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A theoretical analysis of active motion on curved surfaces is presented in terms of a generalization of the
telegrapher equation. Such a generalized equation is explicitly derived as the polar approximation of the hierarchy
of equations obtained from the corresponding Fokker-Planck equation of active particles diffusing on curved
surfaces. The general solution to the generalized telegrapher equation is given for a pulse with vanishing current
as initial data. Expressions for the probability density and the mean squared geodesic displacement are given in
the limit of weak curvature. As an explicit example of the formulated theory, the case of active motion on the
sphere is presented, where oscillations observed in the mean squared geodesic displacement are explained.
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I. INTRODUCTION

Active matter is the term coined to those systems composed
of self-propelled or active particles (capable of converting the
locally absorbed energy from their environment into motion)
that find themselves in intrinsically out-of-equilibrium condi-
tions. On the one hand, there has been great interest in the
collective properties that emerge in these out-of-equilibrium
systems, for instance, the coherent motion that emerges from
alignment interactions between self-propelled particles which
give rise to wonderful patterns observed in systems such as
flocks of birds, groups of ants, bacterial colonies, schools
of fishes [1], even in aggregates of nonliving matter like
thermal active colloids [2], among others. Interesting out-of-
equilibrium collective phenomena emerge even from simple
interaction rules, as those originally considered by Vicsek et al.
[3], and described theoretically by the use of continuum field
theories by Toner and Tu in the 1990s [4], ideas that still
are being developed extensively [5,6]. Recent studies have
considered the inclusion of spatial and alignment interactions
among active particles [7], while the complete phase diagram
of the Vicsek et al. model has been recently interpreted in terms
of a gas-liquid transition [8]. Furthermore, in some cases it has
been pointed out that self-propulsion is not a necessary intrinsic
property to explain the emergence of collective motion [9].

One of the topics that is being currently investigated is the
one that considers the effects of spatial heterogeneity on the
dynamics of active particles, as occurs when the particle motion
is limited by a curved surface, or constrained to move on it. It
turns out that the processes of the last kind abound in biology.
For instance, the embryonic developmental processes can be
thought of as a collective cellular movement controlled by a
curved surface, the embryonic sac; the cell movement on the
development of a corneal growing; the transport of blood cell
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through the vascular system; the flocking birds that migrates
into different regions of the earth; etc. As a consequence,
the importance of the effects of geometric and/or topological
features of the embedding space on the diffusion of active
particles must be emphasized.

In a broad way, it is generally possible to distinguish
the local effects of the embedding manifold curvature on
the transport properties of active particles from the global
ones due to the topology. This means, in particular, that the
curvature effects will be revealed locally in a neighborhood
of a given point, especially in the short-time regime of the
particle dynamics. Topological effects on the other hand,
will be manifested in the opposite limit, i.e., in the long-
time regime. The effects of curvature have been observed in
the dynamics of single self-propelled particles inside curved
(convex and nonconvex) walls, where the probability density
function depends strongly on the curvature of the confining
surface [10–12]. In addition, the coupling of the geometric
shape of single obstacles or microcomponents with an active
fluid induces on them a characteristic dynamics of active
behavior exhibiting the importance of the geometric aspects
of the swimmers [13]. There is also interest in the definition of
the so-called swimming pressure where the combined effects
of interaction among self-propelled particles and the wall
shape of the container are important [14,15]. Meanwhile,
a theoretical framework that considers the effects of the
curvature of a convex surface on the dynamics of interacting
active particles has been proposed [16]. Further, it has been
recently shown that the collective motion of systems composed
of interacting polar active particles confined to ellipsoidal
surfaces exhibit the formation of swirling patterns around
surface points of constant curvature, making clear the effects of
a curved substrate on collective motion [17]. Similarly, it has
been shown that active apolar fluids experience a curvature-
induced spontaneous active flow when confined on a curved
surface [18].

On the other hand, the effects of topology have been
pinpointed in different recent studies. In Ref. [19] the
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emergence of out-of-equilibrium spatiotemporal patterns has
been analyzed as the consequence of the combination of active
matter and topological constraints. It turns out that the topology
of the sphere is determinant for the appearance of an oscillating
dynamics in active nematic films confined onto the sphere
surface. Similarly, the topology of the sphere plays a key roll
on the emergence of collective patterns of motion in a system
of interacting self-propelled particles confined to move on the
surface of the sphere [20,21]. This has been explored recently
in Ref. [22] on the basis of a generalization of the continuum
Toner-Tu model for an active polar fluid confined to an arbitrary
curved surface, where it is shown that the presence of curvature
induces a gap in the sound mode spectrum at short wave
vectors, leading to a flocking band structure with nontrivial
topology.

In the general theoretical setting, the overdamped kinemat-
ics of an active Brownian particle is described by a pair of
Langevin-like equations, one for the particle’s position and
the other for the swimming direction [1]. A coarse-grained
description only in terms of the probability density of the par-
ticle’s position leads to a Smoluchowski-like equation which,
in the open Euclidean space and in the long-time regime, is well
approximated by the so-called the telegrapher equation (TE)
[23–25]. Such an equation accounts for persistent Brownian
motion if coherent initial distributions are avoided in order
to maintain the positiveness of the probability density [26],
i.e., it is valid only in the diffusive regime. Notwithstanding
this, it has been proved that the TE provides the whole and
exact time dependence of the mean squared displacement
of a self-propelled particle [23,24], not like this the time
dependence of higher moments which are well approximated
by the TE only in the long-time regime.

The TE has been widely studied since it describes transport
phenomena in many different contexts. It was introduced in
the middle of the last century to take into account the effects
of persistence in the one-dimensional trajectories of random
walkers that propagate at finite speed [27,28]. The straightfor-
ward generalization of the telegrapher equation to dimensions
larger than 1 must be taken with care if its solutions must be
interpreted as a probability density. Indeed the solutions of
the TE can have negative values in the short-time regime as
pointed out in Refs. [26,29]. The origin of this feature can be
traced back to the wake effects of the wavelike behavior of the
solutions in that specific time regime. This contrasts with the
transport properties of an ensemble of noninteracting persistent
random walkers that move in continuous two-dimensional
space [23], for which it is clear that for times shorter than the
persistence time, no wake effects are apparent and a sharp front
of particles that move almost in a ballistic way is observed.
One can anticipate that the same issue of positiveness of the
TE solutions in the open Euclidean space will also appear on
high-dimensional Riemannian manifolds, however as in the
former case, there is an appropriate parameter region where
probability density is positive [23,26].

In this paper a theory of diffusion of active particles
on curved surfaces is presented. The theoretical framework
starts with Langevin equations for the kinematic state of
an active particle confined to move on a curved surface.
After deriving the corresponding Fokker-Planck equation,
we develop a fluctuating hydrodynamiclike description for a

collection of noninteracting active particles on the surface. This
description is given through a hierarchy of coupled equations
for the hydrodynamic field tensors, i.e., for the scalar particle
density ρ, the polarization vector field Pa , the second rank
tensor or nematic field Qab, etc. [7]. By use of the standard
polar approximation, which consists of the truncation of the
hierarchy of equations to close them up by retaining only the
particle density and the polarization vector field, we show that
ρ satisfies a generalization of the TE to curved surfaces. The
general covariance of the resulting TE is exploited in order to
study the curvature effects appearing in the particle density,
and particularly in the mean squared geodesic-displacement
(MSGD). The calculation is performed by the use of the local
frame provided by the Riemann normal coordinates (RNCs)
[30]. Finally, we consider the surface of a sphere as the
underlying curved manifold, as an application of our general
results.

This paper is organized as follows. In Sec. II, we present the
Langevin equations of motion for an active particle confined
to a curved surface. The Fokker-Planck equation associated
to the stochastic equations is derived in order to build a
standard hydrodynamics description for the system. In Sec. III
we discuss the general aspects regarding the evolution of the
particle density on the surface, when the polar approximation
is enforced. In Sec. IV, we provide analytical expressions
in the limit of weak curvature. In addition, the mean-square
displacement is studied under the same circumstances. In
Sec. V, we give an explicit application of our theoretical
framework to a system of active particles diffusing on the
sphere. In the final Sec. VI, we give our concluding remarks
and perspectives of this work.

II. ACTIVE MOTION ON CURVED SURFACES

The kinematic state of an active particle that swims with
constant speed v0 on a two-dimensional curved surface S is
determined by its position x(t) and the direction of motion
v̂swim(t). The particle’s position on the surface is described by
the two local coordinates xμ(t) and xν(t), which are denoted
simply by xa(t) with a = μ, ν. The self-propulsion director
v̂swim(t), that changes the position of the particle along the
surface, is contained only on the tangential plane to the
surface at the point where the particle is located, i.e., it is
a two-dimensional xa-dependent quantity whose dynamics is
described by the evolution of the coordinates va

swim, which must
satisfy the condition va

swim(t)vb
swim(t)gab[x(t)] = 1, gab[x(t)]

being the metric tensor that characterizes the Riemannian
geometry of the surface. Throughout this paper we will use
indistinctly the single symbol x(t) or xa(t) as a shorthand
notation to refer to the pair of coordinates xμ(t) and xν(t).
The stochastic equations that give the dynamics of the active
particle on a curved surface are (see Appendix A for a
derivation)

d

dt
xa(t) = v0v

a
swim(t), (1a)

d

dt
va

swim(t) = −v0 vc
swim(t)vd

swim(t)�a
cd

+
√

2γ g[x(t)] vc
swim(t) εcd gda ζ [x(t)], (1b)
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where Einstein notation, summation over repeated indexes,
is assumed. γ denotes the strength of the active fluctuations
that affects the direction of motion and has units of time−1,
while g[x(t)] = det{gab[x(t)]}. Notice that together with v0,
the characteristic length scale,L = v0/γ , measures the average
distance that an active particle travels along a given direction
and is called the persistent length. ζ [x(t)] is a scalar noise that
depends explicitly on the particle state through the projection of
the three-dimensional vector ζ (t) along N[xa(t)]. ζ (t) dictates
the time evolution of the swimming direction and its entries
are Gaussian white noise with zero mean. N[xa(t)] is a local
unitary normal vector to the tangential plane located at the
particle position xa(t) on the surface. gab and εab denote the
inverse of the metric tensor and the two-dimensional Levi-
Civita tensor, respectively, while �a

cd denotes the Christoffel
symbols. All these tensors encompass the geometrical data of
the intrinsically curved surface. Particularly, for a flat surface,
where one has �a

cd = 0 and gab = δab, the above stochastic
equations (1) reduce to the equations studied in Ref. [23].
A slightly different approach that considers the interaction
between active particles confined on a curved surface is
presented in Ref. [16].

By following standard methods [31], it is straightforward
to show that the one-particle probability density

P (x,v,t) =
〈

1√
g(x)

∏
a

δ[xa − xa(t)]

× δ
[
va − va

swim(t)
]〉

, (2)

satisfies the Fokker-Planck equation

∂P

∂t
= γ

∂

∂va

[
(gabv2 − vavb)

∂P

∂vb

]
− ∇a(v0v

aP )

+ ∂

∂va
(v0v

cvd�a
cdP ), (3)

where v2 = vavbgab = 1 by consistency with the fact that the
swimming direction is a vector of length 1 (see Appendix B)
and ∇a denotes the covariant derivative compatible with the
metric gab. In Eq. (2), 〈· · · 〉 symbolizes the average over the
realizations of the active fluctuations ζ [x(t)]. Equation (3)
takes into account, in an explicit manner, the effects of
the surface curvature on the dynamics of an active particle
constrained to move on that surface. The first term of such
an equation accounts for the internal fluctuations on the
direction of motion that occurs on the tangent plane located at
the particle location on the surface. The second term gives the
drift term on the surface due to the self-propulsion, while the
third one accounts for the constrained motion to the surface
as is evidenced by the appearance of the Christoffel symbols.
Notice that strictly speaking, P (x,v,t) depends conditionally
also on the initial values of the position and velocity, not written
explicitly for the sake of simplicity.

The drift term in Eq. (3) hinders the obtention of an
exact solution, however, a thorough analysis can be carried
out along different methods [23,24,32,33]. We follow the
standard coarse-graining procedure to give a fluctuatinglike
hydrodynamic description of Eq. (3) [16,32,34] in terms of a

hierarchy of coupled equations for the hydrodynamic tensor
fields. These tensor fields are defined through a multipolar
expansion of the single-particle probability density P (x,v,t)
as

P (x,v,t) =
∞∑

r=0

Hr(x,t)τ r(v), (4)

where Hr(x,t)τ r(v) denotes the contraction of the hydrody-
namic tensor field of rank r, Hr(x,t) with the tensor of the
same rank τ r(v). The set of tensors {τ r(v)} forms an orthogonal
basis, thus, the hydrodynamic tensor fields are calculated by
mean of the projection

Hr(x,t) = 1

2r

∫
d2v τ r(v) P (x,v,t). (5)

With the firsts elements of such a basis,

τ 0(v) = 1, (6a)

τ a(v) = 2va, (6b)

τ ab(v) = 4

(
vavb − 1

2
gab

)
, (6c)

τ abc(v) = 8

(
vavbvc − 1

4
gabvc − 1

4
gbcva − 1

4
gcavb

)
,

(6d)

we have that the first hydrodynamic tensors, the probability
density ρ(x,t), the polarization fieldPa(x,t), the nematic order
parameter Qab(x,t), and the third rank tensor field Rabc(x,t),
are given explicitly by

ρ(x,t) ≡ H0(x,t) =
∫

d2vP (x,v,t), (7a)

Pa(x,t) ≡ Ha(x,t) = 1

2

∫
d2v τa(v)P (x,v,t), (7b)

Qab(x,t) ≡ Hab(x,t) = 1

4

∫
d2v τab(v)P (x,v,t), (7c)

Rabc(x,t) ≡ Habc(x,t) = 1

8

∫
d2vτabc(v)P (x,v,t). (7d)

The orthonormal basis chosen enforces some restrictions in
these hydrodynamic quantities, for instance, it can be proved
that nematic order parameter is traceless with respect to the
metric tensor, i.e., gabQab = 0. In the following, we briefly
depict how the hierarchy of equations for these hydrodynamic
quantities emerge from Eq. (3) [16].

After the integration over the velocity domain on both
sides of the Fokker-Planck equation (3), the change in time of
ρ(x,t) is related with the polarization field in the continuitylike
equation

∂ρ

∂t
= −∇a(v0P

a), (8)

where v0Pa can be interpreted as the probability current on
the surface. The evolution equations for the hydrodynamic
tensor fields Pa(x,t), Qab(x,t), Rabc(x,t), etc., are obtained
after multiplying Eq. (3) by τ a , τ ab, τ abc, etc., and integrate
over the whole velocity domain. Special care must be taken
with such evaluations due to the particular way the covariant
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derivative acts on the rank-k tensors [35]. It can be shown that
the Christoffel symbols disappear explicitly in the equation for
Pa , namely

∂Pa

∂t
= −γPa − v0

2
∇aρ − v0∇bQ

ab. (9)

The evolution equation for the nematic order tensor field
Qab(x,t) can be written in terms of the polarization field, and
a traceless three rank tensor field Rabc(x,t) [16], to say

∂Qab

∂t
= −4γQab − v0

4
Tab − v0∇cR

abc, (10)

where Tab denotes the traceless rank-2 tensor −gab∇cPc +
(∇aPb + ∇bPa). The evolution equations for Rabc(x,t), and
higher order hydrodynamic fields can be obtained by a similar
procedure. Initial data for the each of the hierarchy equations
is obtained consistently from the initial data.

Notice that Eqs. (8) and (9) can be combined through the
explicit elimination of the polarization field to obtain

∂2ρ

∂t2
+ γ

∂ρ

∂t
= v2

0

2
�gρ + v2

0∇a∇bQ
ab, (11)

where �g is the so-called Laplace-Beltrami operator, given
explicitly in generalized coordinates by

�g = 1√
g(x)

∂

∂xa

√
g(x)gab(x)

∂

∂xb
. (12)

With the probability density function, ρ(x,t), at hand, we
look at the expectation values of physical observables, O(x),
like the mean squared geodesic displacement. The expectation
values are defined in the standard fashion by

〈O[x(t)]〉 =
∫

d2x
√

gO(x)ρ(x,t). (13)

It is noteworthy to mention that in the open Euclidean space
one is able to obtain the exact time dependence for the
MSGD directly from the Eq. (11). Indeed, it can be shown
straightforwardly from (11) that 〈s2(t)〉 = 〈[x − x0]2〉 satisfies
the equation

d2

dt2
〈s2(t)〉 + γ

d

dt
〈s2(t)〉 = v2

0

2

×
∫

d2x[ρ∇2 + 2Qab∇a∇b]s2. (14)

The last integral can be evaluated by noticing that ∇2s2 = 4,
and ∇a∇bs

2 = 2δab, therefore the term proportional toQabδab

vanishes by the symmetry of the nematic tensor. With these
considerations we have

d2

dt2
〈s2(t)〉 + γ

d

dt
〈s2(t)〉 = 2v2

0, (15)

whose solution with initial conditions 〈s2(t = 0)〉 = 0 and
d
dt

〈s2(t = 0)〉 = 0 gives the exact expression [23]

〈s2(t)〉 = 4D[t − (1 − e−γ t )/γ ], (16)

where D = v2
0/2γ is the effective diffusion constant.

In the next section the polar approximation is considered.
In this approximation the nematic order tensor field and the
higher order tensor fields as well are assumed fast variables

and approximately homogeneous over the points of the curved
surface. Thus, the second term in the right-hand side of Eq. (11)
can be neglected leading to the so-called telegrapher equation.

III. POLAR APPROXIMATION: TELEGRAPHER
EQUATION

Our main interest is in getting an approximated equation
for the zero-rank hydrodynamic field ρ(x,t), which gives
the probability density of finding a particle located at the
coordinates x independently of its swimming direction v. It
is customary to truncate the infinite hierarchy of equations
of the last section to withhold only the polarization field Pa

and disregard the contribution of higher multipole terms. This
procedure simplifies the calculations by neglecting a whole
lot of information, the payoff, only some quantities (as the
mean-squared displacement in the two-dimensional Euclidean
space) are well described by such an approximation [24].
Nonetheless, the approximation gets better the longer the time
regime of the description since the information from higher
rank tensors turns out negligible. Indeed, as can be seen from
Eqs. (9) and (10), the polarization field is damped out as e−γ t ,
while the nematic order parameter tensor is damped out faster
as e−4γ t . The higher the rank of the tensor in consideration,
the faster it is damped out, as has been exhibited in the case of
active motion on the plane analyzed in Ref. [23]. In physical
grounds, if the active particle is diffusing on the surface of
a one-piece manifold, it is expected that as time passes, the
density becomes uniform on the surface, i.e., ρ(x,t) → �−1

M ,
where �M is the area of the manifold’s surface. Thus, any
inhomogeneity of the density at short times is induced by the
contribution of higher multipoles of the hierarchy.

Under these considerations we have that, in the polar
approximation, ρ(x,t) satisfies the non-Euclidean version of
the so-called telegrapher equation

∂2ρ

∂t2
+ γ

∂ρ

∂t
= v2

0

2
�gρ. (17)

The telegrapher equation has received much attention in
different contexts [28] that consider the flat geometry of space,
however, to our knowledge, little or nothing has been said about
the effects of intrinsic curvature on the transport properties
described by Eq. (17).

The formal solution to Eq. (17) can be found by expanding
ρ(x,t) in a complete set of eigenfunctions, {
I (x)}, of the
Laplace-Beltrami operator −�g . This method is valid for
arbitrary one-piece (compact) manifolds M, the Euclidean
space Rd , and manifolds that result from the direct product

TABLE I. In this table we show the type of manifolds that we are
considering and the corresponding identification of the index, sum,
and eigenfunctions.

Manifold Index Sum Eigenfunctions of −�g

M I
∑

I 
I (x)
Rd p

∫
ddp exp (ip · x)/(2π )d/2

M × R (I,p)
∑

I

∫
dp 
I (x) exp (ipz)/

√
2π
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of these, namely, M × R (see Table I). Thus we have

ρ(x,t |x ′) =
∑

I

aI (x ′,t)
I (x), (18)

where we have explicitly stated that the dependence on the
initial value x ′ and the coefficients aI (x ′,t) are given by (see
Appendix C)

aI (x ′,t) =
∑
i=±

K̄
(i)
I (t)Ai,I (x ′). (19)

K̄±
I (t) are the Green functions,

K̄±
I (t) = ± exp

[
α±

(
v2

0λ
2
I /2

)
t
]

α+
(
v2

0λ
2
I /2

) − α−
(
v2

0λ
2
I /2

) , (20)

that correspond to the two independent solutions of the
characteristic equation associated to (17), which is equiva-
lent to the second order differential equation of a damped
harmonic oscillator. Ai,I (x ′) are functions of x ′ only and are
determined from the initial data. The symbol λ2

I � 0, that has
physical dimensions of length−2, denotes the discrete set of
eigenvalues of −�g , that correspond to the eigenfunctions


I (x). The functions α±(ω) = − γ

2 ±
√

γ 2

4 − ω2 are derived in
Appendix C, where γ is the inverse of the persistence time.

If the following initial data are chosen,

lim
t→0

ρ(x,t |x ′) = 1√
g

δ(2)(x − x ′), (21a)

lim
t→0

∂ρ(x,t |x ′)
∂t

= 0, (21b)

namely, if a pulse on the surface starts to propagate with van-
ishing initial flux, the coefficients A±,I (x ′) can be computed
explicitly and after substitution in (19) and some rearrange-
ments in (18) we have

ρ(x,t |x ′) =
∑

I

G

(
γ t

2
,
2v2

0

γ 2
λ2

I

)



†
I (x ′)
I (x), (22)

where the function G(v,w) is given explicitly as

G(v,w) = e−v

[
cosh(v

√
1 − w) + sinh(v

√
1 − w)√

1 − w

]
. (23)

This function embodies the time evolution that characterizes
the telegrapher equation; indeed, notice that for each eigen-
value λ2

I , for which (2v2
0/γ

2)λ2
I > 1, G shows an oscillatory

behavior associated to the wavelike propagation originated by
the second order time derivative that appears in the telegrapher
equation. The solution for the case of flat space is recovered
as can be checked with the explicit solutions presented in
Refs. [26,36]. Note, also, in this case that the particle density
satisfies the boundary behavior ρ(x,t |x ′) → 0 when |x| → ∞.

Notice that two characteristic length scales appear in this,
so far, general analysis. One of these scales characterizes
the persistence of active motion and we refer to it as the
persistence length, denoted with L and given by the product
of the swimming speed v0 times the persistence time γ −1, i.e.,
L = v0/γ . The other length scale characterizes the particular
surface under consideration and can be chosen, without loss of
generality, as the squared root of the inverse of the first positive

eigenvalue, namely R = 1/
√

λ2
1 (this is warranted under the

assumption of the compactness of the manifold, for which the
zero eigenvalue is associated to the constant eigenfunction).
Any of these two characteristic lengths can be picked out as the
length scale in the system, and the ratio between them, R/L,
serves as a parameter that compares the effects of curvature
to those of persistence in the diffusion process of an active
particle on the surface.

In the limit L 
 R we have that G(γ t/2,2 v2
0

γ 2 λ
2
I ) can be

approximated by e−λ2
I Dt , where D = v2

0/2γ is the well-known
effective diffusion coefficient. In this limit the particle density
is given by

ρ(x,t |x ′) �
∑

I

exp
(−λ2

I Dt
)



†
I (x ′)
I (x), (24)

which corresponds to the formal solution of the diffusion
equation in curved manifolds, i.e., ∂ρ/∂t = D�gρ. Notice
that in the asymptotic limit t → ∞, the dominating term
corresponds to the constant function associated to the vanishing
eigenvalue I = 0, and therefore ρ → |
0|2. From the normal-
ization condition we have that 
†

0 = 
0 = 1/
√

�M. The mean
squared distance from the initial position x ′, 〈s2(t)〉, tends to the
constant value

∫
dxa[d(x|x ′)]2

/�M, where d(x|x ′) denotes
the geodesic distance between x and x ′.

In the opposite limit, L � R, the effects of persistence are
important, and G(γ t/2,2v2

0λ
2
I /γ

2) results into an oscillatory
function for each eigenvalue λI > 1/L. In particular for
γ t 
 1 one has that G(γ t/2,2v2

0λ
2
I /γ

2) � cos (λI
v0√

2
t) and

therefore

ρ(x,t |x ′) �
∑

I

cos(λI v0t/
√

2)
†
I (x ′)
I (x), (25)

which now corresponds to a pulse that propagates on the
surface of a compact, curved manifold, that started at x ′, which
is a solution of the wave equation, ∂2ρ/∂t2 = (v2

0/2)�gρ.

IV. WEAK CURVATURE APPROXIMATION

In this section, our goal is to determine an approximation
for the probability density function ρ(x,t) in a neighborhood of
a given point of the manifold. This approximation captures the
first correction due to the effects of curvature which happens
to be linear in the Ricci curvature tensor Rab and would serve
as a basis to the implementation of computing algorithms to
find solutions on arbitrary surfaces.

The procedure used in this paper follows the same tech-
niques originally used in the context of quantum field the-
ory in curved space, developed mainly by DeWitt [37] (see
Appendix C), which goes in analogy with the standard per-
turbation theory in quantum mechanics. In addition, we use
such an approximation for ρ(x,t), in order to compute an
expression for the mean squared geodesic displacement in the
weak curvature regime.

A. Probability density function in the neighborhood of
a given point on the surface

For weakly curved surfaces, the probability density func-
tion (pdf) around the neighborhood of a given position x ′
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can be approximated as the superposition of the continuous
set of eigenfunctions 
I (x) = exp (ip · x)/(2π ) with p in
(−∞,∞) × (−∞,∞). Since our interest is in providing the
pdf around x ′, it is clear that for weakly enough curved surfaces
such pdf can be approximated by its locally flat counterpart and
therefore

ρ(x,t |x ′) =
∫

d2p

(2π )
a(p; x,x ′,t) eip·x, (26)

where the coefficient a(p; x,x ′,t) is now given, in analogy with
(19), by

a(p; x,x ′,t) =
∑
i=±

K̄ (i)(p,x,t)Ai(p,x ′). (27)

In this approximation the effects of curvature are encoded
in the Green functions K̄ (i)(p,x,t) only, i.e., the curvature
decouples explicitly from the complete set of eigenfunctions
of the Laplace-Beltrami operator. The calculations of the
Green functions follow the standard procedures used in the
perturbation theory in quantum mechanics and are computed
explicitly in Appendix C; these are given by

K̄±(p,x,t) = ±g−1/4(x) exp {α±[H0(p)]t}
α+[H0(p)] − α−[H0(p)]

, (28)

where α±(P ) = − γ

2 ±
√

γ 2

4 − P and

H0(p) = v2
0

2

(
p2 − Rg(x ′)

6

)
, (29)

with Rg(x ′) being the well-known scalar curvature (see Ap-
pendix C) evaluated at x ′. As before, Ai(p,x ′) are directly
determined from the initial data (21), which lead to

ρ(x,t |x ′) �
∫

d2p

(2π )
eip·(x−x ′) g−1/4(x)g−1/4(x ′)

×G

[
γ t

2
,

4

γ 2
H0(p)

]
, (30)

with the function G defined as in (23). In order to obtain the
linear curvature response we still need to expand the function
G[ γ t

2 , 4
γ 2 H0(p)] and g1/4(x) linearly in the curvature. This

can be achieved by considering the characteristic function
of ρ(x,t |x ′), namely ρ̃(p,t) ≡ 〈e−ip·(x−x ′)〉, given explicitly
by the integrand in Eq. (30), thus in the weak curvature
approximation we have

ρ̃(p,t) � G(γ t/2,w) + 4

3

(
v0

γ

)4

Rabp
apb ∂2G(γ t/2,w)

∂w2
,

(31)

where we must evaluate at w = 2v2
0

γ 2 p2. Using the characteristic
function one is able to compute all the moments of the
distribution within this approximation.

B. Mean squared geodesic displacement: Weak curvature limit

The weak curvature limit in the mean-square displace-
ment can be computed using the correlation function
〈(xa − x ′

a)(xb − x ′
b)〉 = −∂2ρ̃(p,t)/∂pa∂pb, which is calcu-

lated with a second derivative of the characteristic function.
The structure of this quantity is inherited from the form of

ρ̃(p,t), that is, within the linear curvature approximation the
correlation function displays a known flat expression plus a
first correction due to the curvature Rab, which is multiplied
by the function f (z) given by

f (z) = 1

4

[
z2 − 2z + 3

2
−

(
z + 3

2

)
e−2z

]
. (32)

One can notice that for dimension d > 2, correlations between
(xa − x ′

a) and (xb − x ′
b), fora 
= b, may occur depending on the

structure of the Ricci tensor Rab. However, in the dimension of
our interest d = 2, the Ricci tensor is proportional to the metric
tensor gab and the scalar curvature Rg . Furthermore, in d = 2,
the Riemann normal coordinates implies that gab(x ′) = δab,
where x ′ is the fiducial point. These considerations imply that
2〈(xa − x ′

a)(xb − x ′
b)〉 = 〈s2(t)〉δab, where the mean squared

geodesic displacement turns out to be

〈s2(t)〉 = 〈s2(t)〉0 − 32

3

(
D

γ

)2

f

(
γ t

2

)
Rg + · · · , (33)

where the mean squared displacement, 〈s2(t)〉0 =
4D[t − (1 − e−γ t )/γ ], on the flat space was computed
previously by one of the authors [23]. In what follows, we
are going to determine the behaviors displayed by the mean
squared geodesic displacement (33) in the limiting cases
performing in the last section.

For long times, γ t � 1, we have f (γ t/2) � γ 2t2/16 which
gives the mean squared geodesic displacement,

〈s2(t)〉 � 4Dt − 2

3
Rg(Dt)2 + · · · , (34)

for a Brownian particle in a curved manifold of scalar curvature
Rg , where D is the same effective diffusion coefficient defined
above. The first term corresponds to the standard diffusion
regime found in a Euclidean space, whereas the second term
corresponds to the first correction due to curvature. Further
curvature corrections can also be determined using the same
procedure [38].

For the short-time regime, γ t 
 1, we have f (γ t/2) �
γ 4t4/192, and then one has the curvature correction to the
standard ballistic regime found in flat space given by

〈s2〉 � v2
0 t

2

[
1 − Rgv

2
0 t

2

(
1

72
− 1

180
γ t + · · ·

)]
.

(35)

We claim that in an arbitrary local domainD ⊂ M, with x ′ ∈ D
and scalar curvature Rg(x ′), Eq. (33) describes the crossover
from ballistic to diffusive motion on the curved manifold. This
is a generalization of the same crossover in Euclidean spaces
discovered previously by one of the authors in [23].

V. ACTIVE MOTION ON THE SURFACE OF THE
THREE-DIMENSIONAL SPHERE S2

As an example of the direct application of the general theory
given in the previous sections, we analyze in this one the motion
of an active particle moving on the surface of a sphere of radius
R. This particular example has been discussed recently, by
the use of numerical simulations, in Ref. [39]. The kinematic
state of the two-dimensional (2D) active particle on the sphere
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can be described using Eqs. (1) specialized to the case of the
sphere. In this case, there is a further simplification since one
can choose a coordinate system where the metric tensor of S2 is
diagonal.

The Riemannian geometry of the sphere S2 is encoded in
the metric tensor, which for the standard spherical coordinates
xθ = θ and xϕ = ϕ, the polar and azimuthal angles, respec-
tively, have the following elements: gθϕ = gϕθ = 0, gθθ = R2,
and gϕϕ = R2 sin2 θ . In these coordinates the components of
the swimming direction v̂swim are denoted with vθ and vϕ ,
and the Christoffel symbols are explicitly given by �a

θθ =
�θ

θϕ = �ϕ
ϕϕ = 0 with a = θ,ϕ, �ϕ

θϕ = cot θ , and �θ
ϕϕ =

− sin θ cos θ and the determinant of the metric tensor is g =
R4 sin2 θ . With these particular values, we have that Eq. (1b)
can be written explicitly as

d

dt
vθ

swim = v0(vϕ)2 sin θ cos θ−
√

2γR sin θ vϕζ [x(t)],

(36a)

d

dt
v

ϕ
swim = −v0v

θ
swimv

ϕ
swim2 cot θ +

√
2γR vθ ζ [x(t)],

(36b)

where the state-dependent noise ζ [x(t)] is explicitly given by
ζ1(t) sin θ (t) cos ϕ(t) + ζ2(t) sin θ (t) sin ϕ(t) + ζ3(t) cos θ (t).
As a consequence of the constancy of the swimming
speed, the va

swim’s are not independent and are related by

[Rvθ
swim(t)]

2 + [R sin θ v
ϕ
swim(t)]2 = 1, therefore only one

degree of freedom is needed. It is convenient to choose that
degree of freedom as the swimming angle �(t), such that
in terms of this, the components of the swimming direction
are vθ

swim(t) = cos �(t)/R and v
ϕ
swim(t) = sin �(t)/R sin θ (t).

With these considerations we have that the Langevin equations
that give the trajectories of an active particle on the surface of
a sphere are given by

d

dt
θ (t) = v0

R
cos �(t), (37a)

d

dt
ϕ(t) = v0

R

sin �(t)

sin θ (t)
, (37b)

d

dt
�(t) = −v0

R
sin �(t) cot θ (t) +

√
2γ ζ [x(t)]. (37c)

In contrast with the corresponding equations for an active
particle that diffuse in a two-dimensional Euclidean plane
(see for instance those given in [23]), two effects due to
the sphere curvature can be identified, namely, the first term
in the right-hand side of Eq. (37c) that accounts for the
intrinsic curvature of the sphere and second, the state dependent
nature of the active fluctuations which leads to multiplicative
noise.

The Fokker-Planck equation for the one-particle distribu-
tion function

P (θ,ϕ,�,t) =
〈

1√
g

∏
a

δ[xa − xa(t)]δ[� − �(t)]

〉
,

associated to Eqs. (37), is given, after a straightforward
calculation following the method in Sec. II, by

∂P

∂t
= γ

∂2P

∂�2
− v0 cos �

R sin θ

∂

∂θ
(sin θP )

− v0 sin �

R sin θ

∂

∂ϕ
P + v0

R

∂

∂�
(sin � cot θP ), (38)

where the arguments of P have been omitted for the sake
of simplicity. We now follow the same procedure used in
Ref. [23], and we employ the following expansion:

P (θ,ϕ,�,t) =
∑
n∈Z

ein�e−γ n2tpn(θ,ϕ,t), (39)

where the expansion coefficients pn(θ,ϕ,t) satisfy the follow-
ing hierarchy equations:

∂pn

∂t
= − v0

2R
e−γ t

1∑
σ=−1

e−2σ γ n t �̂σ,n pn+σ , (40)

where the operators �̂σ,n, σ = ±1, are given explicitly by

�̂σ,n = 1

sin θ

(
∂

∂θ
sin θ + σ i

∂

∂ϕ

)
+ σn cot θ. (41)

The diffusion of free active particles on the sphere is given by
the exact solution of the hierarchical equation (40), which is
unknown in the most general case. We explore such a solution
in the polar approximation as is discussed in the next section,
leaving the analysis of the effects of higher Fourier modes in
the expansion (39) to be presented elsewhere in a future paper.

Active motion on the sphere S2: Polar approximation

In the polar approximation, the first three Fourier modes,
namely p0(θ,ϕ,t) and p±1(θ,ϕ,t), are retained in such a way
that the hierarchical equation (40) is reduced to a closed system
of equations; after elimination of the modes p±1(θ,ϕ,t) we
have that p0(θ,ϕ,t) satisfies the spherical telegrapher equation

∂2

∂t2
p0 + γ

∂

∂t
p0 = v2

0

2R2

[
1

sin θ

∂

∂θ
sin θ

∂

∂θ

+ 1

sin2 θ

∂2

∂ϕ2

]
p0(θ,ϕ,t), (42)

where we have used that �̂−1,0�̂+1,−1 + �̂+1,0�̂−1,+1 results
into two times the Laplace-Beltrami operator �g in spherical
coordinates; more precisely

�̂−1,0�̂+1,−1 + �̂+1,0�̂−1,+1 = 2

×
[

1

sin θ

∂

∂θ
sin θ

∂

∂θ
+ 1

sin2 θ

∂2

∂ϕ2

]
. (43)

As before, we make the identification p0(x,t) ≡ ρ(x,t |x ′).
As is well known, the eigenfunctions of the Laplace-

Beltrami operator on the sphere correspond to those given
by the spherical harmonics Ym

l (θ,ϕ) with eigenvalues l(l +
1)/R2, with l = 0,1, . . . and m = −l, . . . ,l. If the initial prob-
ability distribution corresponds to a pulse with zero velocity in
the north pole, the azimuthal invariance allows us to write the
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solution in the following manner:

ρ(θ,ϕ,t) =
∞∑
l=0

2l + 1

4πR2
G

[
γ t

2
,2

v2
0

γ 2

l(l + 1)

R2

]
Pl(cos θ ),

(44)
where Pl(cos θ ) denotes the Legendre polynomial of degree l.
Notice the explicit appearance of the ratio R/L = R/(v0/γ ),
which measures the competence between the effects of curva-
ture and the effects of persistence. If the persistence length
is much smaller than the curvature radius, L/R → 0, the
well-known solution of diffusion on the sphere,

ρ(θ,ϕ,t) =
∞∑
l=0

2l + 1

4πR2
e−D l(l+1)t/R2

Pl(cos θ ), (45)

is recovered, with the effective diffusion constant D = v2
0/2γ.

Mean squared geodesic displacement on S2

Coincident with the initial data previously chosen, the
geodesic displacement s(t) is Rθ (t) and correspondingly
the mean square geodesic displacement, 〈s2(t)〉 is given by
R2〈θ2(t)〉. A differential equation for the mean square geodesic
displacement can be obtained directly from Eq. (42), namely

d2〈s2(t)〉
dt2

+ γ
d〈s2(t)〉

dt
= v2

0

{
1 +

〈
s(t)

R
cot

[
s(t)

R

]〉}
. (46)

In contrast with its counterpart in the two-dimensional Eu-
clidean manifold (15), the last equation is not closed in 〈s2(t)〉
but coupled in a high nonlinear way with higher moments of
s(t), however, by the use of the Taylor expansion of z cot z =∑

n(−1)n22nB2nz
2n/(2n)!, where Bn are the Bernoulli num-

bers, we have in the limit of weak curvature, i.e., v0/γ 
 R,
that the right-hand side of Eq. (46) is 2v2

0[1 − 1
6R2 〈s2〉 − · · · ].

By retaining only the first correction proportional to R−2 and
recalling that the Ricci scalar curvature is Rg = 2/R2, the
solution to the last equation coincides with the mean square
geodesic displacement given in Eq. (33).

The exact time dependence of 〈s2(t)〉 can be obtained by
the use of (44), which is given explicitly by

〈s2(t)〉 = R2

2

∞∑
l=0

(2l + 1)gθ2 (l)G

[
γ t

2
,
2L2

R2
l(l + 1)

]
, (47)

where gθ2 (l) denotes the projection of θ2 onto the Legendre
polynomial of degree l, i.e.,

gθ2 (l) =
∫ π

0
dθ sin θ Pl(cos θ ) θ2, (48)

and whose explicit dependence on l has been given in Ref. [40].
As before, L denotes the persistent length.

The time dependence of the mean squared geodesic dis-
placement, given in Eq. (47), is shown in Fig. 1 for some
particular values of the ratio R/L. As can be observed in the
figure, an active particle confined to the sphere exhibits two
conspicuously different behaviors whenever R/L is larger or
smaller than 2 (left panel). On the one hand, for R/L � 2,
the mean squared geodesic displacement starts growing
quadratically with time (ballistic regime) in contrast to the
linear grow for standard diffusion (attained in the R/L � 1
regime for times larger than γ −1; see the right panel). The

explicit time dependence of 〈s2(t)〉 in the ballistic regime can be
written as v2

efft
2, with veff an effective swimming speed defined

through v2
eff = η2 v2

0/8, where the constant η2 = −∑∞
l=0 l(l +

1)(2l + 1)gθ2 (l) > 0. In addition, the mean squared geodesic
displacement reaches the asymptotic value (π2 − 4)/2 non-
monotonically exhibiting oscillations (left panel), contrary to
the case R/L > 2 for which such behavior is monotonic. These
oscillations have been pointed out in the numerical analysis of
Apaza and Sandoval [39], though in there, the authors consider
translational fluctuations in addition to rotational ones. The
physical meaning of such oscillatory behavior is clear: The
initial pulse in the north pole of the sphere starts to propagate
with speed v0 in all directions forming a sharp ring that sweeps
the sphere surface (and in general the surface of a compact
manifold) a number of times that depends on the ratio R/L.
Indeed, this is confirmed by the estimation of the time at
which the first maximum of the oscillations appears, which
roughly corresponds to the time at which the particles reach
the south pole of the sphere tsouth; a simple calculation leads
to tsouth ≈ (2

√
2π/

√
η2) R/v0 that gives γ tsouth ≈ 0.5878 for

R/L = 0.25. As time passes the ring becomes thicker due to
fluctuations, persistence effects become negligible, and the
distribution turns uniform in the asymptotic limit. For large
values of the R/L the effects of persistence are damped out
leading to a standard diffusive regime.

VI. CONCLUDING REMARKS AND PERSPECTIVES

In this paper, we have analyzed the diffusion of noninter-
acting active particles confined to move on a curved surface.
On the one hand, Langevin equations that consider explicitly
the effects of curvature and active motion are provided.
By the use of the corresponding Fokker-Planck equation,
we built the standard stochastic hydrodynamic hierarchy of
equations that couple the particle density ρ, the polarization
field Pa , the nematic tensor Qab, etc. Of particular importance,
the commonly used polar approximation was considered. Such
approximation consists in truncating the hierarchy of equations
retaining only up to the polarization field and disregarding
higher order tensors. The approximation is valid in the long-
time regime when the nematic tensor can be considered as a fast
variable and homogeneous over the surface. As consequence
of the approximation, it was shown that the conserved particle
density obeys a generalization of the telegrapher equation in
curved surfaces, where the Laplace operator in Euclidean space
is replaced by the corresponding Laplace-Beltrami operator
that considers the intrinsic curvature of the surface.

The main consequences of the generalization of the teleg-
rapher equation to curved manifolds were discussed. On the
one hand, a general solution is given for compact manifolds
in terms of a expansion on the discrete set of eigenfunctions
of the Laplace-Beltrami operator. In the short-time regime,
the provided solution corresponds to the solution of the
wave equation in curved surfaces that characterizes wavelike
propagation. In the weak-curvature limit, such propagation
is reminiscent of the propagation in the plane, i.e., with
propagation speed v0, and wake effects are markedly observed.
Interestingly, however, for arbitrary values of curvature, the
signal propagation is realized at an effective speed that depends
on the surface curvature. In a local domain, we have studied
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FIG. 1. Time dependence of the dimensionless mean squared geodesic displacement 〈s2(r)〉/R2 = 〈θ2(t)〉 for different values of the ratio
of the sphere radius R to the persistent length L. In the left panel, R/L = 0.25, 0.5, 1.0, 2.0, and 5.0, the effects of persistence are marked by
the t2 dependence and by the oscillations around the asymptotic value 〈θ2(t)〉 = (π 2 − 4)/2, that characterizes the uniform distribution on the
whole sphere (dotted lines). In the right panel R/L = 10, 20, and 100, the effects of persistence are diminished and 〈s2(t)〉 starts exhibiting the
standard linear dependence for times larger than γ −1. The thick-gray lines mark the linear t and quadratic t2 time dependence.

the effects of curvature in the probability density function as
well as in the mean squared geodesic displacement.

If initial data corresponding to a pulse with vanishing
current is chosen, the pulse turns with time into a ringlike
structure that propagates with the effective speed and for
compact surfaces and for small enough ratios R/L, the ring
structure recurs with time that lead to oscillations in the mean
squared geodesic displacement. This is clearly exhibited in
Sec. V in the case of the sphere.

In the regime for which the persistence length is much
smaller than the curvature that characterizes the surface,
L/R → 0, the solution to the generalized telegrapher equation
(17) is close to the solution of the diffusion equation on curved
manifolds with an effective diffusion constant D = v2

0/2γ , i.e.,
the second order derivative with respect to time in Eq. (17)
can be disregarded. In this regime it is shown that the MSGD
coincides with that previously obtained for passive Brownian
particles in curved space [38]. On the contrary, in the persistent
regime, it is shown how the MSGD has a ballistic behavior;
in particular, we provide corrections to this behavior when the
effects of curvature and diffusive effects begin to be relevant.

The results presented in this study can be extended along
several directions. Among these are the realization of a sys-
tematic study of the dynamics of active particles in a sphere
beyond the polar approximation, and the inclusion of passive
fluctuations on the translational degree of freedom of the model
can be treated in the same way to obtain analytical results.
In particular, this situation could be subjected to an exper-
imental scrutiny as has been the case for passive Brownian
particles on the sphere [41]. Another natural extension can be
developed to include the effects of curvature in continuous
mean field models similar to those of Toner and Tu hydro-
dynamic equations. Also, we can derive the hydrodynamic
equations of Brownian particles with alignment interaction in
curved space. Finally, the methods and results proposed in the
present work allow us to propose a step further to develop
simulation algorithms to study active particles with alignment

interaction in different surfaces such as ellipsoids, tori,
catenoids, etc.
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APPENDIX A: LANGEVIN EQUATIONS FOR ACTIVE
PARTICLES MOVING ON SURFACES

The starting point in the derivation of Eqs. (1) is the
following pair of equations:

ẍc + �c
abẋ

aẋb = μ

m
ec · [−ebẋ

b + v0v̂swim(t)
]
, (A1a)

d

dt
v̂swim(t) =

√
2γ ζ (t) × v̂swim(t), (A1b)

where the superscripts a,b,c label the particular local coordi-
nate used, m is the mass of the particle, and μ is the dragging
coefficient of the friction force exerted by the surface on the
particle. {ea} form a set of linearly independent local vectors
at the position of the particle on the surface. Equation (A1a)
corresponds to the equation of motion of particle of mass m

moving on a surface [40] subject to a linear friction force
(first term in squared parentheses) and to self-propulsion force
(second term). Equation (A1b), on the other hand, accounts for
the internal dynamics of the self-propelling “swimming force,”
that accounts for the stochastic rotations of v̂swim(t) in the
tangent plane on the surface at the position of the particle, and
ζ (t) is a three-dimensional vector whose entries correspond to
Gaussian white noise with zero mean and unit variance.

We consider the overdamped limit, that is, the limit for
which inertial effects can be neglected, consequently the left-
hand side of Eq. (A1a) is identical to zero which directly leads
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to (1a). We also ignore any possible Brownian contribution due
to external thermal fluctuations.

The change in time of v̂swim(t) involves the change in time
of the local coordinate system, and therefore the change of the
local basis {ea}. The variation of the local coordinate system
upon small movements on the surface is accounted for by the
Weingarten-Gauss formulas, (∂/∂xb)ea − �c

baec = −KabN,
where Kab denotes the components of the second fundamental
form of the surface, namely, Kab = ea · (∂/∂xb)N. Thus the
left-hand side of (A1b) can be written as

d

dt
v̂swim(t) = d

dt
va

swim ea + va
swim(�c

baec − KabN)
dxb

dt
.

(A2)

Since the dynamics occurs in the tangent plane we project
Eq. (A1b) into it, thus the left-hand side becomes

dva
swim

dt
+ v0v

a
swimvb

swim�c
ba, (A3)

where (1a) has been used to replace dxb/dt. The projection of
the right-hand side of the equation,

√
2γ ζ × v̂swim · ed , can be

written as √
2γ

√
g v

f

swim εf d ζ · N. (A4)

These considerations lead straightforward to Eqs. (1).

APPENDIX B: CONDITION OF CONSISTENCY v2 = 1

Proof of v2 = 1

Here we show that the random variables va in Eq. (3) satisfy
the condition v2 = vavbgab = 1. To this purpose we consider
the change in time of the expectation value of v2, that is,

d

dt
〈v2〉 =

∫
dμv2 ∂

∂t
P (x,v,t), (B1)

where dμ = √
gd2xd2v denotes the measure of the phase

space. By use of the Fokker-Planck equation (3) and after
integrating by parts one has that and �ab = gabv2 − vavb,

d

dt
〈v2〉 = 2

∫
dμ

[
γ

∂

∂vb
(gabv2 − vavb)va

− 2v0v
avbvc�abc

]
P (x,v,t), (B2)

where the identities

∂gcd

∂xa
= −gbdgec ∂gbe

∂xa
,

∂gbc

∂xa
= �bca + �cba (B3)

have been used. Finally, notice that (gabv2 − vavb)va = 0 and
vavbvc�abc = 0, then one has that 〈v2〉 is a constant, which
can be chosen to be 1 by a simple scaling argument. Since
〈v2〉 = 1, it means that∫

dμ(v2 − 1)P (x,v,t) = 0, (B4)

which implies that v2 = 1, since P (x,v,t) is a positive function
in the whole phase-space domain.

FIG. 2. Shown is one of the two possible integration contours �

to evaluate the integral in Eq. (C2). These contours are symmetric
respect to the imaginary axis and they enclose the poles α+ and α−,
respectively.

APPENDIX C: GREEN FUNCTIONS FOR THE CURVED
TELEGRAPHER EQUATION

In this section, our goal is to determined the Green function
K(x,x ′,t) that satisfies the equation(

∂2

∂t2
+ γ

∂

∂t
− v2

0

2
�g

)
K(x,x ′,t) = 1√

g
δ(x − x ′)δ(t).

(C1)

Now, in order to find a formal solution for K(x,x ′,t) we assume
the existence of a complete set of eigenfunctions {
I } and
corresponding eigenvalues −λI of the Laplace-Beltrami oper-
ator �g [42]. Using the completeness relation δ(x − x ′)/

√
g =∑

I 

†
I (x ′)
I (x) and a Fourier decomposition in the time

variable K(x,x ′,t) = ∫
dE
2π

eiEtK(x,x ′,E) one can express the
Green function as follows:

K(x,x ′,t) =
∑

I



†
I (x ′)
I (x)

∮
�

dz

2πi

ezt

z2 + γ z + v2
0

2 λI

,

(C2)

where integration in the E variable has been replaced by an
equivalent integration along the semicircle contour � in the
complex plane (see Fig. 2). We can identify the poles

α±(ω) = −γ

2
±

√
γ 2

4
− ω, (C3)

where ω = (v2
0/2)λI .
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The complex integration gives the two independent solu-
tions

K̄ (±)(x,x ′,t) = ±
∑

I



†
I (x ′)
I (x)eα±(v2

0λI /2)t

α+
(
v2

0λI/2
) − α−

(
v2

0λI/2
) . (C4)

Using these Green functions the pdf can be obtained spanned
in the Green functions as follows:

ρ(x,t) =
∫

ddy
√

g
∑

i=+,−
[K (i)(x,y,t)Ai(y,x ′)]. (C5)

Now, we substitute Ai(y,x ′) = ∑
I Ai,I (x ′)
I (y) and (C4)

into (C5). In addition, we use the orthogonal relation∫
ddy

√
g


†
I (y)
I (y) = δII ′ . All these considerations allow

us to prove Eq. (18).

Green functions for the curved telegrapher equation
in the weak curvature regime

By the use of the same methods originally implemented in
the context of quantum field theory on curved spaces [37,43],
we now determine the Green function K(x,x ′,t) in the weak
curvature regime. We first performed a change K(x,x ′,t) =
g−1/4(x)K̄(x,x ′,t)g−1/4(x ′). In addition, the term 1/

√
g that

multiplies by the Dirac delta appearing in the corresponding
Green equation (C1) is separated as g−1/4(x)g−1/4(x ′). Thus,
using these changes of variables the resulting Green equation
can be rewritten as[

∂2

∂t2
+ γ

∂

∂t
+ Ĥ

]
K̄(x,x ′,t) = δ(x − x ′)δ(t), (C6)

where Ĥ (x) is defined in terms of the Laplace-Beltrami

operator as − v2
0

2 g1/4(x) �g g−1/4(x), which after use of the
explicit definition of �g given in Eq. (12), Ĥ (x) can be
rewritten in terms of the operator p̂a = −i∂/∂xa as [44]

Ĥ = v2
0

2
[δabp̂ap̂b + p̂a[(gab − δab)p̂b] + V (x)] (C7)

with

V (x) = −g−1/4(x)
∂

∂xa

[√
g(x) gab(x)

∂

∂xb
g−1/4(x)

]
.

(C8)
Before attempting to do any approximation let us take

the Fourier transform in the time variable of Eq. (C6). Let
K̄(x,x ′,E) be the Fourier transform of the Green function
where E is the conjugate Fourier variable of time, then Eq. (C6)
can be written as

(−E2 + iγE + Ĥ )K̄(x,x ′,E) = δ(x − x ′). (C9)

Thus the Green function can be written as the matrix elements
of the resolvent operator K̂ = [−E2 + iγE + Ĥ ]

−1
as

K̄(x,x ′,t) = 〈x|K̂|x ′〉. (C10)

We now take advantage of the spatial covariance of the
Laplace-Beltrami operator in the telegrapher equation, in order
to use Riemann normal coordinates (RNCs) around the point

x ′. This coordinate frame is particularly useful in the case of a
weak curvature regime since one of the following expansions
are valid [30] for the metric tensor gab(x) and

√
g(x):

gab(x) = δab + 1
3Racdb(x ′) (x − x ′)c(x − x ′)d + · · · , (C11)√

g(x) = 1 − 1
6Rab(x ′) (x − x ′)a(x − x ′)b + · · · , (C12)

where standardly the Riemann curvature tensor is
Rabcd = gaf R

f

bcd , Ra
bcd = ∂c�

a
bd − ∂d�

a
bd + �a

cs�
s
bd − �a

ds�
s
bc

and Rab = Rc
acb = gcdRacbd is the Rici tensor.

Using these expressions and the corresponding ones for the
inverse metric tensor gab(x) as well as for the determinant of
the metric g(x), one has the following approximation for the
Ĥ :

Ĥ = Ĥ0 + ĤI , (C13)

where the unperturbed part Ĥ0 is given by

Ĥ0 = v2
0

2

[
δabp̂ap̂b − Rg

6

]
, (C14)

withRg = gabRab being the scalar curvature and the perturbing
part being

ĤI = − 1
3Racdbp̂

aycydp̂b. (C15)

The standard perturbation theory used in quantum mechan-
ics allows us to write the resolvent operator as the following
expansion:

K̂ = K̂0 − K̂0ĤI K̂0 + · · · , (C16)

where the unperturbed resolvent operator K̂0 is defined by

K̂0 = [−E2 + iγE + Ĥ0]−1, (C17)

and can be referred to as the “free” resolvent operator. Due
to the antisymmetric nature of the Riemann tensor (see for
instance [45]) it can be proved that 〈x|K̂0ĤI K̂0|x ′〉 = 0 and
therefore, to the lowest nontrivial approximation in the cur-
vature, only the free resolvent operator contributes. With this
consideration the Green function can be written as

K̄(x,x ′,t) =
∫

ddp

(2π )d
eip·(x−x ′)

∮
γ

dz

2πi

ezt

z2 + γ z + H0(p)
,

(C18)

where the complete set of eigenstates of p̂a , {|pa〉}, for which

〈xa|pb〉 = δabe
ixapa and H0(p) = v2

0
2 (p2 − Rg

6 ), has been used.
The dependence in time is recovered by the integration on the
complex plane z, along the semicircle contour � (see Fig. 2),
from which we obtain

K̄±(x,x ′,t) = ±
∫

ddp

(2π )d
eip·(x−x ′)+α±[H0(p)]t

α+[H0(p)] − α−[H0(p)]
, (C19)

where α±(P ) = − γ

2 ±
√

γ 2

2 − P corresponds to the poles of
the integrand in Eq. (C18).
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