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Ground state of dipolar hard spheres confined in channels
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We investigate the ground state of a classical two-dimensional system of hard-sphere dipoles confined between
two hard walls. Using lattice sum minimization techniques we reveal that at fixed wall separations, a first-order
transition from a vacuum to a straight one-dimensional chain of dipoles occurs upon increasing the density.
Further increase in the density yields the stability of an undulated chain as well as nontrivial buckling structures.
We explore the close-packed configurations of dipoles in detail, and we find that, in general, the densest packings
of dipoles possess complex magnetizations along the principal axis of the slit. Our predictions serve as a guideline
for experiments with granular dipolar and magnetic colloidal suspensions confined in slitlike channel geometry.
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I. INTRODUCTION

The anisotropy of the dipole-dipole interaction causes an
ensemble of magnetic balls to self-assemble into nontrivial
ground states at zero temperature [1–6]. For example, N hard
spheres with a central dipole-dipole interaction exhibit ground-
state clusters which cross over from linear chains to rings and to
tubes as N grows [7,8], whereas similar clusters have also been
observed for anisotropically shaped magnetic particles at finite
temperatures [9,10]. Other ground-state structures have been
explored for spheres with shifted dipole moments [11–14],
for spheres in an external magnetic field [15], and confined
onto the plane [16,17]. Magnetic hard spheres are realized
in the macroworld as heavy balls [18] and granulates [19],
yet a plethora of possibilities are found in the mesoscopic
regime of magnetic colloids [20–31], magnetic nanoparticles
[32–34] (in particular, when the magnetic interaction energy
dominates thermal fluctuations), colloidal particles with an
induced electric dipole moment [35,36], and dipolar dusty
plasmas [37]. As these particles and their clusters constitute
the main building blocks of prospective materials such as fer-
romagnetic filaments [38–40] for the creation of microdevices
and for magnetorheological fluids and ferrogels with tunable
and unusual viscoelastic properties [41–44], an understanding
of their structure is of prime interest.

In this work, we explore the ground state of classical hard-
sphere dipoles in two dimensions which are confined between
two narrow walls in a slit geometry (a “channel”). If the slit
width coincides exactly with the hard-sphere diameter, there
is only a one-dimensional degree of translational freedom for
the sphere centers. In this special limit, a vacuum coexists with
a closely packed linear chain of touching dipoles with head-
to-tail attractive configuration. Here, we study the nontrivial
effect of a wider slit where geometric packing effects of the

disks tends to widen the chain by buckling [45] but the dipolar
interaction still keeps the particle chain aligned. As a result
of this competition, we find that various undulated chains
are the minimal potential-energy structure at densities slightly
higher than for the straight chain. The “spin structure” of the
magnetic moments is nontrivial though mainly aligned with
the slit. The opposite limit of high density is dictated by the
close-packing problem of disks between two hard lines. We
revisit this elementary geometric problem and analyze the spin
structure in close-packed configurations, which, in general,
possess nontrivial complex magnetizations. In principle, our
predictions are verifiable in experiments with granular dipolar
particles and confined magnetic colloidal suspensions and
they display relevance for the flow of magnetorheological
suspensions through microfluidic devices.

II. MODEL

In our model, we consider N dipolar hard spheres of
diameter σ that are confined in a slitlike geometry between
two parallel hard walls. We restrict ourselves to the situation
where all particles lie in the (x,y) plane. This restriction yields
their magnetic moments to be coplanar with the same plane in
the ground state [21], and as such, our system can be portrayed
as an effective two-dimensional system of magnetic hard disks
confined between two hard lines of length L and separation
H (see Fig. 1). For convenience, this separation direction is
taken along the y direction. The potential of interaction U (�rij )
between two constitutive particles i and j whose centers are
located at �ri and �rj reads as

U (�rij ) = μ0

4π

[
�mi · �mj

r3
ij

− 3
( �mi · �rij )( �mj · �rij )

r5
ij

]
(1)
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FIG. 1. Schematic illustration of dipolar hard spheres of diameter
σ confined between two hard walls of separation H and length L. The
spheres possess magnetic moments �m and are further confined onto
the (x,y) plane.

for rij � σ or infinite otherwise, where μ0 represents the vac-
uum permeability, and rij = |�rij | = |�rj − �ri | is the interparticle
distance between the spheres possessing the dipole moments
�mi and �mj of equal magnitude m. At zero temperature, for
a given reduced line density η = Nσ/L, the system will
minimize its potential energy per particle and the resulting
structure will solely depend on the reduced slit width H/σ .

We employ three different approaches to study the phase
behavior of our system in its entireness: (i) we theoretically
determine the stability regime of undulated chains upon slight
increase of the density beyond ηch = 1 at which the linear
magnetic chain is stable, (ii) we perform a numerical penalty
optimization method to efficiently find close-packed structures
at relatively high densities ηcp, and (iii) we carry out lattice sum
minimizations to obtain the ground-state structures at densities
interpolating between ηch and ηcp. The details of each method
are provided in the following paragraphs.

We wish to describe first our lattice-sum technique. At each
prescribed reduced density η and reduced slit width H/σ , we
perform lattice sum minimizations for a broad set of candidate
structures, which we take to be two-dimensional crystals with
periodicity along the x direction, and confined along the y

direction by the slit (cf. Fig. 1). We consider structures with
a rectangular primitive cell containing up to n = 6 particles.
Without any further restriction, we minimize the energy per
particle with respect to the particle coordinates in the cell and
the alignments of the two-dimensional dipole moments.

III. RESULTS

The resulting ground-state phase diagram in the (η,H/σ )
plane is demonstrated in Fig. 2(a) for 0 � η � 1.05 and 1 �
H/σ � 1.3. The phase diagram exhibits a relatively large co-
existence regime between the vacuum at η = 0 [purple line in
Fig. 2(a)] and the linear chain of touching particles with head-
to-tail attractive dipole configurations at the density ηch = 1
[blue line in Fig. 2(a)]. The linear chain 1C is schematically
depicted in Fig. 2(b). Upon increasing the density beyond ηch,
we observe the stability of undulated chains within the purple
area shown in Fig. 2(a). The undulations of the magnetic chain
are caused by an interplay of the geometry that favors a buckled
chain for slit widths H/σ > 1 and densities η > ηch due to
an efficient packing and the attractive head-to-tail alignment
of the dipoles favoring the straight chain. To investigate the
stability of the undulated chain, we have calculated its total
potential energy by taking into account its bending energy.
Since lattice-sum minimization techniques are inappropriate
to determine the energy of highly complex undulated phase

FIG. 2. (a) Ground-state phase diagram of confined dipolar hard
spheres as a function of the reduced slit width H/σ and the reduced
density η. The straight chain 1C (blue line) coexists with vacuum
(purple line, η = 0) at densities η < 1, whereas for η > 1 undulated
chain (purple area), the nontrivial buckling phases B2−2 (red curve),
B1–2 (green curve), and B2–3 (yellow curve) as well as the zigzag phase
1B (black curve) become stable. The gray area indicates the forbidden
zone beyond the densest packing regime. The dashed areas correspond
to the coexistence regimes between two neighboring phases, whereas
the hatched area may accommodate further phases that have not been
investigated in this work. (b) Schematics of the stable phase structures
shown in (a). The vertical dashed lines mark the corresponding unit
cells, and λ in the most lower schematic indicates the wavelength of
the undulated chain with a sinusoidal form.

structures with a large number of particles per unit cell that
even diverge as η → ηch for η > ηch, we have used a different
approach to detect such stable undulations as will be described
in the following.
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We model the undulated chain as a continuous object
uniformly carrying dipolar hard spheres. We assume that the
linear chain undulates into periodic sinusoidal structures with a
density-dependent wavelength λ as schematically illustrated in
Fig. 2(b). Thus, we parametrize the contour line of the wave that
passes through the particle centers by f (x) = H−σ

2 cos (kx),
with k = 2π/λ. The wavelength λ relates to the density via
η = lc/λ, where lc = ∫ λ

0

√
1 + f ′(x)2dx denotes the contour

length of the corresponding wave. Inserting f (x) into lc yields
the equality 2πη − E[2π, − k(H − σ )/2] = 0, from which
we obtain k (and thus λ) for a given reduced density η. Here, E
stands for the incomplete elliptic integral of the second kind.

Having established the exact form of the undulation wave
with the corresponding wavelength, we will now determine its
potential energy per particle, uund, given as

uund = uch + γ

N

∫ lc

0

1

R(s)2
ds. (2)

The first term on the right-hand side, uch, describes the
magnetic energy per particle in the straight chain as dictated
by the pair interaction potential of Eq. (1), and the second
term the elastic bending energy per particle, respectively. R(s)
denotes the curvature radius of the wave as a function of its arc
length s(x) = ∫ x

0

√
1 + f ′(x ′)2dx ′, whereas γ stands for the

bending rigidity of the magnetic chain as will be determined
in the following.

To obtain the bending rigidity γ , we follow the approach
proposed in Ref. [7]; namely, we calculate γ by identifying
the bending energy with the energy difference of a closed
ring of radius R carrying N touching particles and a straight
infinite chain. We consider the magnetic moments in the
ring configuration to be oriented tangentially on the bending
circle. The tangential alignment has been theoretically shown
to minimize the ring’s potential energy per particle uring in
[46], and it has been demonstrated experimentally with cobalt
nanoparticles in small systems in [33]. Using the relation
uring(R) − uch ∼ γ /R2 + O(R−4), and ignoring the higher
order terms in R, the bending rigidity γ is given as

γ = lim
R→∞

[uring(R) − uch]R2. (3)

Taking into account the closed-form expressions for the
energies uring and uch (cf. [7,8,21]), we finally ob-
tain γ 4πσ 2/μ0m

2 = [ζ (3) + 1/6]/4 ≈ 0.342, where ζ (m) =∑∞
i=1 i−m denotes the Riemann zeta function.
We calculate the total energy per particle of the undulated

chain as given in Eq. (2), and compare it to the energies
obtained by our lattice-sum minimizations. It is noteworthy
that, as we use a continuous modeling of the undulated chain,
we are able to obtain its total energy by solely determining its
elastic bending energy without any numerical minimization of
a particular dipolar hard-sphere configuration on an undulated
chain. Clearly this continuum description of the undulated
phases is only valid for wavelengths much larger than the par-
ticle diameter such that discreteness effects become negligible.
As a result, we reveal the stability of the undulated chain for
slightly larger densities above ηch = 1 and for all slit widths.
In the limit η → ηch with η > ηch, the wavelength of undu-
lations diverge. As the reduced density increases, undulations
become stable with continuously decreasing wavelengths. For

instance, at H/σ = 1.3 the smallest wavelength we obtain
is λ ≈ 16σ .

The phase space between the undulated chain and the zigzag
phase 1B at the close-packing density ηcp [black curve in
Fig. 2(a)] displays a plethora of nontrivial buckling structures
as obtained by lattice-sum minimizations. We refer to these
phases as B2−2 (n = 4), B1−2 (n = 3), and B2−3 (n = 5) and we
show their stability regime by the red, green, and yellow curves
in Fig. 2(a), respectively. The subindices indicate the number
of particles per unit cell that are distributed—-not necessarily
evenly—on the two walls while being in contact with them. For
instance,B2–3 possesses five primitive-cell particles, where two
of them are in contact with the one, and three with the other
wall.

For the sake of completeness, we have further investigated
the phase coexistence in our system by implementing the
common tangent (Maxwell) construction: The dashed areas
between two neighboring phases in Fig. 2(a) demonstrate their
coexistence regime. As a result, we obtain the pure one-phase
stability of the nontrivial buckling phases at a single density
for a given slit width, and as such, they emerge as stability lines
in the (η,H/σ ) plane.

Attention must be paid when interpreting the hatched area
in Fig. 2(a). On the one hand, it might indicate a coexistence
between the undulated phases and B2–2; on the other hand,
further complex phases that have not been investigated in
this work may occur within this area: So far, we have con-
sidered a single mode of undulation of the linear magnetic
chain, namely, periodic sinusoidal wave functions. In principle,
other types of undulations might take place which, if stable,
are expected to appear within this hatched area. Moreover,
phase structures with more than six unit-cell particles cannot
be ultimately excluded. This being said, however, we do
not expect any radical morphology changes of the phase
diagram.

The close-packing density ηcp shown by the black curve in
Fig. 2(a) is an upper bound of the phase space. The gray area
beyond this density displays the geometrically inaccessible
(“forbidden”) density zone. In order to reveal the minimum-
energy state of hard dipolar disks along this density, we
first use the penalty method to find the maximum-packing
configuration of hard disks. This method as implemented in
[47,48] describes an efficient algorithm to circumvent the
discontinuous and constrained optimization of the free space
under the constraint of nonoverlapping particles. By adding a
penalty term that depends continuously on the overlap area of
two disks, we obtain a continuous and unconstrained penalty
function which can be minimized in the classic way to predict
the optimal particle coordinates. Subsequently, in a given
densest packing structure, we first assign magnetic moments
to each disk and we then minimize the potential energy with
respect to the alignments of those moments by our lattice
sum minimization technique. As a result, we unveil the zigzag
structure 1B with n = 2, where the dipole moments are all
aligned parallel to thex axis [cf. the corresponding schematic in
Fig. 2(b)].

Next, we wish to examine in detail the magnetic spin
structure, i.e., the orientations of the magnetic moments, of
close-packed hard disks for larger slit widths. To this end, we
first extend our geometrical study of the densest packings up
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FIG. 3. Potential energy per particle of closed-packed dipolar
hard spheres (left axis) and their total magnetization per particle in
the parallel direction to the walls (right axis). The corresponding
close-packed structures are shown in the upper panel. The inset
provides a schematic illustration of dipolar 2P� at H/σ = 2.5.

to H/σ �
√

3 + 1. In particular, we investigate the regime
between the linear chain 1C at H/σ = 1 and the triangular
trilayer 3� at H/σ = √

3 + 1. We obtain the fundamental
sequence w� → (w + 1)� as well as the intermediate phases
1B and 2P� as reported in [49,50], where w � 2 denotes
the number of parallelly stacked and staggered chains aligned
with the walls, corresponding to slices of the regular triangular
lattice. The phases w� are only best packed at discrete values
of the slit width, Hw/σ = (w − 1)

√
3/2 + 1, where the layers

exactly fit between the walls. The resulting cascade of close-
packed structures reads as 1C → 1B → 2� → 2P� → 3�,
and it is shown in the upper panel of Fig. 3.

Having elucidated the close-packed structures of confined
hard disks, we identify their energy-minimizing spin configu-
rations using our lattice-sum method. The resulting potential
energy per particle ucpd of close-packed dipolar hard spheres
is shown in Fig. 3. We further calculate the total magnetization
per particle along the x direction by

Mx = 1

n

n∑
i=1

m cos θi, (4)

where θi denotes the angle between the magnetic moment �mi

and the x axis. In Fig. 3, Mx is plotted for different densest
packings as a function of H/σ . We observe that the phases
2� and 3� as well as the zigzag phase 1B exhibit Mx = m as
their moments are all aligned parallel to the x axis. The phase
2P� possesses, however, a nontrivial structure of the magnetic
moments that are rotated with respect to the x axis as shown
in the inset of Fig. 3 for H/σ = 2.5. Consequently, the total
magnetization Mx differs slightly from the magnetization m of
a straight chain.

IV. CONCLUSIONS

In conclusion we have explored the ground-state structures
of strongly confined magnetic disks in a slit geometry and have
predicted a novel structure of undulated chains which emerge
as a compromise between packing efficiency and magnetic
dipole moment alignment. This simple model system could be
realized either in the granular or in the colloidal context. For
colloids, the two dimensionality of our model is a standard
setup, and the slit geometry can be imposed by microchannels
(see, e.g., [51]) or by strong external fields. Another promising
direction is the structure formation of colloids under adaptive
confinement where the corresponding boundaries are made of
a subset of constitutive particles fixed with optical tweezers
[52,53]. Furthermore, for the future, an ensemble of active or
swimming magnetic particles in a slit would be a fascinating
topic where the emerging clusters are not static but dynamic
[54,55]. Moreover, more general models including an external
magnetic field [56] or harmonic confining potential and an
out-of-plane orientation of the dipole moments can be explored
using similar techniques as presented here. Finally, the fact
that magnetization can be tuned paves the way for microde-
vices to control the magnetization intrinsically by design
architecture.
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