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Transient shear banding in the nematic dumbbell model of liquid crystalline polymers
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In the shear flow of liquid crystalline polymers (LCPs) the nematic director orientation can align with the flow
direction for some materials but continuously tumble in others. The nematic dumbbell (ND) model was originally
developed to describe the rheology of flow-aligning semiflexible LCPs, and flow-aligning LCPs are the focus
in this paper. In the shear flow of monodomain LCPs, it is usually assumed that the spatial distribution of the
velocity is uniform. This is in contrast to polymer solutions, where highly nonuniform spatial velocity profiles
have been observed in experiments. We analyze the ND model, with an additional gradient term in the constitutive
model, using a linear stability analysis. We investigate the separate cases of constant applied shear stress and
constant applied shear rate. We find that the ND model has a transient flow instability to the formation of a
spatially inhomogeneous flow velocity for certain starting orientations of the director. We calculate the spatially
resolved flow profile in both constant applied stress and constant applied shear rate in start up from rest, using
a model with one spatial dimension to illustrate the flow behavior of the fluid. For low shear rates flow reversal
can be seen as the director realigns with the flow direction, whereas for high shear rates the director reorientation
occurs simultaneously across the gap. Experimentally, this inhomogeneous flow is predicted to be observed in
flow reversal experiments in LCPs.
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I. INTRODUCTION

Thermotropic liquid crystalline polymers (LCPs) have a
variety of molecular architectures: ranging from rigid rodlike
objects to slightly bent rods and semiflexible chains [1–3].
LCPs can be processed into strong, stiff, light-weight fibers
and optical devices. Hence, their alignment induced by flow
has been widely studied. They also have applications in electro-
optic devices where they allow tuning of the device properties
such as thermal stability or viscosity of the device [4].

In the nematic phase, LCPs are typically classified accord-
ing to the response of the preferred orientation of the nematic
mesogens (the director) to the shear flow. In flow tumbling
systems the director continuously rotates in response to a
shear strain. In flow aligning systems the director rotates to
approach a steady-state angle aligned in the flow direction
for prolate polymer conformations. For example, experimental
work on monodomains of rodlike LCPs shows that they
typically exhibit director tumbling [5]. Semiflexible chains
are more likely to be flow aligning [6]. Conoscopy studies of
monodomains of flexible LCPs in shear flow has shown them
to be flow aligning [7,8]. These studies have not investigated
the spatial velocity profile in the flow gradient direction of
the rheometer. These two states have been modeled using the
Leslie-Ericksen transversely isotropic fluid model [9,10].

The rheology of rodlike LCPs has been successfully mod-
elled by Doi [11] and polydomain systems by the Larsen-Doi
model [12]. More flexible LCPs have been modeled using a
slightly bending rod model [13], which is capable of describing
the transition between flow aligning and tumbling behavior
[3]. Theoretical models typically assume that the flow is spa-
tially homogeneous, i.e., having a uniform shear rate [14,15].

Textures in the orientation of the director (e.g., Ref. [16]),
including a banded structure in the velocity direction, have
been predicted using models of rodlike LCPs, and some of
these have included spatial variation in the shear rate [17].
However, the corresponding models have not been developed
for flow-aligning semiflexible LCPs. The rheology of semi-
flexible chains has been described theoretically [6], such as
through a generalized Rouse model [18], and a generalized
nematic dumbbell (ND) model [2], which is where we will
focus in this paper.

The formation of a spatially inhomogeneous flow velocity
in polymer solutions in the flow gradient direction during shear
flow, called shear banding, had been long predicted in the Doi-
Edwards model due to a nonmonotonic constitutive curve [19].
It is well known that multivalued constitutive curves can lead
to a variety of different types of shear banding [20]. However,
it had not been found experimentally in polymer solutions until
recently [21]. Theoretically it was shown that a nonmonotonic
constitutive curve was not necessary for the formation of shear
bands [22] and that the fluid may be transiently unstable to
the formation of shear bands [22,23] and even fracture [24].
Analysis of the curvature of the homogeneous stress response
with respect to the strain and the strain rate can predict the
shear banding instability for some constitutive models [25,26].
LCP models might also be expected to have an inhomogeneous
velocity profile under suitable conditions.

Orientational banding, i.e., variation in the director orien-
tation in response to applied shear strain, is common in LCPs.
It is observed in flow reversal experiments [27]. Crosslinked
LCPs that form a continuous network are called liquid crystal
elastomers (LCEs). LCEs exhibit orientational bands in the
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director, induced by deformation, in numerous phases includ-
ing the nematic [28] and smectic phase [29–31]. The formation
of the microstructure in response to mechanical deformation
is due to their unusually soft mechanical response. For certain
soft deformations they deform at virtually no energy cost [32].
This soft elastic behavior is accompanied by the formation of
spatial microstructure and can be traced back to the nonconvex
shape of the free-energy surface. This soft elastic behavior is
present in the mechanical response of the nematic dumbbell
model [33].

The linear stability analysis used to examine the transient
behavior in polymer solutions [23,25] can be applied to the
flow behavior of the nematic dumbbell model, to understand
their transient flow instability. The nematic dumbbell model
provides a link between shearbanding and the formation of
microstructure in LCPs. It also gives a possible dynamical
model of the formation of microstructure in LCEs.

This paper is organized as follows. The constitutive equa-
tions of the ND model are introduced in Sec. II, converted
into dimensionless units, and some suitable values of the
model parameters are discussed. The response of the ND
model to an imposed shear rate is then calculated in Sec. III.
The transient response of the ND model is analyzed using
linear stability analysis in Sec. IV and found to be transiently
unstable. The resulting spatially resolved velocity profile in
start-up flow is calculated in Sec. V using a 1D spatially
resolved model. The relation of the ND model to experi-
mental work and related constitutive models is discussed in
Sec. VI.

II. THE NEMATIC DUMBBELL MODEL

Maffettone and Marrucci developed the nematic dumbbell
(ND) model to describe the rheology of flow-aligning semi-
flexible LCPs [2]. They derive the constitutive model for the
polymer shape tensor as follows:

d〈RR〉
dt

= K · 〈RR〉 + 〈RR〉 · KT + 2Nb2I
τ

− 3

1 − S

× 1

τ

[
2〈RR〉 − 3S

1 + 2S
(nn · 〈RR〉 + 〈RR〉 · nn)

]
,

(1)

where R is the end-to-end span of the polymer, RR denotes
the outer product of the two vectors, 〈·〉 denotes an ensemble
average over many polymer chains in a volume element,
K = ∂v

∂x is the velocity gradient tensor, S is a scalar liquid
crystal order parameter, τ is the polymer relaxation time, N

is the number of Kuhn segments in the polymer, b is the
persistence length, n is the liquid crystalline director, and
nn denotes the outer product of the two vectors. It will be
assumed here that we are deep in the nematic phase, so the
nematic order S is fixed. The polymer stress is specified
by

σ = ckBT

Nb2

3

1 − S

(
〈RR〉 − 3S

1 + 2S
nn · 〈RR〉

)
, (2)

where c denotes the number of chains per unit volume, T is
the temperature, and kB is Boltzmann’s constant.

In equilibrium the average polymer spans parallel and
perpendicular to the director are given by the following:

〈R2
‖〉 = �‖

Nb2

3
, (3)

〈R2
⊥〉 = �⊥

Nb2

3
, (4)

where ‖ denotes the direction parallel to the director, ⊥
denotes the direction perpendicular to it, and �‖ = 1 + 2S and
�⊥ = 1 − S. In comparing this model to the literature on liquid
crystalline polymers, elastomers, and transient shear banding,
it is convenient to adopt a more compact notation. Using
� = I + (r − 1)nn, where r = �‖/�⊥ and I is the identity
tensor, we can write the equilibrium mean square end-to-end
vector of a polymer as

〈RR〉 = �
Nb2�⊥

3
. (5)

When a polymer is out of equilibrium we will denote 〈RR〉 =
W �⊥Nb2

3 . Using this notation, and the upper convected Maxwell
derivative,

∇
W = dW

dt
− K · W − W · KT , (6)

we can rewrite Maffettone and Marrucci’s model as

∇
W = 2

τ⊥
I − 1

τ⊥
(W · �−1 + �−1 · W) + D∇2W, (7)

σ = G�−1 · W, (8)

where G = ckBT and τ⊥ = τ�⊥/3. Maffettone and Marrucci
discuss various circumstances for the response of the director
[2]—either by using torque balance or a strong external field
to determine n. We will focus here on the case where the
director responds very rapidly, so is always an eigenvector
of W, which ensures that σ is a symmetric tensor (so torque
balance is satisfied). In principle, there is a separate timescale
for the response of the nematic and the polymer backbones.
However, the response of the nematic is so rapid compared
to the polymer that we will assume that it is instantaneous.
Physically the direction of the director is determined by the
torques from the polymer stress and the fluid viscosity. We will
consider the regime where G � ατ , i.e., where the polymer
stress dominates the determination of the director orientation.
Here, α is the appropriate viscosity component of the nematic.

We have included a diffusive term in the constitutive model
only [Eq. (7)]. This stress diffusion term is typically included
to remove the history dependence of shear banding [34,35].
However, we note that a more rigorous approach would include
a diffusive term in the force balance equation [36].

A full description of this system would include the stress
contribution of the high-frequency polymer terms [22] and
the nematic mesogens. This would couple to the director
orientation of the liquid crystalline polymers. To simplify the
model here we represent these high-frequency modes as an
isotropic Newtonian solvent term. Hence, the total stress is
given by

� = −pI + σ + 2ηD, (9)

052601-2



TRANSIENT SHEAR BANDING IN THE NEMATIC … PHYSICAL REVIEW E 97, 052601 (2018)

where D = 1
2 (K + KT ) and η is the viscosity for the high-

frequency modes. This is typical of models used to investigate
shear banding in wormlike micellar systems [37].

A. Dimensionless units

We will work in dimensionless units, using G to set the scale
for stress, τ⊥ to set the timescale, and the rheometer gap L to
set the length scale. In these dimensionless units our equations
become

∇
W = 2I − (W · �−1 + �−1 · W) + D̃∇̃2W, (10)

σ̃ = �−1 · W, (11)

�̃ = −p̃I + σ̃ + εD̃, (12)

where σ̃ = σ/G, D̃ = Dτ⊥/L2, ∇̃ = L∇, t̃ = t/τ⊥, and K̃ =
τ⊥K. The dimensionless viscosity of the high-frequency modes
is ε = η

Gτ⊥
. We will drop the •̃ from here on and work with

the dimensionless quantities, including the dimensionless local
shear rate ˜̇γ = τ⊥γ̇ .

Quantity Dimensionless group

Stress σ̃ = σ/G

Diffusion D̃ = Dτ⊥/L2

Gradient ∇̃ = L∇
time t̃ = t/τ⊥
Velocity gradient K̃ = τ⊥K
Viscosity ε = η

Gτ⊥

B. Model parameters

To illustrate the behavior of this model we will need
to use particular viscosities for our calculations. Maffettone
and Marrucci describe the experimental measurement of the
ND model parameters [2]. Here we will estimate the model
parameters from literature values. If we take the viscosity for
the LCP to be in the range 1 − 10 Pa s [5], and the viscosity of
the Newtonian solvent term to be ∼0.1Pa s (e.g., for MBBA
[38]), then ε ∼ 0.01. Since the ND model is a single-mode
approximation to the behavior of a polymer, we expect the
qualitative features to be correct but not the quantitative details.
We will use r = 2 for the anisotropy of the LCPs, typical of
a side chain polymer. Typical values for the reptation time for
long polymers is τ ∼ 1 s, and the rheometer gap is L ∼ 1 mm
[21].

The magnitude of the diffusion term has been estimated
in wormlike micellar systems [39]. Here it is found that D ∼
10−13m2s−1, or in dimensionless units D̂ ∼ 10−7. It can also
be justified here as a Frank elasticity type term [40]. We will
use an artificially larger diffusion constant of D̂ ∼ 10−4, as this
makes the number of spatial grid points smaller. However, the
phenomenological effects are the same for smaller diffusion
constants.

III. SIMPLE SHEAR FLOW

We are interested in the creeping flow limit here, where
the Reynolds number is small. From the parameters given in
Sec. II B we estimate Re ≈ ρvL/η ≈ 0.01. In this case the
equation of motion reduces to

∇ · 
 = 0. (13)

The isotropic pressure can be determined from the incompress-
ibility condition ∇ · v = 0, where v is the velocity field.

To analyze the behavior of the ND model we consider its
response in a simple shear flow geometry. We will assume that
the fluid is held between parallel plates at y = 0 and y = 1.
The fluid velocity will be of the form v = v(y,t)x, and the local
shear rate

γ̇ (y,t) = ∂yv(y,t). (14)

Using Eqs. (9) and (13), we find that


xy(t) = σxy + εγ̇ , (15)

where 
xy(t) is the total shear stress and is independent of
spatial coordinates. We will use Eq. (15) in the fixed shear
stress case later to substitute for the local shear rate.

As a result of the shear flow geometry the stress component

zz decouples from the other components, so we will ignore it
here. We will also assume that the director remains in the xy

plane. This is a reasonable assumption as the shear force only
acts in the xy plane, so there is no force to move the director
out-of-plane. Assuming that n is the eigenvector of W with
the largest eigenvalue λ (for mechanical stability when r > 1),
then the remaining equations can be written as

Ẇxx − D∂2
yWxx = 2Wxyγ̇ + 2(1 − [�−1 · W]xx), (16)

Ẇyy − D∂2
yWyy = 2(1 − [�−1 · W]yy), (17)

Ẇxy − D∂2
yWxy = Wyyγ̇ − 2[�−1 · W]xy, (18)

where �−1 · W = W + ( 1
r

− 1)λnn. The components of this
dot product give rise to the nonlinear behavior of this model.

A. Eigenbasis equations

Calculating the properties of the ND model in the steady
state and for a homogeneous system (D = 0) is simplified if
we work in the basis of the director, n. In two dimensions, we
can write the director and its perpendicular component as

n = (cos θ, sin θ ), (19)

n⊥ = (− sin θ, cos θ ), (20)

⇒ W = W1nn + W2n⊥n⊥. (21)

The equations for W1,W2, and θ can be found from Eq. (12) by
resolving along nn, n⊥n⊥, and nn⊥. The constitutive equations
become

Ẇ1 = 2 − 2W1

r
+ W1γ̇ sin 2θ, (22)

Ẇ2 = 2(1 − W2 − W2γ̇ cos θ sin θ ), (23)
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θ̇ = γ̇ [(W2 − W1) + (W2 + W1) cos 2θ ]

2(W1 − W2)
. (24)

The components of W can be interpreted as the extension of the
conformation tensor along the director W1 and perpendicular
to the director W2. Note that since the director is a quadrupolar
object, the angle θ and θ + π correspond to the same physical
state.

B. Steady state

The steady-state behavior of the homogeneous ND model
for imposed shear rate has been solved in the large shear rate
limit γ̇ → ∞ by Maffettone and Marrucci in Ref. [2]. We
solve the elastic limit in Appendix A and discuss the small
amplitude and the small amplitude oscillatory shear response
in Appendix B. In this section we give an exact solution of the
steady-state equations for the stress. First we substitute for σ

from Eq. (8) into Eqs. (16), (17), and (18), which in the steady
state with D = 0 gives

σxx = (1 + γ̇Wxy), (25)

σyy = 1, (26)

σxy = γ̇Wyy

2
. (27)

Then to determine the three components of W we use the trace
and determinant of Eq. (8) and the fact that σ and W must
commute, i.e.,

tr(W) − rσ1 − σ2 = 0, (28)

det(σ )r − det(W) = 0, (29)

W · σ = σ · W, (30)

where σ1 and σ2 are the eigenvalues of σ . Solving these
equations for the components of W yields

Wxx = (1 + r2)(2 + rγ̇ 2)

2(1 + r)
+ (r − 1)

√
rγ̇

2

√
4 + rγ̇ 2, (31)

Wyy = 2r

1 + r
, (32)

Wxy =
√

r

2

(√
rγ̇ + r − 1

r + 1

√
4 + rγ̇ 2

)
. (33)

Hence, the total shear stress in the steady state is


xy = γ̇ r

r + 1
+ εγ̇ . (34)

Shear banding in the steady state is predicted in models that
have a nonmonotonic constitutive curve, i.e., ∂γ̇ 
xy < 0 [41].
The ND model has a linear stress-shear rate behavior, therefore,
there is no expectation of spatially inhomogeneous flow in the
steady state.

The equilibrium value of the director angle with respect
to the x axis, θ , can be found from the eigenbasis Eqs. (22),
(23), and (24). In the steady state we set θ̇ = Ẇ1 = Ẇ2 = 0.
Solving Eqs. (22) and (23) for W1 and W2 as functions of γ̇

and inserting the result into Eq. (24) gives

(r + 1) cos 2θ = (r − 1) + rγ̇ sin 2θ. (35)

Let t = tan θ , in terms of which cos 2θ = (1 − t2)/(1 + t2)
and sin 2θ = 2t/(1 + t2), which gives a quadratic for t :

2rt2 + 2rγ̇ t − 2 = 0, (36)

i.e.,

tan θ = − γ̇

2
±

√(
γ̇

2

)2

+ 1

r
. (37)

A linear stability analysis can be used to determine which of
these solutions is stable under shear flow. Suppose that only θ

varies and W1, W2 remain fixed at their steady-state values (cor-
responding to rotating the polymer around its steady state, but
not stretching it). In this case the negative solution is only stable
for large values of γ̇ > 0, whereas the positive solution is stable
for all values of γ̇ > 0. Swapping to γ̇ < 0 results in changing
over the stability of the two solutions. We find the positive root
occurs in the steady state in our numerical calculations.

IV. LINEAR STABILITY ANALYSIS

Linear stability analysis (LSA) of the constitutive equations
has been used to determine whether the homogeneous state
is unstable to the formation of spatial structure, in particular,
shear bands. For example, this has been done for the diffusive
Johnson-Segalman model in the steady state [42]. LSA of
spatial perturbations around the time-dependent transient state
for start up flow of the diffusive Johnson-Segalman and the
diffusive Rolie-Poly models [43] have been carried out [23,37].
Moorcroft and Fielding have developed a criterion to detect
transient shear banding of complex fluid flow based on LSA
[25,26]. We will use the eigenvalues obtained from a LSA here,
rather than the criterion of Moorcroft and Fielding as some of
the assumptions required in the derivation are not satisfied for
the ND model. In particular, the determinant of the stability
matrix changes sign, and the eigenvalues can appear in complex
conjugate pairs. This is discussed in Appendix D.

We give a brief summary here of the relevant stability
analysis using the notation of Ref. [25]. The constitutive
Eqs. (16), (17), and (18) can be rewritten in terms of s =
(Wxy,Wxx,Wyy) as

∂ts = Q(s,γ̇ ) + D∂2
y s, (38)

where Q is the function that specifies the constitutive model.
The total shear stress is given by


(t) = f (s) + εγ̇ , (39)

where f (s) is determined by the dot product of W and �−1

by Eq. (8). Assuming that s obeys the Neumann boundary
condition ∂ys = 0 at y = 0 and L, then the spatial fluctuations
in s and γ̇ about their homogeneous values can be written as

γ̇ (y,t) = γ̇0(t) +
∞∑

n=1

δγ̇n(t) cos(nπy/L), (40)

s(y,t) = s0(t) +
∞∑

n=1

δsn(t) cos(nπy/L), (41)
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where δsn and δγ̇n are the Fourier coefficients for the fluctua-
tions, and γ̇0 and s0 are the homogeneous base states. We will
examine the stability under two different conditions: step shear
stress, in which the total shear stress 
 is held fixed, and step
shear rate, in which the average shear rate γ̇ is held fixed. The
stability of the system to spatial fluctuations can be obtained
from first calculating the base state s0(t), which is obtained
from the zeroth order equations (no fluctuations):


0(t) = f (s0(t)) + εγ̇0(t), (42)

ṡ0 = Q(s0,γ̇0). (43)

To find the fluctuations around this base state, δsn, we use the
first-order equations:

0 = p · δsn + εδγ̇n, (44)

δ̇sn = M(t) · δsn + qδγ̇n, (45)

where M = ∂sQ, p = ∂sf (s), and q = ∂γ̇ Q. Combining these
two equations gives

δ̇sn = P · δsn, (46)

where

P(t) =
(

M(t) − 1

ε
qp

)
. (47)

The eigenvalues of the matrix P determine whether fluctuations
grow or shrink. If the real part of an eigenvalue of P is positive
then the fluctuations along the corresponding eigenvector will
grow with time. Conversely, if they have negative real part then
the fluctuations will decay with time. We will denote real part
of the eigenvalue with largest real part as ω.

A. Step shear stress

The fluid starts in an equilibrium state at t = 0, and is
subjected to a step xy shear stress of magnitude 
0. The
homogeneous shear rate that arises in response to this stress,
γ̇0(t), can be calculated by numerical solution of the ordinary
differential Eqs. (16), (17), and (18) (setting D = 0) and
substituting for γ̇ using

γ̇ = (
 − σxy)

ε
, (48)

where σxy can be found in terms of W from Eq. (8). LSA gives
us the condition for the development of spatial fluctuations.
The fluctuations around the base state obey Eq. (46). These
fluctuations obey the same dynamical equation as the base state
s0, so it can be shown that the condition for the growth of
fluctuations is [23]

d2γ̇0

dt2
/
dγ̇0

dt
> 0, (49)

i.e., we are looking for both upward sloping and upward curv-
ing shear rate, or downward sloping and downward curving
shear rate. The numerical results of this calculation can be
most easily understood by plotting the shear rate as a function

of strain, since γ̇ = γ̇ (γ ), for different total stress values. This
condition can be converted to strain to give

dγ̇

dγ
> 0 and

d2γ̇

dγ 2
> − 1

γ̇

(
dγ̇

dγ

)2

(50)

or

dγ̇

dγ
< 0 and

d2γ̇

dγ 2
< − 1

γ̇

(
dγ̇

dγ

)2

. (51)

The negative sloping and negative curvature condition is
observed in the ND model (Moorcroft and Fielding comment
that it is not observed in Giesekus or the Rolie-Poly model
[25]). Note that the condition in strain variables here requires
that the curvature with respect to strain be more negative for
more steeply sloped curves as compared to the corresponding
situation with positive curvature. This is evident in the follow-
ing numerical calculations.

The constitutive equations in the eigenbasis for the ND
model were solved using the NAG C library d02ejc [44]. This
is an implementation of variable-step backward differentiation
formulas for stiff ordinary differential equations. The stability
of the system is sensitive to the initial orientation of the director
θ0. For prolate polymer conformation (r > 1) the director rot-
ates towards the stable solution of Eq. (37). For director
angles close to the stable solution there is no flow instability
predicted by LSA. However, if the director angle is close to
the unstable solution of Eq. (37) then there is a sharp peak in
γ̇0. Figure 1(a) shows the shear rate as a function of strain
for a variety of different total shear stresses, with a fixed
starting angle of θ0 = 2.4. The unstable regions of this curve
are highlighted with a dashed line. Note that there are small
regions of negative curvature that are unstable for the ND
model. However, the instability arising from the preceding
upward sloping and upward curving region of the shear rate
would result in an inhomogeneous velocity profile, and make
the underlying assumption of a spatially homogeneous state
for subsequent regions of the curve invalid.

The peak in the strain can be understood from Eq. (48). As
a result of the flow there is a component of the flow field that
gradually rotates the director. However, due to the alignment of
the director the corresponding polymer shear stress component
σxy gradually falls to zero as the director rotates, and so to
maintain the fixed stress condition the shear rate γ̇ increases.
The peak in the shear rate occurs when σxy = 0, where γ̇ =

/ε. This expression corresponds to the peaks in strain rate in
Fig. 1(a). The associated realignment of the director is shown
in Fig. 1(b). The rapid reorientation of the director results in
a stable angle of the director from Eq. (37), and resolves the
unstable flow.

The shear flow distorts the equilibrium polymer shape as
the flow progresses. Initially, the average conformation of the
LCPs are prolate spheroids with their long axis parallel to the
director. However, for the LCPs in Fig. 1 they are compressed
along n (i.e., W1) and elongated in the perpendicular direction
(i.e.,W2), storing elastic energy, before reorientation [Figs. 1(c)
and 1(d)]. The rotation of the director then allows the polymers
to release this elastic energy, and the flow field continues to
stretch the polymers along the director.
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FIG. 1. The evolution of the ND model assuming homogeneous flow, for fixed applied stress, θ0 = 2.4, ε = 0.01, and r = 2. Panel (a)
shows the strain rate evolution. The solid black lines are stable flow, and the dashed regions are unstable. The blue long dashing has dγ̇ /dγ > 0,
and the red dashed region has dγ̇ /dγ < 0 [Eq. (50) and (51)]. Panel (b) shows the evolution of the director angle, and panels (c) and (d) show
the W2 and W1 components of the polymer shape tensor. Note that panel (d) shows that W1 shrinks before the director rotation, corresponding
to compressing the polymers along their long axis. After rotation the polymers are then extended by the shear flow.

The instability is sensitive to the initial orientation of the
director. Figure 2 shows the region of instability as a function
of initial angle θ0 and γ for 
 = 0.1. The correspondence
to Fig. 1 can be seen with the two bands for small strains
corresponding to the leading and trailing edges of the peak in
shear rate. The instability is strongest when the initial director
angle is pointed away from the flow direction. Note that the
initial angle θ0 where there is a cusp as a function of strain

−1.0 −0.5 0.0 0.5

log10 γ

1.0

1.5

2.0

2.5

3.0

3.5

θ 0

FIG. 2. The stability of the homogeneous state at fixed stress with

 = 0.1, r = 2, ε = 0.01 as a function of initial angle of the director
θ0 and shear strain γ . The shaded area shows

...
γ /γ̈ > 0, with light

gray for (γ̇ ,
...
γ ) > 0 and dark gray for (γ̇ ,

...
γ ) < 0. The dashed (red)

line shows the maximum strain of the soft mode of an LCE in Eq. (53).

corresponds to θ̇ = 0 in the constitutive equations [Eqs. (22),
(23), and (24)].

1. Relation to soft elasticity

The shape of the shaded unstable regions in Fig. 2 can be
understood by comparing them with the equilibrium model
of liquid crystalline elastomers (LCEs), which is obtained in
the elastic limit of the ND model. In this case an analytical
expression for the expected value of this strain of the soft mode
can be calculated from the trace formula used to describe LCEs.
The free energy, F , here is given by

F = 1
2μTr[λ · �0 · λ · �−1], (52)

where μ is the shear modulus, λ is the deformation matrix,
�0 = I + (r − 1)n0n0 is the initial polymer shape tensor, and
� = I + ( 1

r
− 1)nn is the current polymer shape tensor [32].

We set n0 = (cos θ0, sin θ0,0), n = (cos θ, sin θ,0), and λ =
I + x̂ŷγ0. The free energy F is then minimized with respect to
θ for a fixed strain γ0 and initial angle θ0. It can be shown that
this expression has minimum in F for γ0 = 0 and

γ0 = 2(r − 1) sin 2θ0

(r − 1) cos 2θ0 − (r + 1)
. (53)

For the initial conditions in Fig. 1, this expression gives a value
of log10γ0 ≈ −0.15, which coincides with the peak in the shear
rate in Fig. 1.
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FIG. 3. The evolution of (a) the total stress, (b) maximum eigenvalue ω, and (c) director angle for an imposed shear rate γ̇0 = 0.1, polymer
anisotropy r = 2 and initial director orientations of θ0 = −0.6,0.0,0.6 (black solid, red dotted, and blue dashed lines, respectively).

Equation (53) predicts that the position of the peak in the
strain rate depends on the initial angle θ0. A contour of the
strain as a function of the initial angle, θ0 is shown in Fig. 2.
The maximum amplitude of γ0 corresponds to the cusp shown
in this figure.

B. Step shear rate

We now consider a step shear rate experiment. The fluid
starts in its equilibrium state at t = 0 and is then subjected
to a shear rate γ̇ for t > 0. The stability of the homogeneous
base state to spatially inhomogeneous flow can be found by
analyzing the eigenvalues of the matrix P given in Eq. (47).
The behavior of the fluid for starting angles of θ0 = 0.6,0.0,
and −0.6 are shown in Fig. 3. The total shear stress is
monotonically increasing for θ0 = 0 or 0.6, and ω remains
negative for all values of shear strain. No radical change
of the director orientation is required here. However, for
θ0 = −0.6 ≡ π − 0.6 the director undergoes a large rotation
towards the flow direction [solid black line in Fig. 3(c)].
During the rotation there is a drop in the shear stress, and
a simultaneous spike in the value of ω, a sign of a spatial
instability. This indicates that small perturbations of polymer
stress components around the homogeneous base state should
grow here. One difficulty with this eigenvalue analysis is that
we do not know for how long or how positive the eigenvalues
must be to cause a spatial instability. Previous analysis has
looked at the integrated area of the positive region of ω [23];
however, this is not particularly instructive. For larger values
of shear rate the total stress dips to negative values for the
homogeneous state. This is typical of the behavior of LCEs
during their deformation.

An alternative method of determining the stability of the
fluid to fluctuations for imposed shear rate is presented in
Appendix C. The properties of the eigenvalues of this system
of equations make it difficult to use the stability criterion
of Moorcroft et al. [25]. These properties are discussed in
Appendix D.

V. SPATIALLY RESOLVED MODEL

To understand the nature of the instabilities predicted from
LSA we will solve the constitutive equations in Eq. (16),
(17), and (18) for the 1D case of a planar shear between

two infinite plates at y = 0 and y = 1. We will use Neumann
boundary conditions at y = 0,1 ∂Wαβ

∂y
= 0 ∀α,β for W, while

we will assume no wall slip and no penetration of the particles
through the wall for the velocity, i.e., v = v(y,t)x. The effect
of changing the boundary conditions in shear banding systems
has been explored elsewhere [40].

In the creeping flow approximation we ignore inertia, so
force balance reduces to Eq. (13). Since we only have spatial
variation in the y-direction (i.e., ∇ ≡ ŷ ∂

∂y
) then integrating

Eq. (13) with respect to y gives 
xy(y,t) = σxy + εγ̇ = f (t),
i.e., the total shear stress is the same at all points across the
gap, though it can vary with time. We will use this condition
in the fixed average shear rate case to calculate the local shear
rate as follows:


xy(t) = σxy + εγ̇ = σxy + εγ̇ , (54)

where the bar denotes the spatial average,

γ̇ =
∫ 1

0
γ̇ (y,t)dy. (55)

For a fixed total shear stress 
xy the local shear rate is given
by

γ̇ (y,t) = [
xy − σxy(y,t)]/ε. (56)

The inhomogeneity that arises in the flow field can be
quantified in many different ways, such as the difference
between the maximum and minimum shear rates: γ̇max − γ̇min

[23]. We use here a more robust measure of the inhomogeneity
that does not depend so critically on just two values of the shear
rate:

�γ̇ =
∫ 1

0
|γ̇ (y) − γ̇ |dy. (57)

For a system with a uniform shear rate this will be zero, and it
will be positive for nonuniform shear rate profiles.

A. Numerical scheme

For numerical solution of Eqs. (16), (17), and (18) we use
a finite difference scheme with two staggered uniform grids
each with spacing �y, yn = y0 + n�y. We use the full points
y0,y1 . . . yN for the velocity field vx(y,t) and the half-points
y1/2,y3/2 . . . yN−1/2 for W, σ and γ̇ .
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To integrate from time n�t to (n + 1)�t , we first use the
values of W (n)

xx ,W (n)
xy ,W (n)

yy at the current time-step n�t to
calculate the values of γ̇ (n)(yi/2,n�t) with Eq. (54) for the fixed
strain rate, and Eq. (56) for the fixed stress case. These are then
used in the finite difference form of the constitutive equations,
which are integrated forward in time using the Crank-Nicolson
algorithm [45] to obtain W (n+1)

xx ,W (n+1)
xy ,W (n+1)

yy at the new
time-step. In addition the values of γ̇ (n)(y,t) are integrated spa-
tially to obtain the velocity at each full grid point v(n)

x (yi,n�t).
For our chosen value of D̂ = 10−4 we expect a shear band

to have a thickness l ≈
√
D̂ = 10−2. To have roughly 10 grid

points on the interface we should then have �y � 10−3; i.e.,
we need N � 103 grid points. We have tested our algorithm for
convergence as we change both �t and �y. To obtain stable
and accurate results we find we need �t ≈ �y2/(10D̂) ≈
10−3.

B. Initial conditions

The initial conditions have a dramatic effect on the evolution
of the system, because they are amplified dramatically as a
result of the flow instability. A small noise term was used to
seed the initial configuration to make the calculations more
reproducible. The noise was set using Fourier harmonics
with random amplitudes. High-frequency harmonics result in
many interfaces developing, and a more complicated spatial
structure, which eventually becomes uniform as the system
evolves. To keep the spatial structure simple we used the

following initial condition in start up from the relaxed state,

W = �0 + Uxy(x̂ŷ + ŷx̂), (58)

with the perturbing noise term

Uxy = ξ cos
πy

L
. (59)

It was found that a noise amplitude of ξ = 10−2 was adequate
to trigger the instability reliably.

Note that the equations solved here are for a parallel plate
rheometer. The curvature of the rheometer has been included
elsewhere and is found to break the symmetry of the system
and determine where the high and low shear rate bands form
[40].

C. Imposed average shear rate

The typical results of the calculation for imposed average
shear rate are shown in Fig. 4 for γ̇ = 0.1, for an initial director
angle of θ0 = −0.6, i.e., with the director tilted away from the
flow direction. The shear stress in the spatially resolved model
in Fig. 4(a) follows the homogeneous calculation initially.
Once the director rotation starts then there is a sharp dip in
the shear stress, where the spatially resolved model and the
homogeneous model start to differ. The spatial shear rate then
becomes inhomogeneous as shown by �γ̇ in Fig. 4(c). This
coincides with the maximum eigenvalue of the stability matrix,
ω. The velocity profile is shown in Fig. 4(b) for various shear
strain values indicated in Fig. 4(a). They show a high strain rate
band propagating across the rheometer gap. The high shear rate
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FIG. 4. Spatially resolved model for imposed average shear rate γ̇ = 0.1, polymer anisotropy r = 2, and initial director angle θ0 = −0.6.
(a) Shear stress as a function of shear strain, (b) velocity profile as a function of position y at the time points labeled 1–5 in (a). The maximum
real part of the eigenvalues, ω, as a function of time (right hand y axis), and shear rate inhomogeneity �γ̇ (left hand y axis) are shown in (c).
The director angle is shown in (d) for the corresponding lines shown in velocity profile plot (b).
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(a) t = 0.64, γ = 6.4 (b) t = 7.0, γ = 0.7

(c) t = 9.0, γ = 0.9 (d) t = 11.5, γ = 1.15
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0 0.02 0.04 0.06 0.08 0.1
v

0 0.02 0.04 0.06 0.08 0.1
v
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FIG. 5. An illustration of the velocity profiles for imposed average
shear rate ¯̇γ = 0.1, and initial director orientation θ0 = −0.6. The
velocity field and the orientation of the director are shown as a function
of space various for different time points in (a–d). The regions with
the director pointing in the flow direction are shown with dark (red)
shaded ellipsoids, and those with the director oriented away from the
flow direction are shown in light gray.

region corresponds to the rotation of the director as can be seen
from Fig. 4(c).

This picture is shown more clearly in Fig. 5. Here the poly-
mer conformation tensor W is represented by an ellipsoid. This
illustrates the director orientation, and the local anisotropy. At
the onset of rotation shown in Fig. 5(a) almost the whole fluid
becomes stationary, and a high strain rate region develops next
to the wall. This high strain rate region propagates across the
rheometer rotating the director. After the director has rotated
the local strain rate drops dramatically, resulting in plug flow.

The mechanics of the director rotation can be seen clearly
by plotting the director angle and the shear stress on the same
axes, as shown in Fig. 6. The polymer component of shear
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FIG. 6. The spatial dependence of the director angle, the polymer
stress σxy for average shear rate γ̇ = 0.1, with initial condition θ0 =
−0.6, at the time point t = 1.0, γ = 10.0. Note that there is a sharp
drop in the polymer stress where the director rotation occurs.
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FIG. 7. The position in the gap y of the boundary between the
region where the director points in the flow direction (0 < θ < π/2)
as a function of strain γ for initial director orientation θ0 = −0.6, for
different values of imposed average shear rate γ̇ shown on plots (a–d).
Note that for high average shear rates the rotation of the director is
almost simultaneous for all y.

stress σxy drops dramatically at spatial point where the director
is rotating. This drop in stress during director rotation is typical
of liquid crystalline polymer systems. The total stress across
the sample is fixed, so there is a corresponding rise in the
shear rate, and hence the viscous component of the shear
stress. The highly sheared region propagates across the gap
causing director rotation. The director rotation is particularly
pronounced when γ̇ ∼ 1. For much higher shear rates the
rotation front propagates very rapidly across the sample, and
director rotation occurs simultaneously for all values of y. This
is the elastic limit of the ND model. A range of flow behavior
is shown in Fig. 7, where the boundary between the rotated and
the unrotated director regions is illustrated.

For higher shear rates the flow profile can show recoil
behavior. This is shown in Fig. 8 for γ̇ = 1. At the onset
of director rotation the drop in the shear stress from rotation
requires a negative velocity in the rest of the sample to produce
the required shear rate. The interface between the rotated
and the unrotated phases is much more sharply defined here,
resulting in plug flow—i.e., the whole rotated phase moves
with the same velocity.

D. Imposed shear stress

Typical results of the spatially resolved calculation for fixed
imposed shear are shown in Fig. 9. Here Fig. 9(a) shows the
average shear rate for the spatially resolved and the spatially
homogeneous calculations. They are identical for small strains.
The degree of spatial inhomogeneity can be seen in Fig. 9(b).
Once the velocity profile becomes inhomogeneous then the
shear rates in Fig. 9(a) differ—the spatially resolved system
has a much lower average shear rate. The corresponding
spatial profiles for the velocity and director angle are shown in
Figs. 9(b) and 9(d), respectively. This shows that a high shear
rate front propagates across the rheometer gap, accompanied
by a rotation of the director. Once the director has rotated
to the steady state value, then the average shear rate drops
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(a) t = 0.32, γ = 0.32 (b) t = 0.5, γ = 0.5

(c) t = 0.65, γ = 0.65 (d) t = 0.79, γ = 0.79
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FIG. 8. An illustration of the velocity profiles, and polymer shape
tensor for γ̇ = 1 and θ0 = −0.6. The time of each velocity profile is
shown above each plot (a–d). The regions with the director pointing
in the flow direction are shown with dark (red) shaded ellipsoids,
and those with the director oriented away from the flow direction are
shown in light gray.

sharply and is consistent with the spatially homogeneous
results.

The velocity distribution and the polymer conformation are
also shown in Fig. 10 for a range of different shear strains. Here
it can be seen that the rotation front nucleates at the stationary
plate of the rheometer (y = 0) in Fig. 10(b). This front is
associated with a high shear rate that flips the orientation of the
director. Once the director is rotated, then it has a much lower
velocity.

E. Flow reversal

The flow instability here in start up from rest depends
critically on the initial condition. This is not practical for
experimental systems. However, flow-reversal experiments are
more practical to carry out in LCPs and have observed a
change in the order parameter on flow reversal [14,27]. To
illustrate the behavior of the ND model under flow reversal
the initial conditions were set with the director close to its
steady state value: θ0 = 0.6. A fixed average shear rate of
γ̇ = 0.35 was then applied from t = 0 to t = 14, at which point
it was reversed to γ̇ = −0.35. The results of the calculation
are shown in Fig. 11. The resulting inhomogeneous velocity
profile is very similar to that observed in start up shear—
an inhomogeneous shear rate develops, then a high shear
rate front propagates across the gap coinciding with director
rotation. This may be a more practical experimental test for this
theory.
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FIG. 9. Spatially resolved calculations for imposed total shear stress 
 = 0.1, initial director angle θ0 = −0.6, and polymer anisotropy
r = 2. Panel (a) shows the average shear rate as a function of average shear strain for the spatially resolved and homogeneous calculations.
Panel (b) shows the velocity profiles as a function of position across the gap, y, for the strain values indicated in (a). Panel (c) shows the measure
of inhomogeneity in shear rate �γ̇ as a function of average shear strain. Panel (d) shows the director angle as a function of spatial position y

for the corresponding strain values indicated in panel (b).
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(a) γ = 0.42 (b) γ = 0.55

(c) γ = 0.73 (d) γ = 0.9
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FIG. 10. The velocity profiles at different values of average strain,
γ for an imposed total shear stress 
 = 0.1, and initial director
orientation θ0 = −0.6. The ellipsoids indicate the conformation of the
polymer. The angle of the principal axis corresponds to the director
orientation. The regions with the director pointing in the flow direction
are shown with dark (red) shaded ellipsoids, and those with the
director oriented away from the flow direction are shown in light
gray.

VI. DISCUSSION

The ND constitutive model is a logical extension of
the upper convected Maxwell (UCM) model, and describes
semiflexible LCPs, i.e., where each polymer chain can be
distorted by the flow field. The calculations presented here
show that this model has a transient flow instability to the
formation of an inhomogeneous velocity profile under certain
initial conditions. Its behavior is qualitatively different to the
shear banding observed in models that describe wormlike
micellar solutions and polymer solutions, such as the diffusive
Johnson-Segalmann (DJS) model [46], and the Vasquez-Cook-

0.0
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FIG. 11. The velocity profiles for flow-reversal protocol with
γ̇ = 0.35 for t � 14 and then γ̇ = −0.35 for t > 14.0. The lines
labeled (a)–(e) correspond to t = 13.0,16.1,16.4,16.8,16.9, and
20.0, respectively. A solid line indicates that the director angle
θ > π/2 and a dashed line indicates that θ < π/2.

McKinley (VCM) model [47]. These models are constructed to
have shear banding in the steady state through a nonmonotonic
constitutive curve. The flow forms two bands—a high shear
rate aligned phase and a low shear rate isotropic phase—with
the average shear rate imposed on the system. The position
of the interface between the two bands lies at the selected
stress [41]. The transient velocity profiles in models of polymer
solutions such as the diffusive Rolie-Poly (DRP) model [22]
does not require a nonmonotonic constitutive curve but still
has the same form of a high shear rate and a low shear rate
band. A criterion for the selected stress has not been found for
transient shear banding systems.

The ND model has a monotonic constitutive curve but
exhibits a different type of inhomogeneous velocity profile
to transient shearbanding in the DRP model. A high shear
rate front propagates across the rheometer gap and induces
director rotation. The width of the interface between the high
and low shear rate regions is proportional to

√
D. This has been

confirmed by numerical calculations. This model is dominated
by the elasticity of the polymer chains, hence the defect
dynamics have no effect on the director distribution as observed
in models of rodlike LCPs [15]. The ND model may exhibit
even richer behavior in higher dimensions, such as banding in
the vorticity direction as well as the gradient direction, as has
been found in the DJS model [48].

There is both experimental evidence of mechanically in-
duced phase transition in LCPs [49] and consistent theoretical
calculations [50,51]. For semiflexible LCPs the calculations
here suggest that measurement of the order parameter should
be done in such a way as to avoid averaging over the spatial
variation in the director induced by the flow. This could arise
if the measurements are taken by averaging across the gradient
direction in the rheometer, for example, by x-ray scattering
with the beam passing through a Couette rheometer along the
radial direction. A possible experimental test for this model
is to use particle-tracking velocimetry to measure the velocity
distribution during start up flow or a flow-reversal experiment.
This experiment would reveal the inhomogenenous velocity
profile predicted by the ND model.

The dynamics of the director rotation in this model are
closely related to the formation of microstructure in liquid
crystal elastomers [28]. Here the typical geometry is an elon-
gational deformation. Stripe domains of alternating rotation
in the director field form. Imposed elongational flow in the
ND model might produce microstructure with similar striped
domains in the velocity profile.

Using mixtures of oblate and prolate chains could be
modelled using the ND model to create LCPs with a tuneable
flow aligning behavior [52].

VII. CONCLUSION

We have analyzed the nematic dumbbell model of Marrucci
and Maffetone [2] with an additional polymer diffusion term,
and a Newtonian solvent term. By using a linear stability
analysis we determined the effect of spatial perturbations
in the polymer stress components. These calculations were
performed for both fixed shear strain rate and fixed total shear
stress. For initial conditions where the director is rotated away
from the flow direction linear stability analysis shows that
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it is unstable. Spatially resolved calculations of the velocity
profile show that there is some spatial structure in the velocity
profile which corresponds to the reorientation of the director
during the flow. The director rotation is confined to a front
that propagates across the gap in the rheometer. For high
imposed shear strain rates, or high total shear stress, the
rotation of the director occurs almost simultaneously across
the whole sample. These calculations suggest that investigation
of the spatial structure of the velocity field in the rheology
of semiflexible flow aligning liquid crystalline polymers may
yield interesting results. One possible experimental test of this
prediction is to use particle-tracking velocimetry to measure
the velocity profile of semiflexible liquid crystalline polymers
across the gap of a couette rheometer during a start up shear
experiment.

APPENDIX A: ELASTIC LIMIT

In the limit t � τ⊥, the response of the system to an imposed
shear strain should be purely elastic. We can thus ignore the
viscous terms in Eq. (9). The constitutive equations are then

Ẇxx = 2Wxyγ̇ , (A1)

Ẇyy = 0, (A2)

Ẇxy = Wyyγ̇ . (A3)

Integrating these equations for a constant shear strain rate we
obtain

Wxx(t) = Wxx(0) + 2γ (t)Wxy(0) + γ (t)2Wyy(0), (A4)

Wxy(t) = Wxy(0) + γ (t)Wyy(0), (A5)

Wyy(t) = Wyy(0), (A6)

where the strain is given by γ (t) = γ̇ t . The director at a
strain γ is denoted by n = (cos θ, sin θ ) and is the eigenvector
associated with the largest eigenvalue of W; it is simple to
show that θ satisfies

tan 2θ (t) = 2Wxy(t)

Wxx(t) − Wyy(t)
. (A7)

For the initial values we assume a nematic with anisotropy r

and initial director aligned along n0 = (cos θ0, sin θ0), thus:

Wxx(0) = 1 + (r − 1) cos2 θ0, (A8)

Wxy(0) = (r − 1) sin θ0 cos θ0, (A9)

Wyy(0) = 1 + (r − 1) sin2 θ0, (A10)

using these values and solutions for Wxx(t), Wxy(t), and Wyy(t)
above we obtain the dependence of the angle θ on the shear
strain γ in the elastic limit

tan 2θ (γ ) =
sin(2θ0) − γ cos(2θ0) + γ (r+1)

(r−1)

(1 − γ 2/2) cos(2θ0) + γ sin(2θ0) + (r+1)
(r−1)

γ 2

2

.

(A11)
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FIG. 12. Reorientation of a dumbbell initially aligned along the
flow direction in response to a shear strain γ for various values of
γ̇ τ⊥. The elastic limit (shown by the solid black line) corresponds to
γ̇ τ⊥ → ∞.

This limit should describe the reorientation of the director for
strains less than γ ∼ γ̇ τ⊥. In Fig. 12 we plot the reorientation
of a nematic with θ0 = 0 for various values of γ̇ as a function
of strain γ . As can be seen for small strains, the reorientation
follows the elastic limit (black line), but for strains γ � γ̇ τ⊥
we start to see deviations from the elastic limit as stress begins
to relax viscously.

APPENDIX B: SMALL STRAIN RESPONSE

We work here in two dimensions, writing the director and
its perpendicular component as

n = (cos θ, sin θ ), (B1)

n⊥ = (− sin θ, cos θ ), (B2)

⇒ W = (r + δ)nn + (1 + ε)n⊥n⊥, (B3)

where δ and ε are the leading order changes in the diagonal
components for small amplitude shear. We will apply a velocity
gradient given by K = γ̇ x̂ŷ. The components of the constitu-
tive equations can then be calculated by taking the appropriate
dot products n · W · n, n · W · n⊥, and n⊥ · W · n⊥. Using this
basis results in the following equation for the polymer stress
σ = �−1 · W:

σxy = δ − rε

2r
sin 2θ, (B4)

and the following equations result from the components of the
constitutive equation:

δ̇ = −2δ

rτ
+ γ̇ (r + δ) sin 2θ, (B5)

ε̇ = −2ε

τ
− γ̇ (1 + ε) sin 2θ, (B6)

θ̇ = 1

2
γ̇

1 − r − δ + ε + (1 + r + δ + ε) cos 2θ

r + δ − 1 − ε
. (B7)

These can be solved to find the leading-order response
for small deviations of θ from its starting orientation θ =
θ0 + ξ under oscillatory shear strain γ (t) = γ0 sin ωt . In this
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case,

ξ̇ ≈ γ0(1 − r + (1 + r) cos 2θ0)

2(r − 1)
ω cos ωt (B8)

− γ0δω cos ωt
cos 2θ0

(r − 1)2
+ γ0εω cos ωt

r cos 2θ0

(r − 1)2
(B9)

− ξγ0ω cos ωt
(r + 1) sin 2θ0

r − 1
. (B10)

Note that when cos 2θ0 = r−1
r+1 , then the leading order in ξ is

zero.
Leading-order response is

ξ (t) = γ0(1 − r + (1 + r) cos 2θ0)

2(r − 1)ω
ω sin ωt. (B11)

Substituting this back into the equations for δ and ε, we find the
leading-order response for the shear stress in the limit t → ∞
(after the transient has dissipated),

σxy = γ0ω sin2 2θ0

(4 + ω2)(4 + r2ω2)
× {ω[2 + r2(2 + ω2)] sin ωt

+(1 + r)(4 + rω2) cos ωt}. (B12)

We can extract the storage and loss modulus from Eq. (B12):

G′(ω) = ω2[2 + r2(2 + ω2)]

(4 + ω2)(4 + r2ω2)
sin2 2θ0, (B13)

G′′(ω) = ω(r + 1)

4 + ω2
sin2 2θ0. (B14)

Note this material becomes soft (i.e., G′ = G′′ = 0) when θ0

is small, but the analysis is not valid for θ0 = 0,π/2. This is
the soft elastic response observed in LCEs as a result of the
rotation of the director [32]. The isotropic results r = 1 of the
upper convected Maxwell model can be recovered by setting
θ0 = π/4 and r = 1.

When θ0 = 0, then the response becomes much softer and
is no longer sinusoidal:

σxy = γ 3
0 ω cos ωt

(r − 1)2(1 + ω2)(1 + r2ω2)

×{ω[1 + r2(1 + 2ω2)] sin 2ωt

+(1 + r)(1 + rω2) cos 2ωt}. (B15)

The material has no linear response regime here due to the
soft rotation of the director. This contains both the ωt and 3ωt

harmonics at the same order inγ0. This degeneracy in the model
could be removed by including the response of the Newtonian
solvent term, or by modifying the constitutive equation of the
LCP to include imperfections such as the dispersity of the
anisotropy as has been done for semisoft LCEs.

For larger amplitude oscillatory shear the response is non-
linear due to the rotation of the director during the flow.

APPENDIX C: INTEGRATION OF FLUCTUATIONS

The extent of the growth in fluctuations during the shear flow
can be measured using the shear rate fluctuations from Eq. (44).
We can integrate the result over time (or equivalently strain).
This approach was followed in Ref. [25]. The solution of the
constitutive equations was first calculated in the eigenbasis.
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−1.0 −0.5 0.0 0.5 1.0 1.5 2.0
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0
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log10 γ

FIG. 13. The integrated fluctuation in the shear rate δγ̇ from
Eq. (44) for θ0 = −0.6. The lines correspond to log10 δγ̇ =
−1,1,3,5,7,9, for an initial amplitude of δWij = 10−3.

The LSA was done in the Cartesian basis and the fluctuations
in γ̇ integrated using the initial conditions of δWxx,δWxy , and
δWyy set to 10−3. The NAG C library routine d02ejc was
used to integrate these equations. Figure 13 shows the result
of this calculation for the ND model, for an unstable initial
configuration of θ0 = −0.6. As can be seen from the contours
in this figure the fluctuations grow most strongly for γ̇ ∼ 1. The
cusp running down the contours arises from the change in sign
of δγ̇ during the calculation. The fluctuations eventually decay
away, indicating that the instability in this model is transient,
and the steady state is spatially homogeneous.

APPENDIX D: PROPERTIES OF LSA EIGENVALUES

A general criterion for the determination of the stability of
the flow, for the fixed shear rate case, based on LSA has been
derived in Ref. [25]:

ε − Gp · M−1 · q < 0. (D1)

Some of the assumptions used in developing this criterion are
not satisfied by the ND model. First, it is assumed that the
determinant of M in Eq. (45) obeys (−1)D|M| < 0, where
D is the dimensionality of M. While it can be shown that
the determinant is negative in equilibrium, it does change
sign as the ND model evolves, and it depends on the applied
shear rate. The eigenvalues of M are all real for small values
of γ̇ ≈ 0.1. For larger values of shear rate there is a Hopf
bifurcation and corresponding complex eigenvalues. In this
case, the determinant changes sign from negative to positive
and then back to negative. This behavior of the eigenvalues
means that analyzing the determinant of M (i.e., the product
of the eigenvalues) is not enough to determine if one of them
has changed sign. The real part of two of the three eigenvalues
could change sign simultaneously (in the Hopf bifurcation)
and leave the sign of the determinant unchanged. Second, the
determinant of P of Eq. (47) also shows a Hopf bifurcation.
Figure 14 shows the eigenvalues of P. The shading here shows
that there are regions of 0, 1, or 2 eigenvalues that have
positive real part respectively. Some of the regions with 0 or 2
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−2 −1.5 −1 −0.5 0 0.5

log10 γ

−1

−0.5

0

0.5

1

1.5

2
lo

g
1
0

γ̇

FIG. 14. This figure shows the number of eigenvalues of the
stability matrix P in Eq. (47) with positive real part for imposed
average shear rate γ̇ = 0.1 and θ = −0.6. White corresponds to 0
eigenvalues with positive real part, light gray to 1, and dark gray to 2.
The black lines enclose the region where there is a Hopf bifurcation,
i.e., two eigenvalues are complex conjugates pairs.

eigenvalues of positive real part can have complex conjugate
pairs of eigenvalues—a Hopf bifurcation. These regions are
indicated by the black line.
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FIG. 15. The shaded region shows where the maximum eigen-
value of P has a positive real part. The change in stability at γ = 0
can be found from the θ̇ equation. The cusp for large γ is the unstable
result from the steady-state equation.

Figure 15 shows the dependence of the maximum real part
of the eigenvalue on the starting angle, θ0. The system is
unstable for large strains in the region of θ0 > π/2. There is a
cusp for large strain at an angle corresponding to the unstable
director orientation from the steady state solution.
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