (10)]. To tidy up our
notation, we introduce m ≡ kL and n ≡ κL, allowing us to
rewrite s = (m2 − n2)D/L2 and

A1 = q̄m

s
f̂ (m,n), (17)

with q̄ ≡ �/(4πλBL2) and

f̂ (m,n) ≡
[

sinh m

m
+

[
m2

n2
− 1

]
cosh m

]−1

. (18)

A. Ionic charge density

In terms of these new variables, the ionic charge density
[Eq. (6)] reads

q̂(x,s) = q̄m

s
f̂ (m,n) sinh

mκx

n
. (19)

Obtaining q(x,t) requires evaluating a Bromwich integral

q(x,t) = 1

2πi

∮
γ

exp [st]q̂(x,s)ds

=
∑

�

Res(exp [st]q̂(x,s),s�), (20)

with s,s� ∈ C and � enumerating the poles s� of q̂(s). Moreover,
γ is a path that consists of the line from c − i∞ to c + i∞, with
c ∈ R such that c > Re(s�) for all �, together with a semicircle
that encloses all poles s�.

Besides the pole s0 ≡ 0, the poles of q̂ coincide with the
poles sj of the term f̂ (m,n); hence, s� = {s0,sj }. The pole s0

gives rise to the contribution

Res
(
exp [st]q̂(s),s0

) = lim
s→0

[
q̄m sinh

(mκx

n

)
f̂ (m,n)

]

= 2ρs�
sinh(κx)

sinh n
(21)

to Eq. (20), where we used that s = 0 ⇔ m = n and f̂ (n,n) =
n/ sinh n. To determine the contributions of the poles sj to
Eq. (20), we need to determine the locations of these poles.

1. Poles of f̂ (n,m)

Finding the pole locations sj boils down to determining the
solutions to the transcendental equation

tanh m = m

(
1 − m2

n2

)
, m ∈ C. (22)

By means of a systematic numerical investigation, we expect
there to be no solutions to Eq. (22) other than those that lie on
the real or imaginary m axes. In what follows we thus consider
either m = m̃ ∈ R, for which we need to solve

tanh m̃ = m̃

(
1 − m̃2

n2

)
, m̃ ∈ R, (23)

or m = iM , M ∈ R, for which we need to solve

tan M = M

(
1 + M2

n2

)
, M ∈ R. (24)

In Fig. 2 we show the left-hand side (solid blue line) and the
right-hand side (dashed green line and dash-dotted red line) of
Eq. (23) [Fig. 2(a)] and Eq. (24) [Fig. 2(b)], respectively. The
intersections of these lines indicate solutions to the equations.
First, due to the periodic nature of tan M , we find an infinite
amount of solutions to Eq. (24), which we denote ±Mj where
j ∈ N labels the pole that lies in the interval (j − 1)π < Mj <

(j − 1/2)π . While the poles at Mj�2 are present regardless
of the value of n > 0, there exists a nontrivial solution 0 <

M1 < π/2 to Eq. (24) but no solution m̃1 to Eq. (23) in the
case n <

√
3, whereas the opposite situation occurs in the case

n >
√

3. This behavior is summarized in Fig. 2(c). There, also
the trivial solution (m0 ≡ 0) to Eq. (22) is shown.

For future convenience, we introduce the symbol Mj ,

M1 =
{
M1, n <

√
3,

im̃1, n >
√

3,

Mj�2 =Mj, (25)

with j ∈ N, and with m̃1 and Mj the solutions to Eq. (23) and
Eq. (24), respectively. The following table summarizesMj for
various values of n:

M1 M2 M3 M4 M5

n = 10 i9.456 4.531 7.774 10.954 14.114
n = 3 i2.259 4.649 7.838 10.989 14.134
n = √

3 0 4.687 7.848 10.993 14.136
n = 1 1.286 4.703 7.852 10.995 14.137
n = 0.1 1.568 4.712 7.854 10.996 14.137
(2j − 1)π/2 1.571 4.712 7.854 10.996 14.137

For small n, the deviation ε of M1 from π/2 is found
by inserting M1 = π/2 − ε into Eq. (24), which gives ε =
8n2/π3. We find M1 = 1.568 for n = 0.1, in accordance with
the numeric solution. For small n, the same arguments lead to
the same corrections to Mj�2 = (2j − 1)π/2 + O(n2).

Regarding the solution m̃1, it is clear from inspection of
Fig. 2(a) that m̃1 increases with n. For large n, tanh m̃1 ≈ 1
hence m̃1 is the solution to 1 = m̃1(1 − m̃2

1/n2). From this
we infer that at large n the fraction m̃1/n → 1. Setting
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FIG. 2. Solutions to Eq. (22) are found on the real (a) and
imaginary (b) m axes as the intersections in these graphs. The solid
blue lines indicate tanh m (a) and tan m (b), respectively. The other
lines indicate the polynomials m ± m3/n2 at n = 1 (red dash-dotted)
and n = 3 (green dashed). The solutions found in (a) and (b) are
portrayed in the complex m ∈ C (c) and s/(κ2D) ∈ C (d) planes.
(e) The n dependence of sj for j = {1,2,3} (dashed solid, dashed,
dash-dotted).

z ≡ m̃1/n − 1 which is a solution to 1/n = (z +
1)(z + 2)(−z) = −2z − 3z2 − z3, one obtains z =
−(1/n + 3z2 + z3)/2 = −1/(2n) + O(n−2) and hence,

the solution m̃1, present if n >
√

3, is approximated by

m̃1 = n + nz = n − 1

2
+ O

(
n−1

)
. (26)

Indeed, the table above shows that m̃1 ≈ 9.5 at n = 10.
Given the definitionm = L

√
κ2 + s/D, two poles inm ∈ C

correspond to one pole in s ∈ C. In particular, the sets of poles
±m̃1 and ±iMj correspond to poles at s = −D(κ2 − m̃2

1/L
2)

and s = −D(κ2 + M2
j /L2), respectively [see Fig. 2(d)]. Using

the symbolMj as defined in Eq. (25), the locations of the poles
in s ∈ C are given by

sj = −Dκ2

(
1 + M2

j

n2

)
. (27)

While we found a transition at n = √
3 from an M1 to an m̃1

solution in m ∈ C, we find no special behavior in the pole
structure of s ∈ C at that point. As is clear from Eq. (20),
the locations of the poles sj determine the temporal behavior
of q(x,t). In particular, these poles satisfy Im(sj ) = 0 and
Re(sj ) < 0. The latter property, which ensures that q(x,t)
decays monotonically over time, is obvious for j � 2, and for
j = 1 in the case n <

√
3. At any finite n >

√
3, the property

s1 < 0 follows from Eq. (23):

m̃2
1

n2
= 1 − tanh m̃1

m̃1
∈ [0,1)

⇒ κ2 + s1

D
< κ2 ⇒ s1 < 0. (28)

The poles sj have the dimension of inverse time; hence, give
rise to timescales τj ≡ −1/sj :

τj = L2

D
(
n2 + M2

j

) , (29)

which are not only the characteristic relaxation timescales of
the ionic charge density [cf. Eq. (40)], but also of the ionic cur-
rent [cf. Eq. (42)] and the electric field [cf. Eq. (47)]. The pole s1

with the largest (i.e., least negative) real part, which determines
the slowest decay mode (largest τj ), is displayed in Fig. 2(e)
as a function of n = κL. For n � 1, |s1| becomes small,
which a posteriori justifies the expansion around s/(κ2D) = 0
underlying the Padé approximation schemes cited in Sec. III.
However, s1 → −∞ for strongly overlapping double layers
(n � 1); hence, a Padé approximation around s/(κ2D) = 0
of q̂(x,s) might not approximate q̂(x,s) around s1 equally
accurately.

2. Residues of q̂(x,s) at s�

In the vicinity of ±m̃1 we find

1

f̂ (m,n)
m→±m̃1= ± 1

Am̃1

(m ∓ m̃1) + O[(m ∓ m̃1)2],

f̂ (m,n)
m→±m̃1= ± Am̃1

m ∓ m̃1
+ O[(m ∓ m̃1)0], (30)

with

Am̃1 ≡ m̃2
1[

m̃1 + 2m̃3
1

n2

]
cosh m̃1 − [

1 + m̃2
1 − m̃4

1
n2

]
sinh m̃1

. (31)
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Similarly, in the vicinity of ±iMj we find

f̂ (m,n)
m→±iMj= ± iAMj

(m ∓ iMj )
+ O[(m ∓ iMj )0], (32)

with

AMj
≡ M2

j[
Mj − 2M3

j

n2

]
cos Mj − [

1 − M2
j − M4

j

n2

]
sin Mj

.

(33)

The second terms on the right-hand sides of Eqs. (30) and (32)
contain no poles and hence do not contribute to Eq. (20).

Noting that the poles of f̂ (m,n) occur in pairs, we can
consider the sum of the poles at ±m̃1 of f̂ (m,n),

Am̃1

m − m̃1
− Am̃1

m + m̃1
= 2Am̃1m̃1

n2 + sL2

D
− m̃2

1

, (34)

and the sum of poles at iMj and −iMj ,

iAMj

m − iMj

− iAMj

m + iMj

= − 2AMj
Mj

n2 + sL2

D
+ M2

j

. (35)

Hence, two poles at ±m̃1 contribute a single pole,

f̂ m̃1 (s) = 2DAm̃1m̃1

L2

1

s − s1
, (36)

located in s ∈ C at s1 = −[D(κ2 − m̃2
1/L

2)], and two poles
located at ±iMj contribute a single pole,

f̂ Mj (s) = −2DAMj
Mj

L2

1

s − sj

, (37)

at sj = −D[κ + M2
j /L2] to the sum in Eq. (20). The solution

m0 = 0 to Eq. (22) does not contribute to this sum as its residue
is zero.

For n >
√

3, the pole s1 gives

Res
(
q̂(s) exp [st],s1

) n>
√

3= q̄L2

D
lim
s→s1

[
(s − s1)

m

m2 − n2
sinh

(mκx

n

)
f̂ m̃1 (s) exp [st]

]
(38)

= 2q̄

m̃2
1 − n2

m̃4
1 sinh m̃1κx

n[
m̃1 + 2m̃3

1
n2

]
cosh m̃1 −

[
1 + m̃2

1 − m̃4
1

n2

]
sinh m̃1

exp

[
−D

(
n2 − m̃2

1

)
t

L2

]
,

where we used s = (m2 − n2)D/L2 to obtain the first line from Eq. (19) and, going to the second line, we used Eqs. (36) and
(31). For n <

√
3, the poles sj give

∑
j�1

Res
(
q̂(s) exp [st],sj

) n<
√

3= q̄L2

D

∑
j�1

lim
s→sj

[
(s − sj )

m

m2 − n2
sinh

(mκx

n

)
f̂ Mj (s) exp [st]

]
(39)

= −
∑
j�1

2q̄

M2
j + n2

M4
j sin Mj κx

n[
Mj − 2M3

j

n2

]
cos Mj −

[
1 − M2

j − M4
j

n2

]
sin Mj

exp

⎡
⎣−

D
(
n2 + M2

j

)
t

L2

⎤
⎦,

while for n >
√

3, the term f̂ M1 is absent and the above sums start at j = 2. We can now conveniently write Eq. (38) and Eq. (39)
as a single equation by replacing Mj by Mj [see Eq. (25)] in Eq. (39). This replacement accounts for all poles sj regardless of
the value of n. Using Eq. (20) and Eq. (29), we find

q(x,t)

q̄
= n2 sinh(κx)

sinh n
−

∑
j�1

1

M2
j + n2

2M4
j sin Mj κx

n[
Mj − 2M3

j

n2

]
cosMj −

[
1 − M2

j − M4
j

n2

]
sinMj

exp

[
− t

τj

]
. (40)

B. Ionic current density

Inserting A1, the ionic current density Î [Eq. (9)] reads

Î (x,s) = q̄L
[
cosh m − cosh

mκx

n

]
f̂ (m,n). (41)

Hence, the ionic current density Î has the same poles sj as the ionic charge density q̂, but lacks the pole s0. This means that the
ionic current density decays to zero at long times with the same timescales τj as the ionic charge density. The current could again
be computed with the residue theorem, but the same result (as we have checked) can be obtained via a shortcut that uses Eq. (2)
to write I (x,t) =������

I (x = −L,t) − ∫ x

−L
dx∂tq. Inserting Eq. (40), we find

I (x,t) = −2q̄D

L

∑
j�1

M3
j

[
cosMj − cos Mj κx

n

]
[
Mj − 2M3

j

n2

]
cosMj −

[
1 − M2

j − M4
j

n2

]
sinMj

exp

[
− t

τj

]
. (42)
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C. Electric field

Using Eq. (17), we rewrite electric field [Eq. (10)] to

Ê(x,s) = �

L

λ2
D

D

[
cosh m + κ2D

s
cosh

mκx

n

]
f̂ (m,n)

≡ Ê1 + Ê2, (43)

with � = �kBT/e being the surface potential (unit volt).
The inverse Laplace transform E1 of the first term Ê1 ∼

cosh m in Eq. (43) is easily found: We can generalize our results
for the ionic current density Eq. (41) where the same term
appears with a different prefactor. We see that the prefactors of
Eq. (41) and Eq. (42) differ by −2D/L2. Hence, we can find
E1 by selecting the ∼cosMj term of the numerator of Eq. (42)

and find the prefactor of E1 by multiplying the prefactor of Ê1

[Eq. (43)] with −2D/L2.
The term Ê2 has the same poles s� = {s0,sj } as the ionic

charge density [Eq. (19)]; hence,

E2 =
∑

�

Res
(
exp [st]Ê2(s),s�

)
. (44)

The pole s0 gives rise to the Debye-Hückel electric field,

Res
(
exp [st]Ê2(s),s0

) = �

λD

cosh(κx)

sinh n
, (45)

to which the electric field E(t) relaxes at long times.
For n <

√
3, the poles sj give

∑
j�1

Res
(
Ê2(s) exp [st],sj

) n<
√

3= �

L

∑
j�1

2

M2
j + n2

M3
j cos Mj κx

n[
Mj − 2M3

j

n2

]
cos Mj −

[
1 − M2

j − M4
j

n2

]
sin Mj

exp

⎡
⎣−

D
(
n2 + M2

j

)
t

L2

⎤
⎦.

(46)

Similarly to what was found for the ionic charge density [Eq. (39)], for the case n >
√

3, the term j = 1 is absent and the above
sum starts at j = 2. A straightforward calculation now shows that we can again replace Mj by Mj in the above equation to
correctly capture the pole s1 also for n >

√
3. Putting everything together we find

E(x,t) = �

λD

cosh(κx)

sinh n
+ �

L

∑
j�1

[
cos Mj κx

n

M2
j + n2

− cosMj

n2

]
2M3

j[
Mj − 2M3

j

n2

]
cosMj −

[
1 − M2

j − M4
j

n2

]
sinMj

exp

[
− t

τj

]
.

(47)

V. DISCUSSION

A. The timescales τ j

The expressions for the ionic charge density [Eq. (40)],
ionic current density [Eq. (42)], and electric field [Eq. (47)]
all decay with the same timescales τj [Eq. (29)]. Restoring
conventional notation (n ≡ κL), in Fig. 3 we plot the κL

dependence of the three largest timescales τ1,τ2, and τ3, where
we use L2/D and 1/(κ2D), respectively, to nondimensionalize
these timescales. Hence, at κL = 1 (dotted line), both ways of

√
3

κL

τjκ
2D

τjD

L2

j = 1

j = 2

j = 3

j = 1

j =
2

j =
3

j
4 5 6 7

0.1 1 3 10 100

0.001

0.01

0.1

1

10

FIG. 3. The decay time τj for several j � 7, nondimensionalized
with L2/D and 1/(κ2D).

nondimensionalizing τj coincide. The behavior observed in
Fig. 3 is understood as follows. First, for κL � √

3, Eq. (26)
implies m̃2

1 = (κL)2 − κL + O[(κL)0], which, filled in into
Eq. (29), leads to

τ1 = L

κD

[
1 + O

(
1

κL

)]
(κL �

√
3), (48)

confirming Eq. (16) found via Padé approximation. The high
quality of this approximation is understood with Fig. 2(e)
which shows, in the limit κL � 1, that the pole s1 approaches
s/(Dκ2) = 0, the point around which the Padé approximation
q̂02(x,s) [Eq. (14a)] was performed. In that case, q̂02(x,s) must
also be accurate around s1.

Notably, from the definition of the timescale τj [Eq. (29)],
at large κL, many modes j � 2 approach the Debye time [see
Fig. 3]. Hence, with increasing κL, one needs an increasing
amount of modes to accurately describe EDLC quantities
around the Debye time.

This collapse of timescales τj�2 is not observed in the
opposite limit of strongly overlapping double layers (κL �
1). Instead, in this limit, Mj = (2j − 1)π/2 + O[(κL)2],
hence τj = 4L2/[D((2j − 1)2π2)] + O[(κL)2], which sets
the heights of the plateaus observed in Fig. 3. In particular,
we find the long-time decay

τ1 = 4L2

π2D
{1 + O[(κL)2]} (κL �

√
3), (49)
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in agreement with the scaling found in Eq. (16). Impor-
tantly, as this article treats ionic dynamics via the mean-field
Debye-Falkenhagen equation, small values κL � 1 cannot be
reached by decreasing the electrode separation 2L down to the
molecular size of the ions and solvent particles, but rather by
electrolytes with low salt concentration, hence small inverse
Debye lengths.

The factor 4/π2 = 0.405 in Eq. (49) constitutes a correction
of 22% over the factor 1/3 in Eq. (16). Our expression for the
ionic charge density [Eq. (40)], whose decay time is position
independent, gives rise to a total ionic charge near one electrode
[Q(t) ≡ ∫ 0

−L
q(x,t)dx] that necessarily decays with the same

relaxation time. Conversely, the leading order term in a Padé
approximated Q (reported in Eq. (30) of Ref. [14]) for over-
lapping double layers (κL � 1) is 5L2/(12D). Interestingly,
this prefactor 5/12 = 0.417 for Q is much closer to the correct
value 4/π2 than the prefactor 1/3 for q.

To put our findings for overlapping double layers into
context, it is instructive to consider Eq. (40) in the limit
κL → 0, which, filling in Mj = (2j − 1)π/2, simplifies to

q(x,t)

2ρs�
= x

L
+ 8

π2

∑
j�1

(−1)j sin
[
(2j − 1)πx

2L

]
(2j − 1)2

exp

[
− t

τ̃j

]
,

(50)

with τ̃j = 4L2/{D[(2j − 1)2π2]}. Equation (50) is equivalent
to the ionic charge density that follows from Eq. (51) of
Ref. [21]. Moreover, in this limit κL → 0, Eq. (47) predicts an
unscreened electric field, E(x) � �/L, which was precisely
the assumption made in Ref. [21] to obtain their expression for
the ionic densities. We note that, given an unscreened electric
field, the term Dκ2q drops out of Eq. (4), leaving behind
an ordinary diffusion equation for q. Therefore, timescale
4L2/(Dπ2) found for thick double layers also appears fre-
quently as the timescale with which other diffusing systems
relax; for neutral salt diffusion it has been known for over a
century [42,43].

We note that the late-time transients to the DF equation
were also studied in Refs. [17–19,44]. Our Eq. (40) a posteriori
justifies the ansatz made there of a local ionic charge density
whose position and time dependence are factored. With that
ansatz, the relaxation times reported in those works follow
from eigenvalue problems that have essentially the same form
as our Eq. (23) (for the parameters considered in this article).
The higher order solutions Mj�2, important at short times,
were mentioned but not elaborated on in Refs. [17,18]. Even if
all these modes would be determined, it is not obvious how to
determine all the coefficients in the infinite sums in Eqs. (40),
(42), and (47).

B. Plots of the ionic charge density, ionic current density,
and electric field

Truncating the sums in Eqs. (40), (42), and (47) after a
suitably chosen number J of modes, in Fig. 4 we plot (solid
curves) the position dependence of the ionic charge density,
ionic current density, and electric field at several times, for
two degrees of double layer overlap (n ≡ κL = 1 and κL =
3). These two values correspond to either of the two cases
of Eq. (25) for which M1 = M1 (n <

√
3) or M1 = im̃1

(n >
√

3). Also shown are data (circles) of numerical inverse
Laplace transformations of Eqs. (19), (41), and (43) that were
obtained by means of the ’t Hoog algorithm [45,46]. The phys-
ical quantities presented in Fig. 4 were nondimensionalized
with different combinations of system parameters all involving
the electrode potential �. One should keep in mind that all
those quantities were obtained within the Debye-Falkenhagen
approximation, whose validity is restricted to the regime of
small applied potentials e�/kBT � 1.

At t = 0, the exponents in the sums in Eqs. (40), (42), and
(47) are all unity. However, for the ionic charge density and
the electric field, whose coefficients become smaller with j ,
these sums can again be truncated at a finite number of terms:
Their initial values should lie at q(x,t = 0) = 0 and E(x,t =
0) = �/L, respectively, which is decently approximated by the
black lines (J = 25). Conversely, for the ionic current density,
such a good behavior is not obtained. Because ∂xq(x,t = 0) =
0, Eq. (3) predicts an Ohmic response I/(q̄D) = n2E/� at
the moment of applying the potential, explaining the relation
between the plateau heights in the bulk as observed in Figs. 4(d)
and 4(f). Simultaneously, I (x = ±L,t) = 0 must be satisfied.
The combination of a nonzero constant ionic current density
in the bulk (x �= ±L), and a vanishing ionic current density at
the boundaries (x = ±L) gives rise to the Gibbs phenomenon,
where a discontinuous function approximated by a Fourier
series overshoots the step height by 18%, which is indeed
observed in Figs. 4(c) and 4(d). Hence, for t = 0 the sum in
Eq. (42) may not be cut at any finite J .

In Figs. 4(a), 4(c), and 4(e) we observe that, at small,
nonzero times tκ2D = 0.01, the dashed lines (J = 1) do not
accurately reproduce the data of the numerical inversions,
whereas the solid lines (J = 5 [Figs. 4(a) and 4(e)] and
J = 9 [Fig. 4(c)]) do. Importantly, here “short” does not
imply timescales inaccessible to experiment; for large L, the
j � 2 modes might decay sufficiently slow to be measurable
experimentally. On the other hand, the Debye-Falkenhagen
equation (and its solution presented here) does not capture the
fast relaxation processes associated with molecular vibrations
and rotations, nor electron transfer processes that occur on very
short timescales.

The relaxation timescale τj become smaller with increasing
j . Therefore, the modes with j � 2 in the sums of Eqs. (40),
(42), and (47) all decay faster than the j = 1 mode, and are
important merely at small times. At large time we obtain
very good agreement between the numerical inversions and
our expressions, even for J � 2. At extremely long times,
neutral salt diffusion (neglected in this article) in the bulk has
been reported to affect the ionic current density: instead of
exponentially decaying, the ionic current density then decays
with a power law [47,48].

Next to the aforementioned exact and numerical results, in
Fig. 4(b) we show the Padé approximated ionic charge densities
[Eq. (15)] with dashed lines. These approximations describe
the decay of the current fairly well, but they are not nearly as
accurate as the expression for q(x,t) derived here. Moreover,
Ref. [34] has also derived a solution for the electric field E(x,t).
However, we found no agreement between that expression
[Eq. (40) of Ref. [34] shown as dashed curves in Fig. 4(f)]
and our Eq. (47) nor to the numerical Laplace inversion,
except in the long and short time limits. The discrepancy
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FIG. 4. The ionic charge density [(a) and (b)], ionic current density [(c) and (d)] and electric field [(e) and (f)] as found via inverse Laplace
transformations [solid curves: Eqs. (40), (42), and (47), respectively] and via numerical inverse Laplace transformation (open circles) [45] for
n ≡ κL = 1 [(a), (c), and (e)] and κL = 3 [(b), (d), and (f)], for which we only show the right half of the system. We evaluate these equations
at tκ2D = {0,0.01,0.1,1,10} (black, blue, orange, red, green): the dotted arrows indicate the direction of increasing time. For these successive
times, we truncate the sums in Eqs. (40), (42), and (47) after J terms with J = {25,5,2,1,1} [(a) and (e)], J = {25,9,4,2,1} [(b), (c), (f)], and
J = {90,18,8,2,1} (d). The meaning of dashed lines differs among the subfigures: they indicate the respective quantities at tκ2D = 0.01 using
J = 1 [(a), (c), and (e)], and the Padé approximation Eq. (15) (b) and Eq. (40) of Ref. [34] (f) at times tκ2D = {0,0.01,0.1,1,10}.

can be traced back to the argument leading to Eq. (22) in
Ref. [34].

VI. CONCLUSION

We have presented expressions for the ionic charge density
[Eq. (40)], ionic current density [Eq. (42)], and electric field
[Eq. (47)] in a model EDLC in response to a small, sud-
denly applied potential. In particular, Eq. (40) is the solution
to the Debye-Falkenhagen equation, which is easily solved
in Laplace transformed (frequency) representation q̂(x,s),
though leaving behind a Laplace back transformation problem

(L−1{q̂}) that has been unsolved for over a decade. So-called
Padé approximations to the Laplace-transformed q̂(x,s) can
be readily inverted, but such approximate solutions to q(x,t)
have a number of shortcomings, including position-dependent
decay rates. Moreover, by these methods, different decay rates
are found among other, related EDLC observables.

In this article we have solved the problem L−1{q̂}, and
moreover found exact expressions for the concomitant ionic
current density and the electric field. These solutions display
none of the above-mentioned problems, and are in excellent
agreement with numerical inverse Laplace transformations
at all nonzero times and system sizes that we have studied.
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Equations (40), (42), and (47) are exact, provided that we have
identified all the poles of the functions to be inverted, which
we cannot prove at present, but which is supported by our
systematic numerical investigation of the function f̂ (m,n) [cf.
Eq. (18)] in the plane of complex m ∈ C.

Since, in fact, f̂ (m,n) has an infinite number of poles,
Eqs. (40), (42), and (47) all contain infinite sums, whose
coefficients depend on Mj , the solutions to a transcedental
equation [Eq. (22)]. Moreover, each term of these sums
decays exponentially with time, where, importantly, the same
timescales τj = L2/[D(n2 + M2

j )] appear in all considered
quantities. At nonzero times, one typically only needs the first
few terms of these sums to highly accurately approximate the
ionic charge density, ionic current density, and electric field.
The expression for the ionic charge density and electric field
work even at the moment of applying the potential. The same
is not true for the ionic current at t = 0, where the Gibbs
phenomenon occurs if the sum is truncated at any finite number
of terms.

While we shortly discuss one extension of our model
problem (including a finite Stern layer) in the Appendix,
future work can extent on this article by considering, e.g.,
nonisothermal electrolytes, other time-dependent potentials
(linear, sinusoidal, etc.), or adsorption or Faradaic reactions
at the electrode surfaces. Exact results for those quantities can
in turn be compared to a large body of published work.

APPENDIX: STERN LAYER

To describe Stern layers of thickness λS , we extend
our model setup such that the electrodes now lie at

x = ±(L + λS). The region −L < x < L is still fully de-
scribed by Eqs. (1) to (11), while within the Stern layers
(−L − λS < x < L and L < x < L + λS) the ionic charge
density vanishes and the potential is linear. The potential at
x = −L amounts to �(x = −L,t) = �(x = −L − λS,t) +
λS∂�/∂x|x=−L, where �(x = −L − λS,t) is the step potential
applied at t = 0 onto the left electrode. With Eq. (11) we find

A1 = q̄m

s

{
sinh(m)

m
+

[
m2

n2

(
1 + λS

L

)
− 1

]
cosh(m)

}−1

,

(A1)

which is equivalent to Eq. (26) of Ref. [14]. Comparing
Eq. (A1) to Eq. (18), we see that replacing n by ñ ≡
n/

√
1 + λS/L in Eqs. (40), (42), and (47), suffices to obtain

expressions for the ionic charge density, ionic current density,
and electric field in the case of nonvanishing Stern layers,
where the the values of Mj (ñ) are now associated with the
poles of f̂ (m,ñ). Note, however, that the explicit n dependence
in the timescales τj [Eq. (29)] remains unaltered as that
dependence arises from the definitions of n and m themselves.

By the same arguments that led to Eq. (48), we find the
long-time relaxation time for thin double layers (n � 1) and
thin Stern layers λS � L,

τ1 = L

κD(1 + λSκ)

[
1 + O

(
1

n

)]
. (A2)

in accordance with Eq. (46) of Ref. [14] and Eq. (5) of Ref. [44].
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