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Testing constitutive relations by running and walking on cornstarch and water suspensions
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The ability of a person to run on the surface of a suspension of cornstarch and water has fascinated scientists and
the public alike. However, the constitutive relation obtained from traditional steady-state rheology of cornstarch
and water suspensions has failed to explain this behavior. In another paper we presented an averaged constitutive
relation for impact rheology consisting of an effective compressive modulus of a system-spanning dynamically
jammed structure [R. Maharjan et al., this issue, Phys. Rev. E 97, 052602 (2018)]. Here we show that this
constitutive model can be used to quantitatively predict, for example, the trajectory and penetration depth of the
foot of a person walking or running on cornstarch and water. The ability of the constitutive relation to predict
the material behavior in a case with different forcing conditions and flow geometry than it was obtained from
suggests that the constitutive relation could be applied more generally. We also present a detailed calculation of
the added mass effect to show that while it may be able to explain some cases of people running or walking on
the surface of cornstarch and water for pool depths H > 1.2 m and foot impact velocities VI > 1.7 m/s, it cannot
explain observations of people walking or running on the surface of cornstarch and water for smaller H or VI .

DOI: 10.1103/PhysRevE.97.052604

I. INTRODUCTION

Discontinuous shear thickening (DST) suspensions exhibit
a remarkable effect in which they behave like typical liq-
uids at low shear rates, but when sheared faster, resistance
to flow can increase discontinuously with shear rate [1,2].
These suspensions can also exhibit solidlike properties such
as cracking [3]. Discontinuous shear thickening has been
observed in a large variety of concentrated suspensions of hard
nonattractive particles and is inferred to be a general feature
of such suspensions [1,2,4,5]. Discontinuous shear thickening
suspensions also support large stresses under impact, one
example of which is the ability of a person to walk or run on
the surface of a pool filled with a suspension of cornstarch
and water [2,6]. The impact response of such fluids is of
practical interest for impact protection gear because of their
strong response during impact while remaining fluid and
flexible otherwise [7,8]. The purpose of this paper is to test
a constitutive relation that relates the force on an impactor to
its displacement into a DST suspension [9]. We demonstrate
its generality by using it to quantitatively describe the ability of
people to run or walk on the surface of cornstarch and water.
Such a constitutive relation may aid in the development of
materials for impact protection applications.

The impact response of DST suspensions has been long
assumed by the scientific community to be a direct conse-
quence of shear thickening based on steady-state rheology [10].
In qualitative support of this argument, observations without
the benefit of controlled laboratory conditions do show that it
is possible for a person to run on the surface of cornstarch
and water suspensions as if it were a solid. However, at a
lower foot impact velocity the suspension may remain more
liquidlike, so the person sinks in [2,6] (see video 1 in the
Supplemental Material [11]). The rate dependence of this

liquidlike to solidlike transition is qualitatively similar to DST.
Observations also show that this effect happens only at high
packing fractions, also similar to DST [12]. However, it has
never been quantitatively tested whether these observations
are related to or can be explained by steady-state rheological
models of shear thickening.

In steady-state rheology, a viscosity function is defined
by η(γ̇ ) ≡ τ (γ̇ )/γ̇ , where τ is the shear stress and γ̇ is
the shear rate in a steady-state shear flow. The intent of
such a constitutive relation is to predict flows with different
forcing conditions, boundary conditions, and geometries. The
constitutive relation obtained from steady-state measurements
indicates that suspensions of cornstarch and water can support
shear and normal stresses up to ∼103 Pa in a shear rate range
where they are shear thickening [a positive slope in η(γ̇ )], i.e.,
before they become shear thinning [a negative slope of η(γ̇ )]
at higher shear rates [4]. If we try to apply this result from
steady-state rheology to a person running on cornstarch and
water, the predicted stress of ∼103 Pa is much less than needed
for a person to be supported on the surface of the fluid, based
on a simple estimate of a person’s weight distributed over the
surface area of a foot (≈4 × 104 Pa). Thus, the constitutive
relation obtained from steady-state rheometer experiments
fails to explain the strong response to impact. It remains an
open question whether our understanding of steady-state DST
can be extended to explain the strong impact response.

Recently, an added mass model was developed for im-
pact response of dense suspensions, in which a dynamically
jammed region forms ahead of the impactor in the fluid. In
this localized region, the suspension moves along with the
impactor like a plug [13]. The dynamically jammed region
grows during the impact with a front which propagates away
from the impactor [13–15]. There is a sharp velocity gradient
at the front, which separates the dynamically jammed region
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from the surrounding fluid [14]. In a two-dimensional dry
granular experiment the front velocity and width diverge at the
same critical packing fraction as the viscosity curve of DST
suspensions [16].

In the model for the added mass effect, the impact response
of the suspension comes from an increasing suspension mass
(i.e., the added mass) in the dynamically jammed region
which moves with the impactor [13]. This increasing mass
slows down a free-falling impactor due to conservation of
momentum. This model has been confirmed to quantitatively
describe the impact response of some high-speed projectiles
into suspensions [13]. However, to significantly slow the
impacting object by momentum conservation alone requires
large masses of fluid compared to the impacting object (or,
similarly, large depths of the fluid compared to the object’s
height). The added mass model has not been quantitatively
applied to other impact response problems. The regime of
thin fluid layers where the added mass effect is weak is
also particularly important for the related problem of impact
protection applications where thin layers of protective material
are desired [7,17].

When the dynamically jammed region reaches the bound-
ary, the stress on the impactor increases beyond the added mass
effect [9,14]. We found that the stress increase follows imme-
diately after particle displacement is observed at the boundary
opposite impact, implying that the stress increase comes from
deformation of the dynamically jammed region [18]. We also
observe dilation at this boundary in the same region where
we find particle motion [18]. This observation is reminiscent
of soils or dense granular materials and suggests a force
transmission between particles along frictional contacts, as
shear of a dense packing induces dilation as a result of particles
pushing into and around each other. This suggests that the
dynamically jammed structure could support a normal load that
is transmitted via frictional interactions across the system when
the dynamically jammed region spans from the impactor to a
solid stationary boundary. The system-spanning dynamically
jammed structure was found to resist the impact with an effec-
tive compressive modulusE, which was measured as a function
of weight fraction φ, impact velocity VI , and fluid height
H [9]. We now want to test whether this constitutive relation
can be used to quantitatively describe stresses, deformations,
and flows of the material with different forcing conditions,
boundary conditions, and flow geometries than the experiments
used to obtain the constitutive relation.

In this paper we use a person running and walking on the
surface of cornstarch and water as a test case for the constitutive
relation. This is a good test of the generality of the constitutive
relation because the flow conditions differ significantly from
the ideal laboratory experiments. Specifically, the impactor
shape is different, and it has a varying velocity profile, which
is initially a free fall, followed by a slowing due to impact. We
compare to predictions of both the constitutive relation for the
system-spanning dynamically jammed region and the added
mass model.

The remainder of the paper is organized as follows. In
Sec. II we explain the experimental methods used. In Sec. III
we show measured trajectories of a foot of a person walking,
jogging, and running on cornstarch and water that can be
compared to models. In Sec. IV we test the constitutive model

obtained in our previous paper [9] by showing that it can
quantitatively explain the ability of people to walk and run on
the surface of cornstarch and water. In Sec. V we give a detailed
calculation of the added mass effect and show that it cannot
explain most observations of people walking or running on the
surface of cornstarch and water, although it can dominate the
impact responses at higher impact velocities. We summarize
in Sec. VI.

II. MATERIALS AND METHODS

We used high-speed video to track the foot of a person
walking, jogging, and running on a suspension of cornstarch
and water in an inflatable outdoor pool of length 1.8 m, width
0.9 m, and depth H = 0.100 ± 0.012 m, where the uncertainty
in H is due to the unleveled ground. The person had mass
m = 85 kg, and a cross-sectional area on the bottom of one
foot of A = 0.020 m2. The cornstarch was purchased from
Carolina Biological Supply and mixed with tap water in a
concrete mixer. We inferred an effective weight fraction φ

by placing a portion of the same suspension on a rheometer
and measured the critical shear rate γ̇c = 6 ± 2 s−1 at the
onset of shear thickening. We obtained φ via a conversion
function φ(γ̇c) corresponding to the laboratory conditions
where the constitutive relation was obtained [9]. We find φ =
0.577 ± 0.007 on this scale, where the liquid-solid transition is
at φ = 0.61 [19]. This weight fraction is in the range of strong
shear thickening [20] and in the range where the effective
compressive modulus E reaches a plateau independent of
weight fraction [9]. The density of the suspension at the weight
fraction is ρ = 1200 ± 20 kg/m3 [9].

III. EXPERIMENTAL RESULTS

We tracked the vertical displacement z of a person’s foot.
This was done by following a point on the foot that moved
with the point of deepest penetration with a resolution of
2 × 10−4 m. The penetration depth of the foot as a function of
time is shown in Fig. 1(a) for a person walking on cornstarch
and water. A striking observation is that the velocity of the foot
did not change as it first penetrated the surface. Thus there
was no significant stress acting on the foot until it came to
an abrupt stop at depth zs ≈ 0.1 m below the surface. This
is qualitatively consistent with a delay before a sharp stress
increase due to the time it takes for the dynamically jammed
region to span between solid boundaries [9]. On the other hand,
it is qualitatively inconsistent with models which predict a
smooth deceleration, such as a bulk viscosity or an added mass
effect [10,13,21]. We will revisit predictions of the added mass
effect in more detail in Sec. V.

The late-time trajectory of the foot shown in Fig. 1(a)
reveals information about relaxation of the suspension. After
the foot stopped, it remained stationary for an additional
time tr = 0.25 s, before it began to slowly sink again. This
relaxation corresponds to the common observation that the
dynamically jammed state melts from a solidlike state back
into a liquidlike state some time after impact. This timescale
is larger than the range of stress relaxation times measured in
analogous rheometer experiments (0.013–0.08 s) on cornstarch
and water at weight fractions in the range φ = 0.577 ± 0.007.
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FIG. 1. (a) Experimental observation of the penetration depth z

as a function of time for a foot of a person walking on cornstarch and
water with a foot impact velocity VI = 0.2 m/s. The foot came to an
abrupt stop below the surface (z = 0) at depth zs . This delay in force
response is similar to the delay in controlled velocity experiments [9].
(b) Symbols denote measurements of the stopping distance zs as a
function of VI . The dashed line shows the model prediction for the
penetration depth zF when the front of the dynamically jammed region
reaches the boundary. The solid line shows the model prediction for
the total stopping distance zs = zF + �z, where �z is the additional
displacement due to the kinetic energy of the impact deforming the
system-spanning dynamically jammed region. The gray band shows
the error on the solid line prediction. The agreement between the
measurements and the model prediction shows that walking, jogging,
and running on cornstarch and water can result from the system-
spanning dynamically jammed region.

This relaxation time corresponds to the characteristic timescale
of an exponential decay, so at tr = 0.25 s, the stress would have
time to decay down to a fraction of its peak value during impact.
This timescale tr = 0.25 s is also longer than a typical runner’s
step duration of 0.15 s [22], but shorter than the walker’s
step duration in Fig. 1(a), at least at this weight fraction. This
observation could explain why if a person stands on the surface
of a suspension too long before taking another step, they sink
into the suspension. To make quantitative predictions of this
threshold, the relaxation time would have to be measured more
precisely and the sinking behavior would have to be modeled,
which are beyond the scope of this paper.

The main feature in Fig. 1(a) that can be compared to
a quantitative model prediction for impact response is the
stopping distance zs . While the foot was angled by up to 15◦
when it impacted the surface at z = 0, the final orientation

of the foot at the penetration depth zs was parallel with the
suspension surface to within our measurement resolution of
0.3◦. This results in a variation in zs of less than 0.5% when
comparing to impact experiments with parallel surfaces, which
is relevant if propagation of the dynamically jammed region
depends mainly on the point of first contact. We obtain the
impact velocity VI from the measurements in Fig. 1(a) by
fitting a straight line to z(t) before impact. The stopping
distance zs is obtained from a fit to the plateau in z as shown
in Fig. 1(a). We plot our measured zs/H for a person’s foot
running, jogging, and walking on cornstarch and water as a
function of VI in Fig. 1(b), where the dominant error is from
the uncertainty on H .

IV. TESTING THE CONSTITUTIVE RELATION FOR THE
SYSTEM-SPANNING DYNAMICALLY JAMMED REGION

In this section we test the averaged constitutive rheology
that was obtained from controlled velocity experiments [9] by
applying it to the results of Sec. III.

The constitutive relation consists of an effective compres-
sive modulus E = (H − zF )dτ/dz, but only after the dynami-
cally jammed region spans between boundaries for z > zF [9].
For z < zF , there is no stress on the impactor due to the defor-
mation of the dynamically jammed region, although there may
be much smaller background effects due to buoyancy and other
forces that will be ignored here [9]. The modulus E has unusual
parameter dependences, for example, depending on the fluid
height H . The stiffness per unit area dτ/dz also depends on
impact velocity and weight fraction and reaches a plateau in the
limit of large impact velocities VI and large weight fractions
φ, where dτ/dz = 64 ± 9 MPa/m for VI � 0.1 m/s and φ �
0.57 [9]. This plateau includes the parameter range of our ex-
periments. The front of the dynamically jammed region moves
at velocity VF = kVI , where k is another material parameter.
The delay depth zF corresponds to a depth of the impactor at
the time that the dynamically jammed region first spans to the
bottom of the impactor and can be expressed as zF = H/k

for constant VI . The value of k also depends on VI and φ and
reaches a plateau with constant k = 12 ± 4 for VI � 0.1 m/s
and φ � 0.57 [9]. This plateau again includes the parameter
range of our experiments. While these parameters were mea-
sured as a function of weight fraction up to the jamming tran-
sition, impact velocities were only measured up to 0.4 m/s [9].
For the purposes of testing a model, we extrapolate by using
the same plateau values of dτ/dz and k for higher velocities.
This extrapolation can be partially validated for k, where it was
found to be independent of VI for higher velocities as well [13].

We now use the averaged constitutive relation from the
controlled velocity experiments to build a quantitative model
that can predict the stopping distance zs of an object impacting
the surface of a cornstarch and water suspension. The majority
of the stress response is expected due to the deformation of
the dynamically jammed region when it spans to the bottom
boundary after z = zF . The inertia of the impactor will lead
to a deformation �z of the dynamically jammed region,
determined by equating the kinetic energy of the impactor
with the work done to deform the dynamically jammed region
of compressive modulus E and initial height H − zF (i.e.,
when z = zF ). To obtain a relatively simple lowest-order
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calculation, we evaluate this energy balance in the limit of
small deformation

mV 2
I

2
= EA(�z)2

2(H − zF )
, (1)

where A is the cross-sectional area of the impacting object
and m is the mass of the impacting object. The total stopping
distance is predicted to be zs = zF + �z, including both the
penetration depth zF when the dynamically jammed region
spans to the boundary and the further penetration �z equal
to the deformation of this structure afterward. Using this
expression for zs , Eq. (1), and the relations zF = H/k and
E = (H − zF )dτ/dz yields

zs

H
= 1

k
+ VI

H

[
m

A(dτ/dz)

]1/2

. (2)

We compare this prediction with the observations of a
person’s foot in Fig. 1(b), where the model parameter values
are chosen to match the experiment: H = 0.10 ± 0.012 m,
a person of mass m = 85 kg, and foot cross-sectional area
A = 0.020 m2. We use the values dτ/dz = 64 ± 9 MPa/m
and k = 12 ± 4 for the large-φ and large-VI limit as mentioned
above [9]. To confirm that the model covers the stress range of
the experiment, we checked that the fit range of the modulus
E [9] included up to the maximum stress expected on the foot.
The maximum stress expected on the foot is calculated from
Eq. (1) as τ = E�z/(H − zF ) = mV 2

I /A�z = 8 × 105 Pa,
which is within the range of the fit of E [9] [for this calculation
the maximum VI and �z were obtained from Fig. 1(b)].

The dominant errors in the model parameters are the run-
to-run variations in the measurements of E (14%) and k (36%)
corresponding to the standard deviation of measurements. An
assumption in Eq. (1) is that our control parameter VI is a
good approximation for the center-of-mass velocity V0 [the
latter would be appropriate in Eq. (1)]. We took videos of
people running and found that VI tends to overestimate V0 by
20%–50%, which is represented with a negative error bar on
the predicted �z of 50% if we take these percentages of typical
numbers for all VI . In the model we assume that the area A

stays constant; however, during our measurement as much as
45% of the footprint was still outside of the suspension when
the impactor reached zF , which is represented by a positive
error of 22% on the predicted �z. After all of these errors are
included in the error bars shown in Fig. 1(b), the predicted
zs/H is statistically consistent with the measurements within
an average of about one standard deviation. The root-mean-
square difference between the prediction and data is 26%,
within the run-to-run standard deviation of 30% in stress. This
agreement quantitatively confirms, albeit with a large error
bar, that the penetration depth zs of a person’s foot while
walking, jogging, or running across the surface of cornstarch
and water can be predicted based on the constant-velocity
impact experiments [9].

Equation (2) has two distinct scaling regimes. For small VI ,
very little kinetic energy has to be absorbed, so zs is dominated
by the delay depth zF required for the dynamically jammed
region to span between solid boundaries [the first term in
Eq. (2), plotted as the dashed line in Fig. 1(b)]. In this regime
zs ≈ H/k and the values shown in Fig. 1(b) in this limit are
quite general over the wide parameter range in φ, VI , H , and d

in which k and dτ/dz are constant [9]. For large VI , the kinetic
energy has to be absorbed by compression of the dynamically
jammed structure, so zs is dominated by �z [the second term
in Eq. (2)]. In this regime, zs is independent of H . Considering
that the factor (m/A)1/2 does not change much from person to
person and dτ/dz is constant in the large-φ plateau, we can
approximate zs ≈ 8 × 10−3VI s over a wide parameter range
for large VI .

The model of Eq. (2) assumes the impact is at high enough
velocity that the contribution of the change in gravitational
potential energy mg�z over the course of the impact makes
a negligible contribution to �z. It could easily be included as
an additional term on the left-hand side of Eq. (1). This term
would become dominant over the kinetic energy term at small
VI . In our parameter range, the correction to �z/H from this
term is only 1% in the limit of VI = 0 and so is small compared
to the dominant term zF and safe to ignore here.

V. ADDED MASS EFFECT IN IMPACT RESPONSE

A competing model for explaining the ability of people to
run on the surface of cornstarch and water is the added mass
effect. While it is not needed to explain the results in Fig. 1,
we expect it to be a dominant effect in different parameter
regimes. In this section we perform detailed calculations of
the added mass effect using the model of Waitukatius and
Jaeger [13] to determine under what conditions it can explain
the ability of people to run on cornstarch and water. We
start with general trajectories for rigid free-falling objects in
Sec. V A. We develop a lower bound on the required fluid
height Hc for a person to run on the surface of cornstarch and
water in Sec. V B. In Sec. V C we combine the bounds with
the trajectories to develop more precise bounds on the required
fluid height Hc and a minimum foot impact velocity Vc for a
person to run on the surface of cornstarch and water.

A. Added mass effect for rigid free-falling objects

The growth of the added mass over time slows down an
impacting object due to conservation of momentum with a
variable mass [13]. To characterize the trajectories of rigid free-
falling objects, we start with the time-dependent force balance
equation with conservation of momentum for a variable mass

m0g = [m0 + ma(t)]
dVa

dt
+ Va(t)

dma

dt
, (3)

where m0 is the mass of the impacting object, Va is the time-
dependent velocity of the added mass (we assign downward
velocity to be positive), and ma is the time-dependent added
mass that moves with the impacting object. We use Va to
represent both the velocity of the added mass and the impacting
object, as previous experiments showed them to be the same
while they are in contact [14]. This corresponds to an uncom-
pressed dynamically jammed region before it spans between
solid boundaries. We assume for ease of calculation that the
impacting object is rigid, so the center-of-mass velocity is the
same as its impacting surface and thus Va . This assumption
will not hold, for example, for a person running on the surface
of cornstarch and water, as the center-of-mass velocity can
differ from the foot velocity due to bending of the leg. We
will calculate bounds that account for this lack of rigidity
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in Sec. V B. As in Waitukaitus and Jaeger [13], we ignore
effects of viscous drag which may increase with the added
mass. We also ignore effects of buoyancy on the added mass
since the density difference between the liquid and dynamically
jammed regions is small [15]. Rearranging Eq. (3) to isolate
dVa/dt , integrating over time, and using the initial condition
Va(t = 0) = VI at the time of impact yields

Va = VI −
∫ t

0

[
Va

m0 + ma

dma

dt
− m0g

m0 + ma

]
dt. (4)

The geometry of the added mass ma was empirically fit by
a frustum shape based on the force response on free-falling
objects [13]. Thus, the added mass can be written as a function
of penetration depth z as

ma = 0.37πρ

3

(
D

2
+ kz

)2

kz, (5)

where ρ is the fluid density, D is the impactor diameter, and
k represents the ratio of front velocity VF to impact velocity
VI . In practice, k is a free parameter which depends on weight
fraction φ. The dma/dt is obtained from the analytic derivative
of Eq. (5), making use of the identity Va = dz/dt ,

dma

dt
= 0.37πρkVa

(
k2z2 + 2kzD

3
+ D2

12

)
. (6)

To reduce the number of parameters in Eqs. (4)–(6), we
introduce a characteristic length scale z0 ≡ (3m0/0.37πρ)1/3.
This is a characteristic depth of the dynamically jammed region
(corresponding to z0 = kz), specifically when ma = m0 in
Eq. (5) in the limit of small D → 0. With this scale, we
define the nondimensional velocity Ṽa = Va/VI , added mass
m̃a = ma/m0, impactor diameter D̃ = D/z0, impactor depth
z̃ = zk/z0, time t̃ = tVI /kz0, and gravity g̃ = gkz0/V 2

I . The
different normalizations for D̃ and z̃ were chosen to allow for
a minimum number of control parameters in dimensionless
form, while the main material parameter k is hidden in the
normalizations of t̃ and z̃. With this definition, D̃ is an aspect
ratio representing the diameter of the impactor divided by the
depth of front of the dynamically jammed region required
for ma = m0. Using this nondimensionalization and inserting
Eq. (6) into (4) yields the dimensionless form of Eq. (4),

Ṽa = 1 −
∫ t̃

0

[
3Ṽ 2

a z̃2

1 + m̃a

(
1 + 2D̃

3z̃
+ D̃2

12z̃2

)
− g̃

1 + m̃a

]
dt̃,

(7)

and the dimensionless form of Eq. (5),

m̃a =
(

D̃

2
+ z̃

)2

z̃. (8)

These equations reduce the system to two dimensionless
parameters D̃ and g̃.

With the nondimensionalization of Eqs. (7) and (8), a set
of general trajectories may be expressed in terms of Ṽa(t̃).
This is obtained by a numerical integration of the implicit
equation (7) using Eq. (8) for m̃a , while simultaneously
integrating z̃ = ∫

Ṽadt̃ (since z ≡ ∫
Vadt). These trajectories

essentially reproduce what was calculated by Waitukaitus and
Jaeger [13], but we additionally note that in this dimensionless
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FIG. 2. Dimensionless velocity trajectories for free-falling rigid
objects impacting into a suspension, where the objects are slowed due
to the added mass effect. Trajectories are shown for different values of
the dimensionless gravity g̃ and impactor diameter D̃: solid black line,
g̃ = 0 and D̃ = 0, corresponding to the limits of large impact velocity
VI and dense or thin impactors; solid gray line, g̃ = 0 and D̃ = 0.29,
corresponding to a person’s mass and foot cross section; disconnected
lines, D̃ = 0.29, corresponding to a person running at VI = 2 m/s
(dashed line, g̃ = 0.11), jogging at VI = 0.8 m/s (dash-dotted line,
g̃ = 0.71), or walking at VI = 0.2 m/s (dotted line, g̃ = 10.4) on
cornstarch and water.

form this and other curves are universal for rigid impacting
objects.

1. Solutions in the limit D̃ = 0 and g̃ = 0

To understand the solutions (7) using Eq. (8), we start by
presenting a solution in the limit of g̃ = 0 (corresponding
to no gravity) and D̃ = 0 (corresponding to an infinitesimal
impactor) as the simplest mathematical case. A result for Ṽa(t̃)
in the limit of g̃ = 0 and D̃ = 0 is shown in Fig. 2 as the
solid black curve. A few notable scales can be identified from
the trajectories of Ṽa(t̃) in this limit. The added mass initially
grows rapidly over time, but does not significantly decelerate
the impacting object until ma becomes comparable to m0. The
velocity is reduced by half when ma = m0 at impactor depth
z0/k (corresponding to a front depth z0). There is also an
inflection point in Ṽa(t̃) where deceleration is maximum at t =
0.71z0/kVI . Thus, the timescale tp ≡ z0/kVI and length scale
zp ≡ z0/k are rough scales over which most of the slowdown
from the added mass effect occurs. Beyond these scales, the
combined object has significantly more mass (m0 + ma) than
the impactor itself (m0) and thus is harder to decelerate.

The added mass effect is a variation on inertial mass
displacement in impact response, in which in which the force
in response to impact scales as Fp ∼ m0V

2
I /z0. This scaling

is found for a large variety of fluids, ranging from liquids to
suspensions to dry granular beds [23]. For the added mass
effect, we find that the peak force on the impactor is Fp =
max(m0dVa/dt) = 0.61km0V

2
I /z0 in the limit of g̃ = 0 and

D̃ = 0. This is larger by about a factor of k than for most other
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fluids, which is what makes the added mass effect stronger than
a typical inertial impact response.

2. Perturbations on the limiting solution

To account for the finite size of impactors and the con-
tribution of gravity requires realistic values of D̃ and g̃,
respectively. To obtain realistic parameter values for a person
running on the surface of cornstarch and water, we obtain an
effective diameter for the foot by assuming the same contact
area A = 0.020 m2 as the foot used in Fig. 1 and define the
effective foot diameter D = 2

√
A/π = 0.16 m. For a person

of mass m0 = 85 kg, suspension density ρ = 1200 kg/m3, and
effective foot diameter D = 0.16 m, we obtain z0 = 0.56 m
and D̃ = 0.29. Since D̃ ∝ A1/2(ρ/m0)1/3 does not vary much
from person to person and the trajectory of Va does not change
much with D̃, this value D̃ = 0.29 is used for all further
calculations of the added mass effect on a person.

As an example of the effect of D̃ on the trajectory Ṽa(t̃),
we show a trajectory for D̃ = 0.29 and g̃ = 0 as the solid gray
curve in Fig. 2. For D̃ � 0, the impacting object is expected to
decelerate slightly faster due to the larger initial cross-sectional
area of the added mass, but as ma � m0 (Ṽa � 0.5) the initial
contact area becomes less relevant compared to the total added
mass and the trajectory approaches the D̃ = 0 trajectory.

To account for the effect of gravity, free-fall trajectories are
shown corresponding to the parameters of a person walking,
jogging, and running on cornstarch and water are shown in
Fig. 2. We use D̃ = 0.29 and different values of g̃ for k =
12 [9,13] and impact velocities for running (g̃ = 0.11 and VI =
2 m/s), jogging (g̃ = 0.71 and VI = 0.8 m/s), and walking
(g̃ = 10.4 and VI = 0.2 m/s), as measured in Fig. 1. For small
VI (g̃ � 1), including the jogging and walking steps, the person
is expected to continue accelerating downward on a nearly free-
fall trajectory initially until the added mass builds up enough to
be comparable to m0. For larger VI (smaller g̃), the trajectories
approach the D̃ = 0 and g̃ = 0 limit.

For most of the examples shown in Fig. 2, specifically for
g̃ < 1 (large VI ) and D̃ < 1, the trajectories are similar to the
D̃ = 0 and g̃ = 0 limit. The small-g̃ limit can be interpreted
as the limit of large impact velocity VI , including impact
velocities corresponding to jogging speeds and faster, while
the small-D̃ limit corresponds to impactors that are relatively
dense compared to the fluid and/or thin impactors. In these
cases, the trajectories may be qualitatively understood by
considering the D̃ = 0 and g̃ = 0 trajectory as a limiting case
that other trajectories converge to, while D̃ and g̃ are small
perturbation parameters.

B. Lower bound on the fluid height for running on
cornstarch and water due to the added mass effect

The trajectories in Fig. 2 assume the added mass can
grow indefinitely. The added mass contribution could be much
weaker if the growth of the added mass is stopped by reaching
a solid boundary, i.e., when kz = H . At this point, the added
mass contribution would vanish and the system-spanning
dynamically jammed region would likely become dominant, as
observed in Fig. 1. Here we obtain a lower bound on the mini-
mum height Hc of the fluid required for a person to run on the
surface of cornstarch and water due to the added mass effect.

First, we calculate an expression for the available added
mass mc in a pool of height Hc. Plugging in the maximum
extent of the added mass kz = Hc into Eq. (5) yields the
available added mass

mc = 0.37πρ

3

(
D

2
+ Hc

)2

Hc. (9)

The minimum fluid height Hc could be calculated implicitly
for a given mc using Eq. (9). To do so, we need an expression
for the added mass mc required to support a person of mass m0

to equate to Eq. (9). While Eq. (7) gives a general solution
for impact response of a rigid free-falling object from the
added mass effect, it does not account for internal motion of
impacting objects. In particular, for a person to run on the
surface of cornstarch and water requires actively pushing off
of the surface with one leg before pushing down with another
to get a force from the added mass effect. The decoupling of
the foot velocity from the center-of-mass velocity is necessary
for it to be possible to obtain an upward motion. Otherwise, the
person would always sink and persistent running on the surface
of cornstarch and water (in practice, until the person gets tired)
would be impossible. An expression for the required added
mass mc can be calculated from momentum conservation,
balancing the change in momentum of the person at the times
of foot impact and lift-off from the surface with the momentum
of the added mass and the impulse from gravity:

V0m0 = −m0

√
V 2

0 + 2gz�t + V�tmc − m0g�t. (10)

Here V0 is the center-of-mass velocity of the person at the time
of foot impact. The terms on the right-hand side represent,
respectively, the momentum of the person at the time the foot
lifts off the surface a time �t later, the momentum of the added
mass with velocity V�t at the time of lift-off, and the impulse
from gravity on the person over the time �t . The lift-off
velocity

√
V 2

0 + 2gz�t on the right-hand side is determined by
ballistic motion between steps. Lift-off occurs at a depth z�t

lower than the quiescent fluid surface, resulting in a potential
energy difference that has to be made up in the difference
between lift-off and impact velocities. Persistent running on
the surface requires each step to have the same V0 and so must
satisfy Eq. (10).

To obtain an explicit expression for the required added mass,
we algebraically rearrange Eq. (10) as

mc

m0
=

V0 +
√

V 2
0 + 2gz�t + g�t

V�t

. (11)

We can calculate a lower bound on mc with some constraints.
The velocity change over the ballistic free-fall motion V0 +√

V 2
0 + 2gz�t can be replaced with g�tf , where �tf is the

time of flight of a person when they are moving ballistically
between steps. In cases where the added mass effect is strong
enough to slow the impactor, it must be true that Va < VI at
the end of the impact. Any persistent running gait also requires
that the center-of-mass velocity V0 > 0 at the time of impact,
where an equality would correspond to an optimized running
in which the foot barely clears the surface of the suspension
when lifting off from depth z�t and landing at the surface again
for the next step. With these constraints, we can put a simple
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lower bound on the required added mass

mc

m0
>

g(�t + �tf )

VI

. (12)

A lower bound on the required fluid height Hc can be
obtained by plugging in some numbers for a typical running
person: VI ≈ 2.0 m/s (see Fig. 1 or [22]), a minimum step
duration �t ≈ 0.15 s, and a time of flight between steps of
�tf = 0.15 s when running [22]. This gives a lower bound on
the required added massmc/m0 > 1.5 for a person to run on the
surface. Inputting this into Eq. (9) gives a lower bound on the
required fluid height of Hc > 0.6 m that a person can run across
due to the added mass mechanism.

In terms of human running parameters, we only needed
to make an assumption about the step duration �t and the
time of flight �tf , which are remarkably consistent from
person to person and only get slightly larger as running speeds
decrease [22]. Other aspects of human running, like bending or
energy storage in the leg, gait, etc., while relevant to running,
cannot get around this bound. Putting in realistic values for V0,
z�t , and V�t into Eq. (11) would raise this lower bound on the
minimum fluid height Hc. On the other hand, the estimate for
Hc is fairly insensitive to the rather small range of reasonable
parameters for human running since Hc ∝ m

1/3
c in Eq. (9) for

H 	 D/2. Thus we expect this lower bound to be a good
first-order estimate for Hc.

C. Using trajectories to obtain more precise conditions for
running on cornstarch and water due to the added mass effect

To obtain a more precise prediction for the conditions where
the added mass effect could explain the ability to run on
cornstarch and water, we consider the velocity trajectories from
Eq. (7) in addition to the constraint of Eq. (11). Equation (7)
assumes that during the impact, the person and the added mass
have the same center of mass. Realistically, after impact the leg
usually bends to shorten the distance between center of mass
and foot, slowing down the foot and the added mass relative
to the center of mass of the person. Thus, our calculation
overestimates Va and the force from the added mass effect
during the impact and still provides lower bounds on the
minimum fluid height Hc, as well as a lower bound on the
minimum impact velocity Vc required for a person to run on
the surface of cornstarch and water due to the added mass
effect.

To calculate a criterion for a person to run on the surface of
cornstarch and water, we compare the produced added mass
over time from Eq. (5) with the required added mass to support
sustained running from Eq. (11). To provide a constraint on
the required added mass independent of the details of human
running parameters, we again assume V0 > 0 in Eq. (11) to
obtain the lower bound

mc

m0
>

g�t + √
2gz�t

V�t

(13)

as a function of step duration �t . In contrast to the approxima-
tion in Eq. (12), this time we put the bound in terms of z�t and
V�t , which can be obtained from the trajectories from Eq. (7).
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FIG. 3. Comparison between the produced added mass ma in
response to impact and the required added mass mc for a person to run
on the surface of cornstarch and water. Curves are shown for k = 12
and V0 = 0: solid lines, produced added mass ma from Eq. (8) for
different impact velocities VI following the color scale in the legend;
dashed line, produced added mass in the limit of VI → ∞; dotted
lines, required added mass mc using the same color code for VI as the
solid lines. The solid points indicate the time tc/tp where the produced
added mass first exceeds the required added mass, thus meeting the
threshold for a person to run on the surface.

1. Critical velocity Vc

At any given combination of VI and step duration �t ,
the added mass effect will provide enough impulse to allow
persistent running if the produced added mass ma/m0 numer-
ically integrated from Eqs. (7) and (8) exceeds the required
added mass mc/m0 from Eq. (13). The numerical integration
of Eqs. (7) and (8) also produces the trajectories of Va , and
z vs t that can be evaluated at time �t for Eq. (13). These
two expressions for the added mass are plotted as a function
of step duration �t at k = 12 in Fig. 3 for a few different
VI . The required added mass is shown as dotted lines and the
produced added mass is shown as solid lines. There is a limiting
curve for the produced added mass as VI → ∞. The times
tc where the produced added mass first exceeds the required
added mass are indicated by solid circles in Fig. 3. Once the
produced added mass exceeds the required value for a given VI

at time tc, it tends to stay above that in the model calculation,
except for some slight variations around the threshold very
near the threshold velocity. Thus, tc determines the minimum
step duration required to satisfy Eq. (13) and allow a person to
run on the surface of cornstarch and water.

From the curves shown in Fig. 3, it is apparent that at the
smaller value of VI , the produced added mass ma never exceeds
the required added mass mc. A plot of the minimum time tc/tp
where the produced added mass ma first exceeds the required
added mass mc is shown as a function of VI in Fig. 4. We find
that there is a critical velocity Vc that is a lower bound on the
minimum impact velocity required for ma > mc and thus for a
person to run on the surface of the suspension. This appears as a
critical point in the sense that tc/tp diverges as Vc is approached
from above. This critical velocity is the threshold where the
added mass effect is just strong enough to overcome gravity
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FIG. 4. Minimum step duration tc (solid line) required for a person
with foot impact velocity VI to run on the surface of cornstarch and
water due to the added mass effect. The divergence identifies a lower
bound on the minimum foot impact velocity Vc = 1.66 m/s, shown as
the dotted vertical line. The right-side scale shows the minimum fluid
height Hc (dashed line) required for a person to run on the surface of
cornstarch and water with a step duration �t = 0.15 s.

over the course of the impact. The value of Vc = 1.66 m/s for
k = 12 (appropriate for the weight fraction range 0.57 � φ �
0.61 [9]) happens to be between typical jogging and running
values of VI , which may be relevant for explaining why pools
of cornstarch and water have been easily made in which people
can run but not jog on the surface [6].

2. Dependence on running gait

The existence of the critical impact velocity Vc as a bound
is independent of any parameters of human running. However,
the value of the threshold velocity varies with the center-of-
mass velocity V0 at the time of impact, which depends on the
running gait. This can be quantitatively accounted for in terms
of the ratio of center-of-mass velocityV0 to foot impact velocity
VI . When V0/VI = 0, this corresponds to an optimal gait for
running on cornstarch and water, corresponding to an equality
in Eq. (13). In the other limit, V0/VI = 1 corresponds to a rigid
leg just before impact. The critical velocity Vc is shown as a
function of V0/VI for k = 12 in Fig. 5, where mc is calculated
with positive (downward) values of V0 from Eq. (11) instead
of Eq. (13). The threshold velocity Vc increases with V0/VI .
At V0/VI = 0.47, there is a critical point where the required
impact velocity Vc diverges. Just as in Fig. 4, this is a threshold
where the added mass effect is just strong enough to overcome
gravity over the course of the step and here must additionally
overcome the initial momentum of the person moving down
at center-of-mass velocity V0. This means that the specific
running gait can have a significant effect on whether a person
can run on the surface of cornstarch and water. For a rigid
leg before impact where V0 = VI , running on the surface of
cornstarch and water would not be possible for any impact
velocity VI due to this critical point. For typical running on
flat stiff ground, ballistic motion between steps results in V0 =
g�tf /2 = 0.75 m/s for a time of flight �tf = 0.15 s. The
critical foot impact velocity for this value of V0 would be Vc =
2.6 m/s, corresponding to V0/Vc = 0.28. While this is a fast
foot impact velocity for a runner, it is in an achievable range,
especially if a person moves their legs faster than they would
normally run on solid ground to increase VI relative to V0.
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FIG. 5. Dependence of the critical foot impact velocity Vc on
running gait, represented by the ratio of center-of-mass velocity V0

to foot impact velocity VI . A strong dependence on running gait is
found, with a critical ratio V0/VI = 0.47 where Vc diverges. A typical
running gait on flat stiff ground corresponds to V0/VI = 0.28 and
Vc = 2.6 m/s.

As a separate aspect of the gait, the trajectories shown in
Fig. 2 assume the person keeps their leg rigid after impact
to maximize the growth of the added mass region. This is
unnatural, as legs are usually bent in response to the impact of
landing to minimize the stress on the body. If a person runs with
a more typical running gait where the legs bend in response to
impact, the critical velocity Vc would increase further beyond
the values given above for more ideal gaits. This is not modeled
quantitatively here because the response depends on the me-
chanics of the person, which is beyond the scope of this paper.

3. Step duration

In contrast to objects in free fall, a running person lifts their
foot, so after the step duration �t , the added mass effect no
longer applies to that foot and so the trajectories in Fig. 2 no
longer apply at times later than �t . Thus, for a person to run on
the surface of cornstarch and water, the step duration �t must
be larger than the time tc required for the produced added mass
to exceed the required added mass identified in Figs. 3 and 4.
We find a typical scale for tc/tp ≈ 1 when V0 = 0 for all VI >

Vc except very near Vc (Fig. 4). We also find �t 	 tp over
the parameter range studied. Thus, �t 	 tc and most of the
deceleration in the trajectories of Fig. 2 applies to the person.
This means the minimum velocity condition for running on the
surface is met as long as VI is even just a little bit above Vc. A
correction to Vc accounting for the value of �t is less than 1%
for �t = 0.15 s, VI = 2 m/s, and k = 12. For V0 > 0, tc/tp
increases, and tc becomes greater than the typical step duration
�t = 0.15 s for V0 > 0.41VI . This step duration constraint
may never be relevant for a person running on cornstarch and
water, however, because at these parameters the critical foot im-
pact velocity isVc = 4.6 m/s, a much harder constraint to meet.

4. Minimum fluid height Hc

The minimum fluid height Hc required for a person to run
on the surface of cornstarch and water calculated in Sec. V B
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can be updated to account for the velocity trajectories; Hc is
calculated from Eq. (9) for the required added mass mc from
Eq. (13), using the trajectories of Eq. (7) to obtain z�t and V�t .
This is shown on the right-side scale of Fig. 4 for a typical step
duration of �t = 0.15 s. This yields Hc = 1.2 m at VI = Vc.
The critical height Hc is seen to be relatively insensitive to
VI . This value of Hc = 1.2 m is twice that calculated from the
simpler bound of Eq. (12).

The large typical ratio of �t/tc for human running pa-
rameters has a significant effect on Hc, since the added mass
keeps growing after the minimum time tc required to run on
the surface of cornstarch and water, and if the dynamically
jammed region collides with a boundary during this time, the
added mass effect dies out. This means that for the added
model to describe the ability of a person to run on the surface
of cornstarch and water, significantly more added mass is
required than if the impact duration �t was tuned (i.e., for an
optimized machine) to its minimal value tc. For example, for
a runner with �t = 0.15 s, VI = 2 m/s, V0 = 0 at k = 12, we
calculate �t = 6.5tp and ma = 12m0, and the required added
mass according to Eq. (13) is 11m0, only slightly below the
actually achieved added mass. This requires a pool of minimum
height Hc = 1.2 m according to Eq. (9). However, if �t was
tuned to be near tc, the required added mass would be only
1.2m0 as seen in Fig. 3, corresponding to Hc = 0.6 m.

5. Penetration depth

For a pool of height H > Hc, the maximum foot penetration
depth z�t can be calculated from Eq. (7) at the time of foot
lift-off �t . Based on the typical scales observed in Fig. 2,
the typical length scale of the penetration depth scales z0/k.
More precisely, for a typical running step duration of �t ≈
0.15 s, VI = 2.0 m/s, and an ideal gait with V0 = 0 at k =
12, the penetration depth is z�t = 2.1z0/k = 0.1 m. This is a
step height that is reasonable to achieve while running. It also
corresponds to a minimum time of flight �tf = √

2z�t/g =
0.12 s for V0 = 0, near typical times for runners [22], so that
it could be achieved without need for a large V0. The z�t is
insensitive to most parameters. For example, doubling VI only
increases z�t by 17%. Thus, the penetration depth is not likely
to be a limiting constraint on the ability to run on the surface
of cornstarch and water.

For the experiments shown in Fig. 1, the added mass effect
is much more limited since H � Hc. The energy balance
calculation in Eq. (1) can be modified by adding the work
Wa done by added mass effect. The force from the added mass
effect can be expressed as the time derivative of the momentum
to obtain the work Wa = ∫

[d(maVa)/dt]dz. Modifying Eq. (2)
accordingly leads to a correction to the penetration depth
zs by no more than 2% for the parameters in Fig. 1. Not
only is the added mass effect not enough to account for
running on cornstarch and water for small H , it also is
negligible compared to the contribution of the system-spanning
dynamically jammed region for small H .

6. Weight fraction dependence

To describe trends in weight fraction φ, we use the velocity
ratio k as a proxy, since it is the material parameter in the
model that depends on φ. The k(φ) was found to increase
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FIG. 6. The solid line shows the critical foot impact velocity Vc

vs k, where larger k corresponds to larger weight fraction φ. A typical
running foot impact velocity of VI = 2 m/s sets a lower limit of
k = 8 (φ = 0.56) at which a typical person can run on the surface of
cornstarch and water. The right-side scale shows the maximum foot
penetration depth z�t (dashed line) and the minimum fluid height Hc

(dotted line), both at VI = 2 m/s.

with φ up to a plateau of k = 12 ± 4 at high weight fractions
(0.57 < φ < 0.61), where the liquid-solid transition occurs at
φc = 0.61 [9]. We plot values of the critical impact velocity
Vc vs k in Fig. 6, assuming an ideal gait with V0 = 0. This
calculation is probably not realistic for small k close to 1,
where the existence of a larger pluglike flow in front of the
impactor [18] may have a significant effect on the expression
for the growth of the added mass over time. At larger k where
the model does apply, a minimum weight fraction for which
people can run on the surface of cornstarch and water can
be obtained as the k value where Vc = 2 m/s as a typical
foot impact velocity for a running person. We find Vc = 2
m/s when k = 8, yielding a minimum weight fraction of
φ = 0.56 ± 0.01 [9]. Because of the steep variation of k(φ)
in this range [9], this 0.01 error includes the large run-to-run
variation of 30% in k. In the high-weight-fraction plateau
where k = 12 ± 4, Vc only varies as Vc = 1.7 ± 0.3 in this
range due to the relative insensitivity of Vc to k in Fig. 6. This
identifies a robust minimum velocity at high weight fractions,
remaining in between typical jogging and running velocities.

The maximum penetration depth z�t also changes with
weight fraction. This is plotted on the right-side scale of Fig. 6
at the threshold VI = Vc, V0 = 0, and �t = 0.15 s. In the k

range where Vc < 2 m/s, this gets as large as z�t = 0.13 m
at k = 8, which is a reasonable height for a person to step, so
z�t never becomes the limiting factor in running on cornstarch
and water. At smaller k, where Vc becomes larger than human
foot velocities, z�t also reaches prohibitively larger values.

Finally, we plot the required fluid height Hc vs k on the
right-side scale of Fig. 6 for the same threshold VI = Vc, V0 =
0, and �t = 0.15 s. The Hc is also insensitive to k and varies
only as Hc = 1.2 ± 0.1 for k = 12 ± 4.

VI. CONCLUSION

We tested a constitutive model for the impact response of
suspensions consisting of an effective stiffness per unit area
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of the system-spanning dynamically jammed region after a
delay time required for it to span the system [9]. We tested
this model by applying it to a person walking and running
on the surface of cornstarch and water, in which the velocity
varies and the impactor shape is different from the experiments
the constitutive model was fit to. The model predicts the
penetration depth of free-falling objects into suspensions, in
which the kinetic energy of the impacting object is balanced by
the work required to deform the system-spanning dynamically
jammed region. The model prediction of the penetration depth
of a person’s foot walking, jogging, and running on the surface
of cornstarch and water suspensions is within the run-to-run
standard deviation of stress measurements of 30%. In addition,
the model explains an observed delay before the foot comes to
a sharp stop, arising from the time it takes for the front of the
dynamically jammed region to reach the boundary opposite the
impactor. This feature could not be explained by models with
a smoothly varying stress response such as a bulk viscosity or
the added mass effect.

We performed detailed calculations of the added mass con-
tribution to impact response based on the model of Waitukaitus
and Jaeger [13]. We showed that the added mass effect could
be strong enough to explain the ability of a person to run on the
surface of cornstarch and water, but only if the fluid is deeper
than Hc = 1.2 ± 0.1 m and the impact velocity is greater than
Vc = 1.7 ± 0.3 m/s. These bounds apply where the effect
is strongest in the weight fraction range 0.92φc � φ � φc.
These bounds assume an optimal gait where the center-of-mass
velocity of the person V0 = 0 at the time of impact. The critical
velocity Vc increases for either smaller φ or larger V0, although
Hc is fairly insensitive to any parameters of human running.

It is notable that the critical velocity Vc = 1.7 m/s for a wide
range of weight fraction is in between typical impact velocities
for jogging and running. This could explain why there are many
examples of pools of cornstarch and water that people can run
but not jog on the surface. On the other hand, this may be a
coincidence, as it is relatively easy to tune the desired thickness
of the suspension by hand, and the system-spanning dynam-
ically jammed region can also explain the ability to run on
cornstarch and water in this parameter range. Since most videos
readily available have been taken without controlled laboratory
conditions [6], it is not always clear if H > Hc, and more
detailed measurements are not available to test the two models
in such cases, especially since they both predict comparable
penetration depths and can predict packing-fraction-dependent
minimum velocities. The one clear-cut set of experiments we
have analyzed in Fig. 1 and shown in video 1 in [11] clearly
shows people walking, jogging, and running on cornstarch
at H = 0.1 m (<Hc) and foot impact velocities as low as
VI = 0.2 m/s (<Vc). In this range of H < 1.2 m and VI < 1.7
m/s, only the system-spanning dynamically jammed region is
able to explain why people can run and walk on cornstarch

and water. Measurements of people running on pools of fluid
deeper than Hc = 1.2 m could confirm whether the added mass
mechanism can in some cases explain the ability of people to
run on the surface of cornstarch and water.

The fact that we were able to use an averaged constitutive
model based on constant velocity impacts to successfully
predict the mechanics of the suspension when a person runs on
the surface indicates that the constitutive model can be used
on flows with different geometry and driving conditions than
were originally used to develop the model. This opens up the
possibility that the constitutive model may be applicable to a
wider variety of problems with different forcing conditions,
boundary conditions, and flow geometries. This is a nontrivial
result, as the traditional method of obtaining constitutive rela-
tions based on steady-state rheometer measurements has not
yet been able to explain any transient or dynamic phenomena of
DST suspensions besides steady shear, as least in the absence
of time-dependent hysteresis terms [2]. One such phenomenon
is the oscillation of the velocity of a sphere sinking in a
suspension, rather than monotonically approaching a terminal
velocity as it would in a generalized Newtonian fluid [24–
26]. It was argued that a repeated process of jamming and
unjamming of something like the dynamically jammed region
could account for such oscillations [24–26]. Now we have
an averaged constitutive model that includes such a process,
along with a relaxation process to describe the unjamming [19].
Similarly, it was shown that the formation of stable holes in the
surface of a vertically vibrated layer of a DST suspension could
not be explained by a steady-state rheology in the absence of
hysteresis in the constitutive relation τ (γ̇ ) [27]. This apparent
hysteresis appears to be time dependent when the constitutive
relation is put in terms of τ (γ̇ ). Alternatively, such hysteresis
could come about for a history of increasing shear rate from
the delay time we observed before the large stress increase.
For the history of decreasing shear rate, the time dependence
may come from the relaxation time of the dynamically jammed
state [19]. Finally, the observation of objects bouncing off the
surface of a DST suspension remains unexplained based on
steady-state or added mass models which are dissipative con-
stitutive relations [2,13]. The system-spanning dynamically
jammed region can in principle provide some energy storage
in the modulus E that could possibly explain the ability of
impacting objects to bounce off the surface. Testing the general
applicability of the constitutive relation to these and other
problems is left open for future work.
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