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Mean-field theory of active electrolytes: Dynamic adsorption and overscreening
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We investigate active electrolytes within the mean-field level of description. The focus is on how the double-layer
structure of passive, thermalized charges is affected by active dynamics of constituting ions. One feature of active
dynamics is that particles adhere to hard surfaces, regardless of chemical properties of a surface and specifically
in complete absence of any chemisorption or physisorption. To carry out the mean-field analysis of the system
that is out of equilibrium, we develop the “mean-field simulation” technique, where the simulated system consists
of charged parallel sheets moving on a line and obeying active dynamics, with the interaction strength rescaled
by the number of sheets. The mean-field limit becomes exact in the limit of an infinite number of movable sheets.
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I. INTRODUCTION

The mean-field approximation is the most common tool in
dealing with electrostatic systems in the weak-coupling regime
[1–3]. The suitability of the mean-field collective description
to electrostatics stems from the long-range nature of Coulomb
interactions; because each particle interacts with all other
particles in a system; this, in turn, brings about significant sup-
pression of fluctuations in systems under standard conditions
[4,5].

In recent years, the mean-field analysis has been extended
to ions with inner structure to include an ever larger class of
emerging systems. These extensions incorporate steric effects
[6–9], multipolar interactions [10,11], polarizability [12,13],
penetrability [14–20], nonspherical shapes such as that of
dumbbell ions [21–24], and the various combinations of the
above extensions [25].

In the present work we extend the mean-field approximation
not to different ionic structures, but to different dynamics.
Thus, point ions instead of being Brownian are now active
particles, with trajectories characterized by constant velocity
and diffusing orientation, giving rise to orientational persis-
tence. A peculiar feature of active dynamics, and the direct
consequence of orientational persistence combined with over-
damped dynamics, is that particles adhere to hard surfaces
[26] (see Fig. 1). Such “dynamic adsorption” is different
from chemisorption and physisorption, which depend on the
chemistry of a surface [27–36].

The signature of “dynamic adsorption” is the emergence of
a divergent density profile at the location of a hard surface.
From the mathematical point of view, the divergence ensures
the continuity of a density, at the point where the density
profile of free particles merges with the Dirac delta function
representing the distribution of adsorbed particles. Physically,

the divergence arises due to newly released particles, which
tend to have orientations nearly parallel to a wall. Such particles
have a tendency to “linger” in the vicinity of a wall, giving rise
to an observed divergence.

In case of ions, “dynamic adsorption” will naturally modify
the surface charge of a wall. It is the aim of this paper
to investigate this phenomenon as well as other dynamic
contributions to the structure and properties of a double layer,
within the mean-field level of description.

Part of the challenge in achieving these goals is tech-
nical. The stationary distributions of active particles cannot
be obtained from their corresponding Boltzmann weights. In
consequence, even the simple case of noninteracting active
particles is not amenable to analytical solutions based on the
Fokker-Planck equation [37–39], and the dynamic simulations
still offer the most direct way to analyze these systems.

In the present work we develop the “mean-field simulation,”
which allows us to study charged systems with plane geometry
within the mean-field level of description. The simulated
system consists of charged sheets moving on a line; thus, it
is strictly one-dimensional. The mean-field limit corresponds
to infinitely many sheets with an infinitesimal surface charge,
while the total charge density remains fixed. The method is
designed specifically for planar geometry. The “mean-field
simulation” developed in this work is, therefore, not directly
transferable to other geometries.

The present work is organized as follows. In Sec. II we
review general properties of active particles. In Sec. III we go
over some of the results for active particles in a gravitational
field. In Secs. IV and V we develop the mean-field simulation
for active ions. In Secs. VI and VII we proceed to apply that
method to study various systems and their variations. Finally,
in Sec. VIII we conclude the work.
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FIG. 1. (a) A snapshot of active ideal particles in two dimensions
near a confining hard wall at x = 0, and (b) the corresponding
stationary distribution normalized by a bulk densityρb. In overdamped
dynamics particles are not reflected in contact with a wall; instead they
remain trapped until an orientational vector diffuses to the direction
away from a wall. Released particles have initially almost parallel
orientation with a wall. This causes a released particle to “linger” in
the vicinity of a wall, giving rise to a divergent density profile.

II. PRELIMINARIES

The motion of an active-Brownian particle is characterized
by a constant velocity v0 and a diffusion of an orientational
vector n(θ,φ) = (sin θ cos φ, sin θ sin φ, cos θ ) over a spheri-
cal surface of unit radius with a rotational diffusion constant
Dr (units of 1/time). Diffusion of an orientation vector leads
to directional persistence, resulting in the exponentially decay-
ing orientation-orientation correlation function 〈n(0) · n(t)〉 =
e−t/τp , where

τp = 1

d − 1

1

Dr

(1)

is the persistence time and d is a system dimensionality [40].
This leads to a translational persistence with the persistence
length given by

lp = v0τp. (2)

If a distance that an active particle covers in time t is
r(t) = v0

∫ t

0 ds n(s), then the expression for the mean-squared
displacement evaluates as

〈r2(t)〉 = 2l2
p

[
t

τp

+ e−t/τp − 1

]
. (3)

The above expressions span two limits. At short times the
motion is ballistic, 〈r2(t)〉 ≈ l2

p(t/τp)2. Then at long times it is
diffusive,

〈r2(t)〉 ≈
(

l2
p

τp

)
t, (4)

with the “effective” translational diffusion constant given by

Deff = 1

d

l2
p

τp

. (5)

Using the Einstein relation D = kBT /ζ , where ζ designates
the friction coefficient of a medium, it becomes possible to
define an “effective” temperature:

kBTeff = 1

d

ζ l2
p

τp

. (6)
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FIG. 2. Trajectories for a single active particle in a harmonic trap
for different ratios lp/ lk (0.1,0.25,0.5,1,2,4). The simulation is carried
out in two dimensions to facilitate visualization. The duration of each
trajectory is 100τp .

The above temperature expression will be used in subsequent
sections for comparing the results for active particles with those
for passive particles.

The temperature expression in Eq. (6) is not to be confused
with the equilibrium temperature of a medium in which
active particles are immersed. The medium contributes two
effects. First, it is perfectly dissipative, leading to overdamped
(non-Newtonian) dynamics. Second, it contributes thermal
fluctuations. In the present study, the temperature of a medium
is set to zero, in order to isolate the contributions due to active
dynamics.

To emphasize the essential role of overdamped dynamics in
the phenomena of dynamic adsorption, we consider a particle
propagating through a scattering medium, that is, a medium
of randomly distributed, small-angle, elastic point scatterers
[37]. The velocity of a scattered particle is constant while its
direction fluctuates. Up to this point, this is precisely what
occurs for active particles. The scattering medium, however, is
not dissipative, and dynamically the system is Newtonian. The
two systems start to deviate in presence of external potentials
or interparticle interactions. In consequence, the scattering
system does not produce dynamic adsorption.

A. Harmonic confinement

To demonstrates the significance of the persistence length,
we consider a single active particle inside a harmonic trap [41].
We define the size of a trap, lk , as a distance measured from the
trap center, beyond which an active particle cannot penetrate.
This distance corresponds to the balance between the two
forces: the particle intrinsic force, ζv0, and the trap’s restoring
force, F = −kr . The condition of balance yields lk = ζv0/k.

Figure 2 shows a number of trajectories of an active particle
inside a trap for different ratios lp/ lk . The figures are plotted in
units of lk . As confinement increases, the trajectories become
increasingly restricted to the border region of a trap at r/ lk = 1.
Figure 3 shows the corresponding stationary distributions.

For the lowest ratio lp/ lk , the distribution is nearly Gaus-
sian, ∼e−kr2/(2kBT ), with kBT given in Eq. (6). As the ratio lp/ lk
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FIG. 3. Stationary distributions corresponding to Fig. 2.

decreases, the distribution shifts toward the edge of a wall. For
lp/ lk = 4, an active particle is almost entirely confined to the
edge of a trap.

The situation is analogous to the packing problem of
a wormlike chain inside a circular hard-wall confinement
[42,43]; see Fig. 4. As the persistence length of a wormlike
chain increases, a polymer becomes less elastic, and the
energetically least costly configuration corresponds to packing
along the inner circumference of a trap.

A similar breakdown of Boltzmann statistics is expected
to occur in any system with some confinement length, at the
point where the confinement length becomes comparable with
the persistence length.

B. Dynamic simulation

1. Dynamic integration

Dynamic simulations use the time integration, for z(t) and
θ (t), updated at discrete times. The present work uses the Euler
integrator, which is the simplest update algorithm:

z(t + �t) = z(t) +
{
v0 cos θ (t) + F [z(t)]

ζ

}
�t, (7)

θ (t + �t) = θ (t) + ξ̂ (t)
√

2Dr�t + Dr cot θ (t)�t. (8)

F (z) in the first equation denotes an external force. Then
the term ξ̂ (t) in the second equation represents a random
value generated at each step and taken from a Gaussian
distribution with zero and unity variance. The second equation
contains a deterministic term Dr cot θ , even if there is no such
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FIG. 4. Distribution of a wormlike chain inside a circular hard-
wall trap with radius R = lk . Figures are from Ref. [42] for lp/ lk =
2,4,8. As lp/ lk → 0 (the weak confinement limit) the distributions
approach those of a Gaussian chain model.

deterministic torque [44–46]. This term is not present in d = 2,
and it arises in d = 3 to account for a spherical surface over
which a vector n diffuses. The integration over x(t), y(t), and
φ(t) is not required for a planar geometry.

Straightforward integration in Eq. (8) can be problematic
for orientations near the two poles, θ = 0 and θ = π , where
the deterministic term diverges. This problem is corrected by
integrating instead an orientation vector in Cartesian coordi-
nates. Since for the wall geometry only nz is relevant, the Euler
integrator for this component of an orientation is [46]

nz(t + �t) = nz(t) − ξ̂1(t) sin θ (t)
√

2Dr�t

−Dr

[
ξ̂ 2

1 (t) + ξ̂ 2
2 (t)

]
nz(t)�t, (9)

where nz = cos θ . Note that now there are two random num-
bers, ξ̂1(t) and ξ̂2(t), generated at each step.

2. Boundary conditions

Dynamic simulations are carried out within an interval z ∈
(0,L). Each time a particle crosses a boundary at z = 0 or
z = L, it is moved to the location of a boundary in the same
step. A possibility of a particle being bounced from a wall is
prevented by overdamped dynamics.

Because a particle can move away from a wall only if
its orientation points in the direction away from a wall, and
because such reorientation does not occur instantaneously due
to orientational relaxation, a particle that arrives at a wall
is considered as adsorbed, at least for the time being. This
procedure is repeated until a velocity vector points away from
a wall.

The interval length of a simulation box, L, varies from
system to system. For a gravitational system considered in the
next section L → ∞, as particles are naturally confined by a
gravitational force.

3. Reduced units

As the unit of length and time we take lp and τp. Conse-
quently, the reduced position on the z axis is z∗ = z/lp, the
reduced time is t∗ = t/τp, and a reduced density is ρ∗ = l3

pρ.
Furthermore, the unit of force is ζv0 and the reduced force is
F ∗ = F/(ζv0) and the reduced pressure is P ∗ = P l2

p/(ζv0).
The time step that we use is �t∗ = 0.001.

III. GRAVITATIONAL FORCE

Prior to considering charged particles, we review results
for noninteracting active particles in the gravitational field,
F = −G. The Euler integrators for the position and orientation
vector are

z∗(t∗ + �t∗) = z∗(t∗) + [nz(t
∗) − γG]�t∗, (10)

where the reduced gravitational force is

γG = G

ζv0
, (11)

and
nz(t

∗ + �t∗) = nz(t) − ξ̂1(t) sin θ (t∗)
√

�t∗

− 1
2

[
ξ̂ 2

1 (t∗) + ξ̂ 2
2 (t∗)

]
nz(t

∗)�t∗, (12)

where both equations are expressed in reduced units.
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FIG. 5. The stationary distribution of active-Brownian particles in
the gravitational field with strength γG = 0.5. The system is confined
by a wall at z∗ = 0. The profile is obtained from a dynamic simulation,
and the fit at a far field demonstrates exponential decay.

Ideal active particles in gravitational field in two dimen-
sions have been considered in Refs. [38,39]. The analysis
was based on separation of variables, leading to a Mathieu
differential equation for the orientational counterpart [47–49].
A dominant exponential decay could be obtained from the
lowest eigenfunction. For active particles in gravitational field
in three-dimensional space, separation of variables does not
generate the Mathieu equation, and it is not clear if analytical
results in terms of known functions are available. Here we
don’t attempt analytical analysis and limit ourselves to a simple
presentation of simulation results.

Figure 5 shows an average stationary distribution for the
gravitational strength γG = 0.5. The profile exhibits two dis-
tinct regions, the near-field divergence (implying dynamic ad-
sorption) followed by an exponential decay. Due to adsorption,
the integrated density of free particles is less than the total
number of particles in a system,

∫ ∞
0 dz∗ ρ∗(z∗) < n.

In Fig. 6 we plot the quantity g = 1 − nA/n, where g

corresponds to a fraction of free particles, as a function of
γG. For no adsorbed particles g = 1, and for all adsorbed
particles g = 0. The monotonically decreasing behavior of g is
expected, but the surprising feature of the plot is that g vanishes
beyond γG = 1. For γG = 1 and beyond, all the particles are
adsorbed. The adsorption is complete and permanent. This has
a straightforward explanation. For γG > 1, particle velocities
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= 

1 
- (

n A
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)

FIG. 6. The fraction of free (nonadsorbed) particles as a function
of γG.
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FIG. 7. The renormalization constant gG, introduced in Eq. (14),
as a function of γG. The data points are compared to the empirical
functional form (1 + cos γGπ )/2.

in the z direction can only be negative, regardless of their
orientations. But because particles cannot go beyond z = 0,
they become permanently trapped. Their motion occurs only
in the plane of a wall.

Next we consider the far-field behavior of a distribution.
The fact that it is exponential is not surprising, that is, ρ(z) ∼
e−z/lG . A more interesting fact to look into is the scaling of
lG as a function of γG. It is reasonable to assume that in the
limit γG → 0 one recovers the Boltzmann-like behavior, where
ρ(z) ∼ e−Gz/kBT , because lG and therefore the confinement is
large, lG → ∞. Substituting for kBT in Eq. (6) we get ρ∗(z∗) ∼
e−3γGz∗

, so that the decay length is

lim
γG→0

lG

lp
= 1

3γG

. (13)

This scaling is confirmed by simulations for smallγG. But asγG

increases, and the confinement decreases, lG start to deviates
from the behavior in Eq. (13). To capture the deviations
from the Boltzmann behavior, we introduce the dimensionless
parameter gG, referred to as the renormalization constant, and
rewrite the expression in Eq. (13) as

lG

lp
= gG

3γG

. (14)

In Fig. 7 we plot gG as a function of γG. The observation
is that gG decreases with the strength of a gravitational
force. The explanation is that as γG increases, the orientations
that generate positive velocity (velocity away from a wall)
become reduced. The behavior of gG is roughly trigonometric,
(1 + cos γGπ )/2. Beyond γG = 1, gG vanishes.

As the final point, we investigate the link between adsorbed
particles and pressure [50–53]. In the case of active particles,
pressure is calculated by counting the number of adsorbed
particles and then taking into account their orientations. The
reason is that only adsorbed particles exert force on a wall.
The force is proportional to a particle velocity in the direction
toward a wall. In reduced units, this is expressed as

l2
pP

ζv0
= 2πnA

∫ π

0
dθ sin θ (γG − cos θ ) ρA(θ ), (15)

where ρA(θ ) is the angular distribution of adsorbed particles,
normalized as 2π

∫ π

0 dθ sin θρA(θ ) = 1. One could evaluate
the integral by considering the Fokker-Planck equation of the
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present system; see Appendix A for details. However, knowing
that a force exerted by active particles must be equal and
opposite to the gravitational force exerted on the same particles,
we guess the following result:

l2
pP

ζv0
= γGn, (16)

which is confirmed by simulations.

IV. THE MEAN-FIELD TREATMENT OF ACTIVE IONS

In the case of active ions, there is no gravitational field, but
a similar constant force arises from a uniform surface charge,
σc, interacting with ions on account of their charge ±q. In
addition to the one-body constant force, there are now many-
body interactions due to Coulomb forces between ions.

Within the mean-field approximation, an ion, instead of
interacting with individual ions, interacts with an average
charge distribution due to all ions. This reduces a many-body
to a one-body problem. Given a two-component symmetric
electrolyte q:q, the averaged one-body force is

F±(z) = ∓q
dψ(z)

dz
, (17)

where ψ(z) is the average electrostatic potential. Using the
Poisson relation,

ε
d2ψ(z)

dz2
= −ρc(z), (18)

where ρc(z) = qρ+(z) − qρ−(z), ρ±(z) = ∫ π

0 dθ ρ±(z,θ ), and
ε is the dielectric constant of a medium, the force can be
expressed in terms of a charge density distribution as

F±(z) = ∓q

ε

∫ ∞

z

dz′ ρc(z′), (19)

where the neutrality constraint requires∫ ∞

0
dz ρc(z) = −σc. (20)

V. THE MEAN-FIELD SIMULATION

For the case of passive ions, the mean-field framework is
completed by expressing the charge density using the Boltz-
mann weight,ρc ≈ qcs(e−βqψ − eβqψ ), leading to the Poisson-
Boltzmann equation. For active ions there is no equivalent of
the Boltzmann factor, and there is no available expression for
ρc in terms of ψ .

To overcome this problem, we work with instantaneous
distributions,

ρ̂+(z) =
(

σc

qn

) ns∑
i=1

δ(z+
i − z), (21)

ρ̂−(z) =
(

σc

qn

) n+ns∑
i=1

δ(z−
i − z), (22)

where the weight factor σc/(qn) determines the contribution
of each particle to a density and ensures correct units. Note
that there are more counterions than coions, n− = ns + n and
n+ = ns , where ns is the number of salt ions and n is the

excess of counterions needed to neutralize the surface charge
σc � 0. The mean-field distributions correspond to averaged
instantaneous distributions:

ρmf
± (z) = 〈ρ̂±(z)〉. (23)

Using the above expressions, the instantaneous charge
density, defined as ρ̂c(z) = qρ̂+(z) − qρ̂−(z), is written as

ρ̂c(z) = q

(
σc

qn

)[ ns∑
i=1

δ(z+
i − z) −

ns+n∑
i=1

δ(z−
i − z)

]
, (24)

where the charge of each particle is rescaled by n and the total
charge density correctly integrates as∫ ∞

0
dz ρ̂c(z) = −σc, (25)

satisfying the neutrality constraint.
Now it becomes possible to write the expression of force,

analogous to that in Eq. (19),

F (z±
i ) = ∓q

ε

σc

n
A(z±

i ), (26)

where

A(z±
i ) =

ns∑
j=1

H (z±
i − z+

j ) −
ns+n∑
j=1

H (z±
i − z−

j ), (27)

and

H (z) =
⎧⎨
⎩

1, if z > 0
1
2 , if z = 0
0, if z < 0

(28)

is the step function. The term
∑

j H (zi − zj ) counts the
number of particles within the interval zi � z < ∞. Because
H (0) = 1/2, a particle that defines the lower limit of the
interval contributes one half to the total count.

Once the forces in Eqs. (26) and (27) are evaluated, one uses
the Euler integrator

z±
i (t + �t) = z±

i (t) +
{
v0 cos θi(t) − F [z±

i (t)]

ζ

}
�t, (29)

plus the expressions for nz in Eq. (9).
The equations written above actually describe a system of

charged parallel sheets moving along the z axis and obeying
active dynamics in that direction. The surface charge of
each plate is ±q/A, where A = qn/σc is the surface area,
and the magnitude of the interaction force between any two
sheets is f12 = q2/(2εA) = qσc/(2εn). The strength of the
interactions, therefore, depends on the number of particles n.
(In addition, there is a fixed plate at z = 0 with the surface
charge σc.) The mean-field solution corresponds to the limit
n → ∞, where interactions between individual sheets, f12,
vanish. If this limit is not satisfied, the distributions of the
simulated model should no longer correspond to the mean-
field approximation. To ensure that the procedure and the
simulation technique is accurate, in Appendix B we apply it
to the case of passive ions, for which analytical expressions
are available, so that accuracy can be easily checked. The
results indicate that already n = 100 particles yield accurate
mean-field distributions.
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The mean-field simulations have previously been used in
a number of systems. For example, to study the Hamiltonian
plasma model comprised of Coulomb sheets in a fixed neutral-
izing background [54]. In several versions of the model, the
sheets can either pass through one another or undergo elastic
collisions. A similar technique has been applied to study the
XY -Heisenberg model in periodic boundary conditions [55].
The method is referred to as the Hamiltonian mean-field model
due to the underlying Hamiltonian dynamics. The Hamiltonian
treatment of our system, that is, the switch from active-
overdamped to passive-Newtonian dynamics, would lead to
an altogether different physical interpretation, with the latter
case representing a plasma system. Such a model should give
rise to a system that does not relax to a Boltzmann distri-
bution, but for different physical reasons connected with the
long-range interactions and the absence of a thermodynamic
limit [56].

A. Calculation of forces and the use of a position index

Computationally, the most demanding step in the algorithm
is the calculation of forces acting on every particle at each
time step. To reduce its computational effort, we implement
the following procedure. Each particle is assigned two indices,
l and k. The first index is simply a label. The numbers 1 � l �
ns + n are reserved for counterions and ns + n < l � nT for
coions. The other index determines the location of a particle
within a sequence:

0 � znT
< znT −1 < · · · < zk < · · · < z2 < z1 < ∞. (30)

This index is not permanent but is updated at each time step.
As only a handful of particles exchange their relative positions
in the sequence, the update is quick and scales as O(nT ). The
procedure consists of a loop that compares the positions zk

and zk+1 for every k. If zk � zk+1 is false, the two indices are
exchanged. The loop is repeated until the condition zk � zk+1

is true for every k. Once the sequence is established, it is trivial
to calculate forces. The computation effort of the algorithm
scales as O(nT ).

B. Reduced units

In the rest of the paper we use the reduced units. The
dimensionless strength of electrostatic interactions is

γq = 1

ζv0

(
qσc

ε

)
, (31)

and the reduced force is F ∗ = F/(ζv0). Densities are ex-
pressed in units σc/(qlp), so that the reduced density is

ρ∗
± = ρ±

(
qlp

σc

)
, (32)

and the dimensionless salt strength is

γcs
= cs

(
qlp

σc

)
, (33)

where cs is the salt concentration in a bulk. One can also define
a reduced charge density:

ρ∗
c = ρc

(
lp

σc

)
. (34)

0 1 2 3 4 5
 γq

0

0.5

1

g

FIG. 8. The renormalization constant, g = 1 − nA/n, as a func-
tion of γq . The data points obtained from the mean-field simulation
are fitted to a functional form g = (1 + γq/γsat)−1, where γsat ≈ 1.17.

The units of length and time, as before, are the persistence
length and time, lp and τp, respectively. Finally, the Euler
integrators become

z∗±
i (t + �t) = z∗±

i (t) + {nzi
(t∗) − γqA[z±

i (t)]}�t∗, (35)

with A(z±
i ) defined in Eq. (27). Then nzi

is updated according
to Eq. (9).

VI. ACTIVE COUNTERIONS

For the counterion-only case the concentration of salt is
set to zero, that is, ns = 0, then n− = n and n+ = 0. Due
to dynamic adsorption of counterions on a charged wall, a
surface charge of a wall becomes reduced, with the effective
surface charge given as σeff = gσc, where g = 1 − nA/n is
the renormalization constant. Due to this renormalization, the
force exerted on adsorbed particles needs to be renormalized
at each time step, F (0) = −ĝγq , where ĝ is the instanta-
neous renormalization, such that g = 〈ĝ〉. Without adsorption,
F (0) = −γq .

In Fig. 8 we plot g as a function of γq . The plot indicates
that the effective surface charge decreases with the strength
of electrostatic interactions, and a simple fit to the data
points reveals the decay rate of g to be algebraic, as ∼γ −1

q .
Consequently, the effective surface charge σeff must saturate
in the limit σc → ∞ [see the definition for γq in Eq. (31)].

Before analyzing the distribution of active counterions, we
review the mean-field results for passive ions. The mean-field
charge distribution of passive counterions is

ρc(z) = σc/λGC

(1 + z/λGC)2
, (36)

where

λGC = 2εkBT

e2σc

(37)

is the Gouy-Chapman length. Using Eq. (6) to substitute for
kBT , the Gouy-Chapman length for active particles is

λGC

lp
= 2

3

1

γq

. (38)

In the limit γq → 0 the distributions for passive and active
particles converge, apart for the divergence at z = 0, which is
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0.01 0.1 1 10 100
z*

0.01

0.1
ρ∗ c(z

*)
γq = 0.1

FIG. 9. Density distribution of counterions for γq = 0.1. The
profile obtained from a simulation is compared to a fit in Eq. (39)
with gfit ≈ 0.91, determined by matching of the far-field regions.

absent for passive ions. In Fig. 9 we plot ρc(z), obtained from
a simulation for γq = 0.1, and compare it with the ansatz

ρc(z) = g2
fitσc/λGC

(1 + gfitz/λGC)2
, (39)

where the fitting parameter for γq = 0.1 is gfit ≈ 0.91. A small
renormalization is the result of ion adsorption.

The ansatz in Eq. (39) becomes less accurate for larger γq . A
more accurate fit is ρ∗

c (z) = a
b+cz∗+z∗2 ; see Fig. 10. The ansatz

does not modify the asymptotic behavior, which is still ∼z−2,
but it is significantly more accurate in the intermediate region.

Equation (38), obtained from the mean-field for passive
ions, suggests a = 2/(3γq). We find this relation to be correct
not only in the limit γq → 0, but for any arbitrary value of γq .
This then means that the asymptotic region is not modified by
counterion adsorption, and far away from a wall the distinction
between active versus passive dynamics becomes irrelevant—
at least for a counterion-only system.

VII. ACTIVE ELECTROLYTE

Next we consider a charged wall in contact with electrolyte.
The concentration of salt cs , in the mean-field simulation,
is controlled through ns . Dissociation of salt brings into
the system additional counterions but also coions. Because
a system is filled with salt ions, one must account for the

0.01 0.1 1 10 100
z*

0.01

1

ρ c
*(

z*
)

γq = 1

FIG. 10. Density distribution of counterions for γq = 1 together
with a fit ρ∗

c (z) = a

1+bz∗+cz∗2 .

0 1 2
γcs

0

0.2

0.4

0.6

g

γq=0.5
γq=1
γq=2

FIG. 11. The renormalization constant, g = 1 − (n−
A − n+

A)/n, as
a function of γcs

for different values of γq . The results are from the
mean-field simulation.

osmotic pressure and its contribution to dynamic adsorption
of counterions as well as the concurrent adsorption of coions.

The renormalization factor now is defined as g = 1 −
(n−

A − n+
A)/n, where n−

A and n+
A is the number of adsorbed

counterions and coions, respectively. Figure 11 shows sim-
ulation data points for g as a function of γcs

for a number
of different γcs

. The results indicate increased adsorption of
charge with increased concentration of salt: the larger the
concentration of salt, the larger the osmotic pressure pushing
particles toward a wall. Yet the suppression of charge is slow
due to the concurrent adsorption of coions, which reverse the
effect of adsorbed counterions.

In Fig. 12 we plot separate contributions of g, that is, n−
A and

n+
A , as a function of γcs

. There are a number of interesting ob-
servations. First, the number of adsorbed counterions exceeds
that of a surface charge, that is, n−

A/n > 1, at roughly γcs
> 1,

which by itself should imply charge inversion. However, charge
inversion is prevented by the concurrent adsorption of coions.

If we look at the adsorption rates, that is, r− = d
dγcs

( n−
A

n
) and

r+ = d
dγcs

( n+
A

n
), we find that r− approaches r (which is the rate

of adsorption for neutral particles determined to be r ≈ 0.55)
from above, while r+ approaches r from below. In the limit
γcs

→ ∞ the two rates converge, r− = r+ = r , implying that
adsorption is entirely determined by osmotic pressure.

Next we look into the far-field region of charge distributions.
For passive ions, the Debye screening parameter κ of the

0 0.5 1 1.5 2
γcs

0

0.5

1

1.5

n A+/
-  /

 n
c

γq=0.5
γq=1
γq=2

nA
-

nA
+

FIG. 12. The adsorption of counterions, n−
A , and coions, n+

A , as a
function of γcs

for different γq .
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0 0.5 1 1.5
γcs

0

1

2

3

4

κ∗
γq=0.5 (a)

0 0.5 1 1.5
γcs

0

1

2

3

4

κ∗

γq=1 (b)

0 0.5 1 1.5
γcs

0

1

2

3

4

κ∗

γq=2 (c)

FIG. 13. The screening parameter κ for active ions. The data
points from simulations are plotted against the analytical expression
in Eq. (41).

exponential decay (related to a screening length as λD = κ−1)
is

κ =
√

2csq2

εkBT
. (40)

Using Eq. (6) to substitute for kBT , we get

lpκ = √
6γqγcs

. (41)

For the counterion-only case, the far-field algebraic decay
agreed with that for passive ions, so that the profiles for passive
and active ions differ only in the near-field and intermediate
regions. Whether Eq. (41) accurately describes the far-field
decay for electrolytes, we examine next.

In Fig. 13 we plot κ obtained by fitting charge distributions
to the functional form ρ(z) ∼ e−κz, and then compare the plots
with the expression in Eq. (41). For low concentrations of salt,
γcs

→ 0, the results for active particles agree with Eq. (41). But
as γcs

increases, the two plots begin to deviate, where active
ions show reduced screening, which implies a more diffuse

0 0.5 1 1.5 2
γcs

0

0.2

0.4

0.6

g

active coions
passive coins

γq=0.5

(a)

0 0.5 1 1.5 2
γcs

0

0.2

0.4

g

active coions
passive coins

γq=1

(b)

FIG. 14. Renormalization constant g as a function of γcs
for γq =

0.5 and γq = 1.

double layer. The screening parameter, furthermore, appears
to saturate at a value slightly above κ∗ = 2.

A plausible explanation of a more diffuse double layer
in an active system is some sort of competition between the
screening and the persistence length. A persistence length sets
a limit on how compressed a double layer may become.

As the last point, we provide the mean-field expression of
pressure for electrolytes,(

q

ζv0σc

)
P = 1

2
γq + 2

3
γcs

, (42)

where the first term accounts for electrostatic contributions and
the second term accounts for an (ideal-gas) osmotic pressure.

A. Passive coions

In the above example all ions are active. In this section we
consider a mixture of passive coions and active counerions. As
passive coions do not get adsorbed, they don’t contribute to
the renormalization of a surface charge. We set the diffusion
constant of passive coions to be the same as that of active
counterions, D = Deff , with Deff defined in Eq. (5).

In Fig. 14 we plot the renormalization constant, g = 1 −
n−

A/n, for the above described system.
In comparison to the results in Fig. 11, the renormalization

constant becomes zero at γcs
≈ 2.2 (for γq = 0.5) and γcs

≈
2.4 (for γq = 1), then beyond, g changes sign, indicating a
“surface charge inversion” as adsorbed counterions overcom-
pensate a bare surface charge.

In Fig. 15 we plot charge densities for different values of
γcs

(for γq = 0.5). At γcs
= 1.3 the charge distribution changes

sign, even before the “surface charge inversion” at γcs
≈ 2.2.

We refer to this as “overscreening” to distinguish it from

0 1 2 3 4 5
z*

0

0.1

0.2

ρ∗ c(z
*)

γcs = 1.2
γcs = 1.3
γcs = 1.4
γcs = 1.5
γcs = 1.6

FIG. 15. The charge density profiles for γq = 0.5, for different
values of γcs

. There is an indication of counterion overscreening.
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0 1
γcs

1

1.05

1.1

g

γq=0.5

FIG. 16. Renormalization constant g as a function of γcs
for an

electrolyte mixture of active coions and passive counterions.

“surface charge inversion.” “Overscreening” can be traced to
the divergent density profile, whose emergence is concurrent
with dynamic adsorption. Even if a surface charge has not
yet changed a sign, the released counterions that linger in the
vicinity of a wall, together with adsorbed counterions, over-
compensate a bare surface charge. “Overscreening,” therefore,
precedes and anticipates “surface charge inversion.”

B. Passive counterions

As the last case study, we consider a mixture of active coions
and passive counterions. In this case only coions become
adsorbed, and the adsorbed coions renormalize a surface
charge up. The renormalization constant for this situation is
defined as g = 1 + n+

A/n. Figure 16 shows g as a function of
γcs

. As coions are generally depleted from a charged surface,
the coion adsorption and the resulting charge renormalization
are considerably weaker than that caused by active counterions.

VIII. CONCLUSION

In the present work we investigate a type of adsorption
that arises in active dynamics and does not depend on the
chemistry of a surface, as is the case with chemisorption and
physisorption. The dynamic adsorption is particularly relevant
for electrolytes, where the counterion adsorption renormalizes
a surface charge down, and the coion adsorption renormalizes
it up. The counterion adsorption, under some conditions, may
lead to surface charge inversion. Then a divergent density near
a charged wall, which is concurrent with dynamic adsorption,
can lead to overscreening of a surface charge, prior to surface
charge inversion. Far away from a wall, active dynamics
modifies the screening of a surface charge, leading to a more
diffuse double layer.

While these are all strictly dynamic effects, without direct
counterpart in the passive system, there are some similarities
with the behavior of Coulomb fluids in the vicinity of charge-
disordered surfaces (diverging surface density of mobile charge
[57]).

Based on the above conclusions one can state that the
properties of active Coulomb fluids are unexpected and war-
rant further consideration, especially since addition of active
charged particles to a colloid solution could pave the way to
control and modify the electrostatics of colloids in the way that
was impossible to contemplate from the mere passive particle
perspective.
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APPENDIX A: THE FOKKER-PLANCK EQUATION
FOR ACTIVE PARTICLES

The probability distribution ρ(r,θ,φ,t) of noninteractive
active particles satisfy the following Fokker-Planck equation:

∂ρ

∂t
= −∇ ·

{[
v0n(θ,φ) + F(r)

ζ

]
ρ

}

+ Dr

sin θ

∂

∂θ

[
sin θ

∂ρ

∂θ

]
+ Dr

sin2 θ

∂2ρ

∂φ2
, (A1)

where F(r) is the external force. The above equation comprises
two processes. The first process is simple convection, −∇ · j,
with the flux given by

j(r,θ,φ,t) =
[
v0n(θ,φ) + F(r)

ζ

]
ρ(r,θ,φ,t), (A2)

where the flow is due to intrinsic particle force ζv0 and an
external force field F(r). The second process is the diffusion
of a director vector n represented by an angular part of the
Laplace operator with radius set to one. The combination of
the two processes gives rise to active transport.

For a wall geometry considered in this work, where particles
are confined to a half-space z � 0 and where an external
force acts only in the z direction, F = (0,0,F ), the relevant
distribution is ρ(z,θ,t). Furthermore, as we focus on stationary
distributions, the relevant differential equation is

∂

∂z

{[
v0 cos θ + F (z)

ζ

]
ρ(θ,z)

}

= Dr

sin θ

∂

∂θ

[
sin θ

∂ρ(θ,z)

∂θ

]
. (A3)

The application of the method of separation of variables
assumes ρ(z∗,θ ) = �(z∗)T (θ ). For noninteractive active par-
ticles in gravitational field the separation of variables yields
two equations:

∂�n(z∗)

∂z∗ + 3γGλn�n(z∗) = 0, (A4)

∂

∂θ

[
sin θ

∂Kn(θ )

∂θ

]
+ 6γGλn sin θ (cos θ − α)Kn(θ ) = 0.

(A5)

APPENDIX B: THE MEAN-FIELD SIMULATION
OF PASSIVE IONS: ANALYTICAL RESULTS

In this section we apply the mean-field simulation to passive
counterions (or counterion sheets). For passive Brownian
particles the weight of every configuration is proportional to
the Boltzmann factor e−U (z1,...,zn)/kBT , where U (z1, . . . ,zn) is
the total electrostatic potential of the system. Analysis becomes
more tractable if sheets are arranged into sequence [58,59],

0 � zn � zn−1 � · · · � z2 � z1 < ∞, (B1)
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so that the index i functions both as label and position index.
A pair potential between any two sheets i and j is

u(zi,zj )

kBT
=

{
(zi − zj )/(nλGC), if i < j

(zj − zi)/(nλGC), if i > j,
(B2)

where λGC is the Gouy-Chapman length defined in Eq. (37).
The factor 1/n indicates that the larger the number of sheets,
the weaker the pair interactions. Taking into account the
electrostatic potential due to a fixed charged wall at z = 0,
uwall(zi)/kBT = zi/λGC , the total potential energy is found to
be

U (z1, . . . ,zn)

kBT
= 1

n

n∑
k=1

(2k − 1)
zk

λGC

, (B3)

where the plate k = 1 feels the weakest potential, and the plate
k = n feels the strongest potential. The partition function can
now be written as

Zn =
n∏

k=1

∫ zk−1

0
dzk e−(2k−1)zk/(nλGC ) = nnλn

GC

n!n!
, (B4)

where z0 = ∞. The limits of the integrals prevent positional
permutations between sheets, which makes particles
distinguishable, and there is no need of the factor 1/n!.

Because sheets occupy different positions within a se-
quence, their distributions are unique, given by

p(n)
m (zm) = e−(2m−1)zm/(nλGC )

Zn

m−1∏
k=1

∫ zk−1

zm

dzk e−(2k−1)zk/(nλGC )

×
n∏

k=m+1

∫ zk−1

0
dzk e−(2k−1)zk/(nλGC ). (B5)

The term of the first line evaluates to

Zm−1

Zn

e−m2zm/(nλGC ) (B6)

and is obtained by shifting all the variables of integration as
xk = zk − zm, which allows us to write

m−1∏
k=1

∫ zk−1

zm

dzk e−(2k−1)zk/(nλGC )

=
m−1∏
k=1

∫ xk−1

0
dxk e−(2k−1)(xk−zm)/(nλGC ). (B7)

The term of the second line is more difficult to evaluate but,
after some manipulation, we get

2(−1)m(nλGC)n−m

×
n∑

k=m

(−1)kke−(k2−m2)zm/(nλGC )(k + m − 1)!

(k − m)!(n + k)!(n − k)!
.

(B8)

A distribution for a plate m then becomes

p(n)
m (z) = 1

nλGC

2(−1)m n!n!

(m − 1)!(m − 1)!

×
n∑

k=m

(−1)kke−k2z/(nλGC )(k + m − 1)!

(k − m)!(n + k)!(n − k)!
, (B9)

where we drop the subscript m from z. From the identity

n∑
k=m

(−1)k(k + m − 1)!

k(k − m)!(n + k)!(n − k)!
= (−1)m(m − 1)!(m − 1)!

2 n!n!
,

(B10)

we know that all the distributions pm(z) are normalized,

∫ ∞

0
dz p(n)

m (z) = 1. (B11)

The charge distribution is obtained by summing up the distri-
butions of all the sheets,

ρ(n)
c (z) = σc

n

n∑
m=1

pm(z), (B12)

where the factor σc/n ensures that
∫ ∞

0 dz ρ(n)
c (z) = σc, so that

the charge density is independent of n. For the case n = 1, the
distribution is exponential,

ρ(1)
c (z) = σc

λGC

e−z/λGC , (B13)

and corresponds to a one-particle distribution that is exactly
the counterion density in the strong-coupling approximation
[1]. Then, in the limit n → ∞, we find

ρ(n)
c (z) = σc/λGC

(1 + z/λGC)2
+ O

(
1

n

)
, (B14)

where the above expression is obtained by expanding the
exponential term e−k2z/(nλGC ) in Eq. (B9). The dominant term
corresponds to the solution of the Poisson-Boltzmann equation
for the present problem; see Eq. (36).

In Fig. 17 we plot a number of charge density distributions
for different values of n. Already for n = 10 the distribution
is accurate up to the point z/λGC ≈ 10, where the exponential
decay takes over. For n = 40 the range of accuracy increases
to z/λGC ≈ 100. It appears then that the main size effect
is the range of validity. For our simulations we use the
values between n = 1000 and n = 6000, depending on the
situation.

0.01 0.1 1 10 100
z/λGC

0.001

0.01

0.1

1

λ G
C

ρ c(n
) (z

) /
 σ

c

n= ∞
n=10
n=40

FIG. 17. Charge density distributions, ρ(n)
c (z), given in Eq. (B12),

for different values of n.
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