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Sliding states of a soft-colloid cluster crystal: Cluster versus single-particle hopping
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We study a two-dimensional model for interacting colloidal particles which displays spontaneous clustering.
Within this model we investigate the competition between the pinning to a periodic corrugation potential and
a sideways constant pulling force which would promote a sliding state. For a few sample particle densities and
amplitudes of the periodic corrugation potential we investigate the depinning from the statically pinned to the
dynamically sliding regime. This sliding state exhibits the competition between a dynamics where entire clusters
are pulled from a minimum to the next and a dynamics where single colloids or smaller groups leave a cluster
and move across the corrugation energy barrier to join the next cluster downstream in the force direction. Both
kinds of sliding states can occur either coherently across the entire sample or asynchronously: the two regimes
result in different average mobilities. Finite temperature tends to destroy separate sliding regimes, generating a
smoother dependence of the mobility on the driving force.
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I. INTRODUCTION

The standard atomistic approach to tribology, i.e., the study
on friction dissipation and wear, usually focuses on inde-
structible “crushproof” particles, typically atoms or molecules
[1–9]. Recent works [10–14] have brought colloids into the
realm of tribology, by letting repulsive hard-core particles
interact with a periodic “corrugation potential,” generated by
means of optical forces and driven by viscous drag. The condi-
tions of that experiment match the single indestructible particle
paradigm. Colloids and, more generally, soft matter systems
would, however, allow one to investigate situations where
complex objects, carrying an internal structure, under the stress
produced by external interactions and driving, can alter their
internal structure both in shape and even in the number of the
component subparticles. Thus, one can expect the presence of
a varied set of regimes of response of the system to the external
perturbation. In the present work, we address precisely this last
situation by means of molecular-dynamics (MD) simulations
of a system forming microphases. Microphase formation can
take place under a number of conditions on the interparticle
interactions and on the state variables in three dimensions
[15–19] as well as in two dimensions [20–23]. The mi-
crophases can be disordered [15,18,21,22] as well as ordered in
a crystallinelike state or other patterned structures, like stripes
and lamellae [17,21–25], or even as an ordered bicontinous
state [26] in which both components of a two-component sys-
tem span the space. Examples of microphase forming systems
are block polymers [24,25] or hard colloids with competing
interactions, e.g., short-range attraction–long-range repulsion,
like for some colloid-polymer mixtures [15,16,18,20–22]. Cer-
tain soft-matter systems, like star polymers or dendrimers, in a
good solvent can interpenetrate each other to a large extent so
that the effective interaction between the centers of mass of two
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such entities has a soft-core character. Also such systems can
form microphases, in which the colloids spontaneously aggre-
gate into clusters, and the clusters are organized in a crystalline
state [27,28]. Rheological properties of cluster fluid phase [29]
and of cluster crystal phase [30] have been investigated, but no
study has yet addressed the tribology of such systems.

In the present work, we simulate a system of interacting
colloidal particles whose mutual interaction potential gener-
ates the spontaneous formation of clusters. In particular, we
concentrate on a 2D geometry with repulsive interactions, like
in many experiments carried out with colloids [10,31–35], but
the concepts introduced here may be relevant for vortexes
in superconductors [36] too. The novelty compared to these
experiments is the adoption of an interparticle interaction
which supports the spontaneous formation of cluster phases.
Cluster dynamics has been investigated in the past [37–39]:
in these works clustering was forced by an external potential,
while in the present work clustering is the intrinsic result of
the particle-particle interaction and is retained even when any
external potentials are turned off.

Section II introduces and motivates the model. As a first
step, in Sec. III we characterize the T = 0 equilibrium states
of the model free from external interactions. We study the
ground-state energy of several regular arrangements of clusters
formed by n particles (with n from 1 to 6, that we will refer to as
n clusters) as a function of the mean colloids density, obtaining
a T = 0 phase diagram. Then Sec. IV reports the investigation
of the dynamics of the resulting arrays of clusters interacting
with a lattice-matched external periodic potential and an ho-
mogeneous pulling force. Specifically, we report the mobility
curves for these cluster systems, as a function of the intensity
of the pulling force, for a few values of the amplitude of
the corrugation potential. We characterize in detail the different
sliding regimes, with entire clusters advancing, or only parts
of them. The main outcome of this research is that the
clusters internal dynamics is indeed affecting significantly the
depinning force and the overall mobility.
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II. THE MODEL

A. The interparticle interaction

Spontaneous cluster formation can be the result of compet-
itive interactions [15,16,18,20–22], but clusters can also form
due to soft potentials [23,27,28]. Here we adopt an interaction
of the latter type. We consider the following form for the
pairwise interaction potential energy:

φcc(r) = A0

r6 + R6
c

+ B0

r6
. (1)

This interaction, depicted in Fig. 1, consists of two terms: a
soft-core repulsive interaction and a weak hard-core repulsion.
The B0 = 0 (purely soft-core) model has been fully char-
acterized in two dimensions in Ref. [23]: its phase diagram
consists in a high-temperature low-density regular fluid phase
and a low-temperature high-density cluster phase. The reason
for the cluster phase is that when the interparticle distance
decreases under r � Rc, the potential energy φcc(r) flattens
out to a nearly constant energy, with the result of producing
a quite small repulsive force. As a result, in one dimension a
particle in between two other particles kept at fixed positions,
when the distance between these fixed particles is not too
large, may be better off energetically by coming closer to
either of them, rather than remaining at the middle point. This
suggests the mechanism whereby, in any dimensionality and
at large enough density, a spontaneous symmetry breaking
leading to clustering can be energetically favorable against
a uniform fluid phase. A detailed mathematical criterion has
been developed for the formation of cluster phases in the
case of soft-core potentials in terms of their Fourier transform
becoming negative in a range of finite wave vector [40]. At high
T , entropic effects and fluctuations tend to favor the uniform
fluid phase against cluster formation. In the opposite T → 0
extreme, for B0 = 0 no mechanism keeps the colloids apart,
and so the clustering tendency would reach the extreme limit of
collapsed pointlike clusters with all colloids of a cluster sitting
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FIG. 1. The adopted colloid-colloid potential φcc(r), Eq. (1),
consisting on a soft-core function plus a weak short-range hard-core
term that we introduced to prevent the collapse of clusters at T = 0.
Inset: detail of the short-distance plateau.

TABLE I. The system of units adopted in the simulations. Every
physical quantity is expressed in terms of these natural model units.

Physical quantity System units

Length Rc

Energy E0 = A0/R
6
c

Mass m

Number density R−2
c

Force F0 = A0/R
7
c

Time t0 = R4
c

√
m/A0

Velocity v0 = R−3
c

√
A0/m

Viscous damping η0 = R−4
c

√
A0m

Mobility μ0 = R4
c /

√
A0m

exactly at the same position. To prevent this singular behavior
we add the hard-core B0 term of Eq. (1) for whose coefficient
we adopt a relatively small value B0 = 5 × 10−5 A0 [41] to
perturb the phase diagram as little as possible, at least in the
not-too-high-density region that we are interested in.

We take the repulsive-potential characteristic distance Rc,
the characteristic energy A0/R

6
c , and the mass m of the

colloidal particles as fundamental units. In the following we
express all physical quantities in terms of suitable model units,
as listed in Table I.

B. The equations of motion

In simulations, we let the entire system evolve following the
standard Langevin dynamics in two dimensions [42], under the
effect of an external periodic corrugation potential Uext(r) and a
constant driving force F applied to each particle. The equation
of motion for the j th particle is

mr̈j = F x̂ − ηṙj +

−∇rj

⎡
⎣ N∑

k �=j

φcc(|rk − rj |) + Uext(rj )

⎤
⎦ + ξj . (2)

Here η is the coefficient of viscous friction associated to
the fluid where the colloids move; we generate an over-
damped dynamics by adopting a large η = 28 η0. The ξj

terms are Gaussian-distributed random forces with amplitude
σ = √

2mηkBT/�t , where �t is the simulation time step: they
simulate the collisions of the molecules in the fluid with the
colloids, thus generating the appropriate Brownian dynamics.
Together, the viscous and the random-force terms in Eq. (2)
represent a standard Langevin thermostat [42]. In simulations,
the inter-particle potential φcc is cutoff smoothly (vanishing
potential and potential derivative) at a distance Rcutoff = 5 Rc

[41].
The periodic external potential Uext(r) simulates the effects

of friction against a crystalline surface. In the laboratory, this
interaction has been realized by means of a modulated light
field constructed by laser interference, so that its spacing and
intensity can be tuned with considerable freedom [10]. In our
simulations, we assume a corrugation potential of the form

Uext(r) = V0 W (r). (3)
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FIG. 2. The profile W (rx,ry) of the corrugation potential which
tends to localize the colloids. It is assumed to take a periodic
hexagonal-lattice form, with spacing apot; see Eq. (4).

Here V0 is the amplitude of the spatial modulation and W (�r) is
a 2D periodic function with hexagonal symmetry, period apot,
and unit amplitude. Its explicit form is

W (r) = −2

9

[
3

2
+ 2 cos

(
2πrx

apot

)
cos

(
2πry√
3apot

)

+ cos

(
4πry√
3apot

)]
. (4)

This function is illustrated in Fig. 2.
Following the ry = 0 path in the x direction a particle goes

through alternating minima and saddle points of W (r). This
is the energetically less costly trajectory that a colloid can
follow when pushed by an x-directed force. Along this path,
the external potential is a simple sinusoidal oscillation,

Uext(rx,0) = −V0

[
5

9
+ 4

9
cos

(
2πrx

apot

)]
. (5)

The resulting energy barrier separating the saddle points from
the minima is therefore 8

9 V0. In this situation the static friction
of an isolated particle at T = 0, i.e., the minimum force
needed to push that particle across the potential corrugation
when inertial effects are negligible, equals the largest value of
∂

∂rx
Uext(rx,0), namely,

F1s = 8πV0

9apot
. (6)

In the simulations and in the relative graphs we express all
applied forces by comparison to the static friction F1s of the
single colloid, expressed in Eq. (6). For the lattice spacing we
take apot = 1.5 Rc, and select values of the particles density
that favor arrays of clusters whose spacing matches precisely
this separation, as discussed in Sec. II C.

C. The cell and the initial condition

We simulate the 2D model in a parallelogram-shaped
supercell with periodic boundary conditions (PBC), thus fixing
the average density. To respect the hexagonal symmetry that

the arrays repulsive colloids (or clusters thereof) tend to adopt,
we use a supercell generated by two primitive vectors of equal
length L and forming an angle of 60◦ with each other. For
V0 = 0 we are free to adopt an arbitrary cell size: in the static
simulations of Sec. III we will vary L freely to evaluate the
energetics as a function of the colloid density and therefore
determine the T = 0 phase diagram of the free model.

For V0 �= 0, this supercell needs to match the symmetry
of the corrugation potential: we must stick to L given by
an integer multiple of apot. We settle for a compromise size
L = 12 apot, small enough to guarantee simulations involving
a not-too-large number of particles (and therefore manageable
simulation times) but large enough for a fair averaging over
fluctuations and allowing for independent and possibly asyn-
chronous movements of individual clusters. Accordingly, the
cell contains 144 corrugation minima in an area A = √

3L2/2.
As discussed below, we find that a cluster-cluster spac-

ing 1.5Rc as optimal for favoring a well-defined n-cluster
phase. In the present work we focus on a lattice-matched
condition between the cluster-cluster spacing and the spacing
apot between adjacent minima of the corrugation. Therefore
in all dynamical simulations of Sec. IV we settle for fixing
apot = 1.5 Rc, and therefore a supercell side L = 18 Rc, thus
generating a supercell area A � 280.6 R2

c . In this supercell, the
potential has 144 wells, each initially hosting a single particle
or a n = 2- to 6-particle cluster. We simulate a total N = 144 n

particles, which thus sample the following discrete values for
the average density:

ρ = N

A
= n

2√
3 a2

pot

= n
8

9
√

3 R2
c

. (7)

For the initial condition, we start off with distances δ =
0.32 Rc between the colloids within each cluster suggested
by the inflection of the interparticle potential, Fig. 1. This
initial configuration relaxes very quickly to the equilibrium
interparticle distances that depends on the state of the system.
We start with a regular lattice of preformed clusters, because
the alternative possibilities of starting, e.g., with the particles
regularly or randomly distributed across the supercell leads
to irregular patterns involving different cluster sizes, which
may describe appropriately large temperature and/or phase-
coexistence conditions, but surely do not represent the optimal
single-type cluster phases at T = 0.

III. GROUND-STATE ENERGETICS
FOR THE FREE MODEL

While at finite temperature the number of colloids in each
cluster fluctuates, at T = 0, for every given density ρ, one
expects that an hexagonal lattice of clusters with the same
number n of particles represents a local minimum of the
total repulsive energy. We explore the density range from
ρ = 0.4 R−2

c to 4 R−2
c . In the absence of corrugation potential

(V0 = 0) and driving force (F = 0), for every n-cluster and
every density (i.e., every lattice spacing of the cluster crystal),
we execute a full relaxation by means of a damped dynamics,
for at least a total time 2000 t0, but extending the relaxation
for longer time until the residual kinetic energy is safely below
10−8 E0. This method leads us very close to the precise ground
state. Depending on n and ρ, the system may remain trapped
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FIG. 3. Small portions of fully relaxed T = 0 configurations rep-
resenting examples of alternative local minima for the total repulsive
energy of the free model (V0 = 0, F = 0) in a n = 2 cluster phase
at density ρ = 16/(9

√
3 R2

c ) � 1.0264 R−2
c . The repulsive energy

per particle of these two configurations is (a) E = 1.108486 E0;
(b) E = 1.108907 E0.

in a local minimum characterized by some residual energy
associated to the cluster’s orientational order; see Fig. 3. We
verified that these orientational-order energies are quite small,
of the order of 10−4E0 per particle. For this reason and for
the irrelevance (discussed below) to the driven dynamics, we
do not investigate the details of the orientational order in the
ground state of the clustered phases.

By running several energy minimizations starting from
different cluster phases, we can follow the evolution of the
ground-state energy as a function of the density ρ. For each
configuration we evaluate the total colloid-colloid repulsive
energy, divide it by the number of colloids in the supercell,
and obtain the energy per particle. Figure 4 displays the curves
of the total energy per particle for each n = 1 to 6, as a function
of ρ. We see that at each given density, several cluster configu-
rations represent competitive local energy minima. However, at
each density one of them is usually lowest in energy. Crossings
between successive curves identify the coexistence density
values where the n-cluster and the (n + 1)-cluster have the
same stability and can therefore coexist. By carrying out a finer
numerical analysis and a Maxwell construction one could also
identify density ranges characterized by the phase coexistence
of homogeneous domains consisting of clusters of different
n. We need not go into this detail: based on the obtained
rough phase diagram, we identify the densities corresponding
to stable n-cluster states, characterized by a cluster-cluster
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FIG. 4. The static (T = 0, F = 0) free (V0 = 0) model total
colloid-colloid repulsive energy per particle, as a function of the
number density ρ of colloids. Individual curves compare differ-
ent n-cluster configurations, n = 1, . . . 6. The orientational order is
irrelevant here, as orientational-energy differences are well within the
size of the reported points; see Fig. 3. Arrows identify the densities
adopted for the driven dynamics studied in Sec. IV.

spacing 1.5Rc, and we adopt them for the driven simulations
of Sec. IV.

IV. DRIVEN DYNAMICS

Starting from the equilibrated state obtained as discussed
in Sec. III, we investigate the dynamics under the competing
effects of the external periodic corrugation potential, which
tends to immobilize the clusters at its minima, and the lateral
driving force F which, if there was no corrugation, would tend
to establish a sliding state at speed v = F/η. As expected of a
commensurate, and even lattice-matched configuration, a static
pinning threshold is always present. When F is slowly raised
from 0 up to this pinning threshold, after an initial transient
allowing for the cluster rearrangement, the steady sliding
speed remains null. However, nontrivial rearrangements of the
clusters are observed well in advance of depinning: the driving
force clears all orientational orderings characteristic of the
ground states. The clusters are forced to specific orientations,
which are displayed in Fig. 5. These ferro-orientational [43,44]
arrangements are made energetically advantageous by the
anisotropic energy landscape present at the regions in between
the minimum and the saddle point of the corrugation potential
of Fig. 2, where F pushes the clusters. Precisely this force-
induced ferro-orientational cluster arrangement observed for
all n prior to depinning [45] makes the orientational details
of the free-model ground state (e.g., Fig. 3) irrelevant for the
dynamics we address in the present work.

The most straightforward dynamical indicator for a driven
model of this kind is the average mobility, i.e., the ratio of
the average x̂-directed velocity to the driving force, which
we report for different numbers n of colloids per cluster. If
the corrugation potential was removed (V0 = 0), then for any
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FIG. 5. Small portions of the T = 0 configurations in a
V0 = 1.5 E0 corrugation, under the action of a F = 0.6 F1s < Fdep

pulling force, i.e., these are static configurations prior to depinning,
for: (a) n = 2; (b) n = 3; (c) n = 4; (d) n = 5 clusters.

nonzero force, the mobility would equal the free mobility η−1,
which equals 0.0357 η0 with the present choice of the damping
parameter. The addition of the corrugation leads to smaller
values of mobility.

To evaluate the mobility, for each 2 � n � 5 we execute
three sequences of simulations, with the following amplitudes
of the periodic external potential: V0 = E0, 1.5 E0, and 2 E0.
For each sequence, we increase the applied lateral force in
a range proportional to V0, namely 0.55 F1s � F � 1.3 F1s

in small steps �F = 0.015 F1s . At each step, the average
velocity is evaluated by averaging over a total time 1400 t0
after an initial transient time 600 t0. Figures 6–9 report the
resulting mobilities of the cluster lattices for the investigated
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FIG. 6. The T = 0 mobility of the n = 2-cluster lattice as a
function of the driving force F expressed as a fraction of the depinning
force F1s = 8πV0/(9apot) for an isolated particle, for corrugation
amplitudes V0/E0 = 1, 1.5, and 2. The numerical error affecting the
mobility due to averaging over noninteger numbers of periods is less
than 0.3% of the free mobility η−1. The labels along the curve identify
different sliding regimes, with groups of m/n particles leaving one
well of Uext(r), and moving to the next well at the right. Arrows
identify transitions from a sliding regime to the one occurring at
larger force. Synchro/async regimes refer to whether all well-to-well
particle jumps occur simultaneously across the cell or they do not. In
this specific n = 2 case, even without specification, all motions are
“1D,” meaning that colloids advance along horizontal lines through
the minima of W (r).

numbers n of colloids per cluster as a function of the applied
driving force F . In the initial small-F simulations the driving
force is insufficient to extract the colloid clusters from the
potential wells of Uext, thus a null mobility is obtained. Beyond
a certain static friction threshold Fdep, the colloids unpin and
start to advance, resulting in a finite mobility, which grows
progressively approaching the free-particle value η−1. The
small “adiabatic”increase in F allows us to evaluate Fdep with
a relatively small uncertainty and to identify the features of the
particle motion as mobility increases after depinning.

Consider the depinning force Fdep. Although its values can
be read directly from Figs. 6–9, for ease of comparison Fig. 10
reports them as a function of n. A first observation is that
the clustering of the colloids causes a strong decrease of Fdep

compared to the value Fdep = F1s of a single colloid, by about
20% for n = 2 and 3 up to 33% for n = 5. The static friction
force peaks for n = 3. Above n = 3 the depinning force tends
to decrease as n increases, as expected due to the growing size
of the clusters.

The n = 2 clusters mark an exception, as they depin at
smaller force than n = 3. Also, in the comparison of the depin-
ning force for three values of V0/E0, we see that depinning for
n = 2 occurs at a smaller Fdep/F1s for V0 = E0 than V0 = 2E0,
contrary to all other cluster sizes. The reason for the special
behavior of the n = 2 cluster lays in its elongated conformation
under traction; see Fig. 5. As a result, in the pulling direction
x̂ the n = 2 cluster extends over a longer distance ≈δ than the
size ≈δ

√
3/2 of n = 3. For this reason, when the cluster center
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FIG. 7. Same as described in the caption of Fig. 6 but for the
n = 3 cluster lattice.

of mass approaches the inflection point of the corrugation
potential (the point beyond which the retaining force begins
to taper off), the rightmost particle has moved forward more
for n = 2 than for n = 3.

After depinning, the mobility, on top of an overall smooth
increase as a function of F , exhibits sharp changes in slope,
Figs. 6–9. These changes mark transitions between different
sliding patterns, which can be examined by monitoring the
advancement of the individual colloids. The following section
describes precisely these sliding regimes.

A. Sliding regimes

Under driving, the internal structure of the clusters makes
them advance either as a single object or less trivially with
structural decompositions and recompositions. Depending on
the corrugation amplitude V0 and on the number of colloids
per cluster we observe (or not) several of these decomposition-
recomposition phenomena as the lateral force is increased. For
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FIG. 8. Same as described in the caption of Fig. 6 but for the
n = 4 cluster lattice.
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FIG. 9. Same as described in the caption of Fig. 6 but for the n = 5
cluster lattice. All observed dynamical modes are synchronized here.
See text for a description of the very fast hop and 4/5 sync altern
regimes.

convenience, we indicate the observed dynamical patterns on
the mobility curves of Figs. 6–9, where the switching between
patterns can induce visible mobility anomalies. We use k/n

labels indicating dynamical patterns which persist for an entire
force interval. The k/n labels in the mobility curves indicate
that the advancement from one well to the next occurs with k

particles out of a cluster of n jumping ahead, joining the next
cluster, and leaving n − k particles behind. Arrows point at
transitions from one kind of dynamical behavior to the next.

As a general rule, a small corrugation amplitude V0

tends to favor the clusters advancing as a whole, namely
in “n/n” modes. In contrast, for larger amplitude V0 the
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FIG. 10. The static friction, or depinning threshold, Fdep, ex-
pressed as a fraction of the single-colloid depinning force F1s (also rel-
evant for the depinning of the n = 1 no-cluster phase), for V0/E0 =1,
1.5, and 2, as a function of the number n of colloids per cluster.
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)b()a(

)d()c(

FIG. 11. The whole-cluster (5/5) advancement observed in the
n = 5, V0 = E0 simulation driven at F/F1s = 1; see Fig. 9. Panels
(a)–(d) represent subsequent snapshots, separated by �t = 2 t0. A
particle is labeled with a vertical bar for ease of identification in the
successive snapshots.

corrugation competes favorably with the energy advantage of
the clusters to remain entire, and as a result for larger V0 we
do observe nontrivial decomposition-recomposition patterns.
These decompositions can occur synchronously across the
entire supercell (and in this case they are labeled synchro) or
asynchronously (async label). Figures 11 and 12 report suc-
cessive snapshots illustrating the two main kinds of dynamical
patterns, as marked on the mobility plots. Specifically, Fig. 11
illustrates the most basic 5/5 advancement mode: whole cluster
advancing from one corrugation well to the next, as observed
for weak corrugation V0 = E0. In contrast, Fig. 12 illustrates
an advancement mode involving synchronous decompositions
and recompositions of the n = 5 clusters, with 2 particles
abandoning each cluster and jumping to the next corrugation
well while leaving 3 particles behind at each step. Examples
of similar patterned movements involving different numbers
of particles are reported in the Supplemental Material [46], as
digital videos. Figure 13 illustrates the effect of these patterned
movements on the x coordinate of the center of mass of the
colloids. As the particle hoppings are synchronized across the
entire sample, the center-of-mass position xcm exhibits rela-
tively fast jumps during the synchronized hoppings, alternating
with plateaus during the clusters rearrangements. The heights
of the observed steps are a fraction of apot, which matches
precisely the specific dynamical ratio, e.g., the 2/5 pattern
(solid line in Fig. 13) exhibits 2

5 apot-high steps.
When the driving force reaches relatively large values

F � F1s, its action on the system can force the collective
dynamics into an effectively one-dimensional (1D) dynamics,
with all colloids organized in rows parallel to the direction
of the driving force (x̂). We noted this mode on the mobility
plots, using the appropriate 1D label, except for Fig. 6, because

)b()a(

)d()c(

FIG. 12. Successive snapshots illustrating the 2/5 dynamics ob-
served in the n = 5, V0 = 2 E0 simulation driven at F/F1s = 0.7;
see Fig. 9. Five particles are labeled for ease of identification in
the successive snapshots. The time interval �t = 2 t0, the same as
described in the caption of Fig. 11.

for n = 2 the motion is quasi-1D for any F . Similar quasi-
1D dynamics was observed also in the different model of
Refs. [37,39,45]. In contrast for n = 5, this quasi-1D advance-
ment does not develop completely, because of a significant
transverse (ŷ-directed) displacement persisting at all times
due to the hard-core repulsion not leaving enough room for
5 colloids in a row of length apot. For n = 5, the large-F
dynamics can consist of a rapid and uninterrupted transfer
of particles from one cluster to the next, as identified by the

10 20 30 40
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FIG. 13. The time-dependence of the xcm of the system with
n = 5 colloids per cluster for V0 = 2 E0 and for three different forces
representative of the fully synchronized 2/5, 3/5, and 4/5 dynamical
modes indicated in Fig. 9: given apot = 1.5, the steps heights are
0.62178 � 2

5 apot, 0.88585 � 3
5 apot, and 1.23788 � 4

5 apot.
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label very fast hop in Fig. 9. Alternatively we have observed
a 4/5 sync altern motion, with groups of 4 colloids jumping
across clusters arranged in an alternating pattern (3 above + 2
below)–(2 above + 3 below) along the rows, as illustrated in
video cl5_4.44V2.avi in the Supplemental Material [46].

The synchronization of the well-to-well jumps can be
promoted or disfavored by weak cluster-cluster interactions. As
a consequence, we occasionally observe a desynchronization
of the well-to-well hoppings for different clusters. In the Sup-
plemental Material [46] we report examples of asynchronous
dynamics, where the advancements at different rows occur at
subsequent times. Contrasted to the synchronous advancement
steps of Fig. 13, in asynchronous dynamics as a consequence
of averaging no (or very small) steps are observed in the
overall center-of-mass coordinate. The asynchronous jumps
can occur in a regular sequence at different rows or with
apparently chaotic hoppings as, for example, in the video
cl4_2.71V2.avi provided as Supplemental Material [46].
Note that any regularity in asynchronous motions (and possibly
the overall synchronization itself when present) is favored by
the specific supercell periodic boundary conditions adopted in
simulation: as such, the synchronized or regular patterns may
be considered artifacts of the simulated model.

This zero-temperature dynamics, often dominated by
unique regular or chaotic attractors [47,48], does not represent
a realistic condition that one could put in relation to actual
experiments. Indeed, in the more realistic finite-temperature
simulations of Sec. IV B, irregular asynchronous depinning
occurs in most cases, due to the Brownian forces randomly an-
ticipating or retarding the advancement of individual particles
or clusters.

By cycling the driving force F up and down, we investigated
whether these dynamical systems retain some kind of dynamic
memory, i.e., the sliding state is affected not only by the
competition of the applied confinement potential and driving
but also by the initial sliding configuration. Indeed, in these
T = 0 simulations we do find some small difference of the
boundaries between specific dynamical modes between the
decreasing-F path and the increasing-F path. To rule out
nonphysical underdamping effects, we verified that such hys-
teretic effects persist even under a doubled damping rate η =
56 η0, indicating that a competition among multiple dynamical
attractors is indeed present in this model.

In the present study the adopted x̂-directed orientation of
the driving force tends to drive the colloids straight across
the saddle points of the corrugation potential. By exploring
other more general pushing directions, depending on the angle
formed by the force with the x̂ direction, the colloids would
be driven toward the corrugation maxima too. This kind
of investigation has been carried out in the past for differ-
ent models or experimental setups, typically finding locking
to energetically and/or dynamically favorable advancement
directions [35,49,50]. We expect similar directional-locking
phenomena in the present model. However, possible novel
regimes realized by the current cluster model may include
concurrent multiple decomposition paths for the clusters, with
several particles leaving simultaneously a potential well to
reach different neighboring ones. We leave the investigation
of these regimes to future research.

B. Thermal effects

We simulate finite temperature by restoring the random
forces ξj in the equations of motion Eq. (2) and therefore
sampling the canonical ensemble. The starting point of the
T > 0 simulations is the appropriate T = 0 static config-
uration (a perfect cluster lattice) obtained in Sec. III. In
the simulated scattering intensity reported in Fig. 14(a), the
modulation of the Bragg peaks reflects the structure factor of
the orientationally ordered lozenge-shaped clusters at T = 0;
see Fig. 5(c). In the finite-temperature simulations of the free
model (V0 = 0, F = 0), it is straightforward to verify that
even a low temperature, such as T = 0.01 E0 induces the
melting of the orientational order of the clusters, as seen in the
diffuse rings at integer multiples of 2π/δ � 20 R−1

c reported in
Fig. 14(b). Further raising temperature leads rapidly to more
disordering of the cluster crystal, and eventually to melting,
which occurs between T = 0.15 E0 and T = 0.17 E0; see
Figs. 14(c) and 14(d).

According to this analysis, we focus the investigation of the
driven model on moderately low temperature T � 0.05 E0. In
the simulations under driving, as we did in the T = 0 protocol,
successive runs at larger and larger driving force F are started
from the final configuration of the previous step in F , which is
increased “adiabatically” by �F = 0.01 F1s at each step. For
each step, the simulation duration is 500 t0: the first 30% is
dropped to prevent transient effects, and the remainder is used
for the determination of the mobility, providing a fair averaging
over thermal fluctuations.

Strictly speaking, at finite temperature there is no static
friction, because thermal fluctuations would lead to a diffusive
displacement of the layer even for F = 0, and to a slow
systematic drift in the force direction for F > 0, if one had
the patience to wait long enough for these thermally activated
rare events to occur. However, at the relatively small considered
temperatures T 
 V0, the rate of well-to-well thermal-assisted
hopping is extremely small, and as long as the applied force
is small F 
 F1s, we observe no such hoppings at all for
the duration of our simulations. This allows us to define
Fdep even for T > 0, as the threshold force beyond which
a significant center-of-mass displacement is observed in the
applied force direction within the simulation duration. For
forces immediately before this threshold, the mobility is not
precisely null, but it is really tiny, with overall advancements of
the entire system by far less than one lattice spacing apot over
the entire simulation time. We note also that all particle well-to-
well displacements occur within horizontal rows: although a
priori possible, we never observe any particle abandoning their
initial x̂-oriented row and transferring to a well in the next row.
These cross-row hoppings would of course become frequent
for larger T/V0. We do however observe particle jumps within
rows, leading to a limited but nonzero random concentration
of n − 1 and n + 1 “defective” clusters in the predepinning
quasi-immobile state.

The mobility resulting in the finite-temperature simulations
is exemplified in Fig. 15. This figure exhibits the following
characteristic features, common to analogous simulations that
we carried out for clusters of sizes n = 2 to 5, and reported
in the Appendix: (i) The depinning threshold Fdep decreases
for increasing temperature, because thermal fluctuations help
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FIG. 14. The scattering intensity S(q) obtained assuming that
each colloid acts as structureless pointlike scatterer. The simulations
refer to n = 4, at four temperatures expressed in units of energy
(i.e., assuming kB = 1): (a) T = 0—the ordered state in the static
condition depicted in Fig. 5(c), (b) T = 0.01 E0—rotational melting
of the cluster lattice, (c) T = 0.15 E0—crystal lattice phase just below
structural melting, and (d) T = 0.17 E0—a liquid phase just above
melting. The T > 0 simulations of panels (b)–(d) are carried out for
the free model (V0 = 0, F = 0). S(q) is averaged over 30 snapshots
widely spaced in time along an equilibrium simulation.
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FIG. 15. The mobility, relative to the value η−1 of free colloids,
as a function of the driving force, relative to the T = 0 depinning
threshold F1s of isolated colloids, at three relatively small but finite
temperatures, expressed in units of energy E0. The T = 0 solid curve
is the same as in Fig. 7. Simulations are carried out for n = 3-particle
clusters, for corrugation V0 = 2E0. Statistical fluctuations account for
error bars (not drawn) on mobility mostly smaller than 5 × 10−3η−1.

the particles anticipate the barrier hopping, thus activating
sliding even when the driving force is nominally insufficient
to overcome the barrier. (ii) For F � Fdep, immediately above
the threshold, thermal fluctuations tend to favor the sliding
state, as shown by the higher mobility proving a sort of
thermolubric effect [51–59]. However, depending on n and
the corrugation amplitude V0, for forces larger than the T = 0
depinning threshold F1s , increasing temperature can lead to
either a slightly decreasing mobility, as in Fig. 15, or essentially
T -independent mobility, quite similar to the values obtained for
T = 0; see the Appendix.

The main effect of finite temperature on the cluster dynam-
ics is to suppress the T = 0 synchronized advancements, espe-
cially those associated to the fractional-advancement modes.
As a result, at T > 0 the center-of-mass advancement is
generally smoother, with no, or at least substantially smeared,
steps like those occurring for the T = 0 fractional sliding
regimes reported in Fig. 13. Nonetheless, some amount of
approximate synchronization is preserved in the special case of
whole-cluster hopping, e.g., at T > 0 the 3/3 synchro pattern
of Fig. 7 even extends down to smaller F than for T = 0.
Relatedly, the sharp transitions between different sliding
modes observed at T = 0, at finite T are replaced by smooth
crossovers.

V. DISCUSSION AND CONCLUSIONS

In the present work we introduce and study a driven
model for friction at the microscale where the protagonists are
spontaneously formed clusters, rather than simple structureless
objects [12,60–76] or structured but unbreakable units [77,78],
as usually considered in previous investigations. We focus
on a lattice-matched situation, with the external corruga-
tion periodicity matching exactly the equilibrium spacing
between the clusters. In the language of the Frenkel-Kontorova
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FIG. 16. The mobility 〈v〉/F , expressed in units of the free
mobility η−1, for clusters composed by n = 2 particles. Simulations
include T = 0 and three finite but relatively small temperatures,
expressed in units of E0. The upper, central, and lower panels report
the indicated values of the corrugation amplitude V0, namely, E0,
1.5 E0, and 2 E0, respectively.

model [3,79–82], this is the typical situation which maximizes
the pinning effect of the corrugation, leading to a finite static
friction regardless of how small the corrugation amplitude
may be. We do find indeed a finite static friction in our
simulations of the current model, with clustering affecting the
static-friction threshold and the sliding mechanisms for driving
force exceeding this threshold.

For small corrugation amplitude, the clustering tendency is
dominating the dynamics, so that clusters tend to advance as a
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FIG. 17. Same as described in the caption of Fig. 16, but for
clusters formed by n = 3 particles.

individual objects, with the partial exception of single-particle
hopping induced by thermal fluctuations near the depinning
threshold. In contrast, at larger corrugation amplitude, the
stability of clusters is challenged when the driving force moves
them in regions where the curvature of the external corrugation
potential is negative: this leads to cluster decomposition and
partial hoppings. In this regime, the internal structure of the
clusters decomposes in several ways as a function of the
driving force, thus producing a quite rich dynamics with
complicate fractional advancement patterns for clusters of
various size. We investigate the impact of these phenomena
on the mobility of the system. At T = 0 we observe and

052614-10



SLIDING STATES OF A SOFT-COLLOID CLUSTER … PHYSICAL REVIEW E 97, 052614 (2018)

0.6 0.8 1 1.2
F / F

1s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

<
v>

 η
 / 

F

T = 0
T = 0.01 E

0
T = 0.02 E

0

T = 0.05 E
0

n = 4

V
0
 =  E

0

0.6 0.8 1 1.2
F / F

1s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

<
v>

 η
 / 

F

T = 0
T = 0.01 E

0
T = 0.02 E

0

T = 0.05 E
0

n = 4

V
0
 = 1.5 E

0

0.6 0.8 1 1.2
F / F

1s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

<
v>

 η
 / 

F

T = 0
T = 0.01 E

0
T = 0.02 E

0

T = 0.05 E
0

n = 4

V
0
 = 2 E

0

FIG. 18. Same as described in the caption of Fig. 16, but for
clusters formed by n = 4 particles.

characterize well-defined regimes of sliding of entire clusters
or of decomposition-recomposition processes, with deforma-
tion of the clusters. These processes can take place in a syn-
chronous or in asynchronous way across the system. Thermal
effects tend to destroy such distinct regimes: we observe a grad-
ual change of sliding under increasing driving force, already
for temperature as low as ∼5% of the temperature at which the
transition from a cluster crystal to a uniform fluid occurs.

The phenomenon of cluster decomposition/recomposition
under driving is not expected to be specific of the interparticle
interaction adopted here. We therefore predict that experiments
carried out in conditions where spontaneous clustering occurs
should observe this kind of dynamical behavior.
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FIG. 19. Same as described in the caption of Fig. 16, but for
clusters formed by n = 5 particles.

In the future we plan to extend the investigation to lattice-
mismatched configurations. In incommensurate conditions,
for increasing corrugation amplitude V0 there is room for an
Aubry-type transition from a “superlubric” dynamics charac-
terized by “solitonic” sliding modes [79,80,83–98]. A similar
condition could be realized by taking for the substrate a
symmetry other than hexagonal, as, e.g., in Refs. [72,99–101].
In the small-V0 superlubric ground state, a finite fraction of
clusters is supposed to sit near one of the maxima of the
incommensurate corrugation potential, rather than all in a
potential well as in the fully commensurate setup of the present
paper. The novelty for a cluster-supporting condition is that,
as V0 is raised, two competing effects may arise: either an
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entire cluster near the maximum slides down toward a nearby
potential well, thus leading to a relatively standard Aubry-type
transition [94,97], or alternatively it decomposes under the
action of divergent corrugation forces, leading to a structurally
inequivalent ground state. Which of these mechanisms turns in
earlier is open for investigation. These competing possibilities
are likely to lead to a rich phase diagram.
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APPENDIX: THERMAL EFFECTS ON MOBILITY

Figures 16–19 report simulated mobilities as a function
of the driving force. The simulations are carried out at the
values of the average particle density given by Eq. (7), for
n = 2,3,4,5, compatible with clusters of n particles arranged
in a regular hexagonal lattice with spacing 1.5 Rc. Three dif-
ferent values of corrugation amplitude are considered, namely:
V0 = E0, V0 = 1.5 E0, and V0 = 2 E0. Each figure compares
the T = 0 mobility (also shown in the Figs. 6–9) with the
homologous quantity obtained in finite-temperature simula-
tions, carried out at three comparably small temperatures:
T = 0.01 E0, T = 0.02 E0, and T = 0.05 E0.
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