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The aim of the present paper is to provide a quantitative prediction of the stretch-induced crystallization in nat-
ural rubber, the exclusive reason for its history-dependent thermomechanical features. A constitutive model based
on a micromechanism inspired molecular chain approach is formulated within the context of the thermodynamic
framework. The molecular configuration of the partially crystallized single chain is analyzed and calculated
by means of some statistical mechanical methods. The random thermal oscillation of the crystal orientation,
considered as a continuous random variable, is treated by means of a representative angle. The physical expression
of the chain free energy is derived according to a two-step strategy by separating crystallization and stretching. This
strategy ensures that the stretch-induced part of the thermodynamic crystallization force is null at the initial instant
and allows, without any additional constraint, the formulation of a simple linear relationship for the crystallinity
evolution law. The model contains very few physically interpretable material constants to simulate the complex
mechanism: two chain-scale constants, one crystallinity kinetics constant, three thermodynamic constants related
to the newly formed crystallites, and a function controlling the crystal orientation with respect to the chain.
The model is used to discuss some important aspects of the micromechanism and the macroresponse under the
equilibrium state and the nonequilibrium state involved during stretching and recovery, and continuous relaxation.
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I. INTRODUCTION

Firstly observed in 1925 by Katz [1], the stretch-induced
crystallization in natural rubber has a long research history.
Although it also concerns synthetic rubbers, it is now well rec-
ognized that the ability of this biopolymer to crystallize under
stretching is mainly due to the highly regular macromolecular
structure. The transformation of the chain from its amorphous
to crystalline state can be understood from the thermodynamic
viewpoint. When the chain is stretched from its most prob-
able conformation, its alignment results in a decrease in the
conformational entropy. Thus, less entropy is needed to be
sacrificed in the transformation of the chain from its amorphous
to crystalline state. Due to this decrease in total entropy of
fusion, the stretch-induced crystallization is allowed to occur
at higher temperatures than under quiescent conditions. The
process of stretch-induced crystallization has a depth impact
on the mechanical properties, and in particular, it contributes
to superior fatigue properties and crack growth resistance
[2–4] as well as history-dependent mechanical features such
as hysteretic effects [5–13] and continuous relaxation [14–17].
There are considerable qualitative experimental observations
on the stretch-induced crystallization in natural rubber, as re-
ported in recent literature reviews [18–20], but the quantitative
predictive modeling of this fascinating phenomenon is far from
being fully established and remains a challenging task.

A predictive constitutive theory is, indeed, fundamental
to better understanding the relationship between the
thermomechanical response at the macroscale and the stretch-
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induced crystallization at the microscale, for which numerous
phenomena accompanying the material transformation are
still misunderstood. A literature survey shows that there exist
only five recent contributions dealing with this task in rubbers
[21–26] and all the proposed constitutive models can be
distinguished by the restrictive assumptions, the theoretical
approach, and the predictive capabilities. The development
of a rigorous physically based predictive model of this
mechanism has to take into account, within the context of the
thermodynamic framework, the particular chain configuration
by means of the statistical mechanics. In this regard, three
main aspects have to be taken into account such as (i) the
definition of a pertinent single chain configuration that can
be then translated to the chain network, (ii) the derivation of
the chain free energy becoming that of the chain network,
and (iii) the proposition of an appropriate crystallization
kinetics and its evolution law. The second point is the key
element in the thermodynamic formulation of the constitutive
relations between various thermodynamic quantities, and is
related to the microstructural specificities of the rubber gum
by means of the first point. The third point introduces into the
constitutive relationships the microstructural evolution using
either a purely phenomenological evolution law or a more
physically realistic evolution law, its physical consistency
allowing especially to limit the number of parameters with no
direct physical meaning.

The stretch-induced crystallization in a rubber chain was
investigated, using the statistical mechanics and within the
thermodynamic framework, for the first time in 1947 by Flory
in his early work [27]. In his theory, bounded by several
simplifying assumptions, Flory [27,28] considered that the
final partially crystallized chain is achieved from an initially
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fully amorphous chain by two separate and distinct steps,
namely, stretching and crystallization, and the crystallized part
in the chain was assumed to be fully extended and oriented
in the stretching direction. The Flory [27,28] theory predicts
the equilibrium crystallization as a function of stretch and
temperature, and was verified with experimental observations
[29,30]. Later, other models based on the Flory [27,28] theory
were proposed by eliminating some assumptions. Roe et al.
[31], Gaylord [32] and Gaylord and Lohse [33] considered the
crystallite morphology in crystallized polymer chains whereas
Smith [34] took into account the orientation of the extended
crystallized part with respect to the chain. In the previous
models, the crystallization occurs in a thermodynamically
most favorable condition, i.e., in a thermodynamic equilibrium
condition. Since this equilibrium crystallization is assumed
without time evolution and achieved only under infinitesi-
mal change rates, it is necessary to extend the theory to
nonequilibrium conditions where the crystallinity evolution
should be described in a certain kinetics theory.1 Different
descriptions of the crystallization kinetics were proposed in
the five recent contributions [21–26]. Kroon [21] proposed
a model by defining the crystallinity degree as the fraction
of the partially crystallized chains with fixed-size nucleated
crystallites without crystallite growth. In his model, the con-
tribution of the crystallites to the free energy is neglected and
a phenomenological Arrhenius-type kinetics is introduced to
govern the crystallinity evolution. Dargazany et al. [22,23] also
took the crystallite size in a single chain as a material constant
whereas the crystallinity evolution law was formulated on
the basis of the chain length statistic distribution. Mistry and
Govindjee [24] proposed a model in which the free energy
is considered to only consist of a purely thermodynamic
part and an elastic part. In their model, the crystallization
kinetics is formulated based on the free energy gradient with
respect to the crystallinity degree, and a yieldlike threshold
is introduced to additionally restrict the evolution law. Guilie
et al. [25] also related the crystallization kinetics with the free
energy gradient, but they formulated the evolution law using
a plasticlike flow rule and made a distinction between the
processes of crystallization and melting. Very recently, Rastak
and Linder [26] derived the chain free energy by integrating
the chain force with respect to the chain length and adding an
integration constant only dependent on the crystallinity degree.
In their approach, a linear relationship between the free energy
gradient and the crystallization rate was directly adopted to
capture the rate-dependent crystallinity evolution.

In this contribution, we present a new micromechanism
inspired molecular chain model to describe the progressive
evolution of the crystallinity degree in rubbers and the history-
dependent thermomechanical response within the context of

1The crystallization kinetics in solids was firstly investigated by
Avrami [35–37] and classical equations have emerged for spherulitic
growth in thermally induced crystallization but are not useful for
all kinetics of newly formed crystals due to differences in morphol-
ogy and in size. As a matter of fact, the micron-sized spherulites
in semicrystalline thermoplastic polymers resulting from quiescent
melt crystallization are different than the newly formed nanosized
crystallites in natural rubbers due to stretching.

the thermodynamic framework. In our model, the orientation
of the crystallization domain with respect to the chain is consid-
ered as a continuous random variable which is treated by means
of a representative angle. In the spirit of the Flory [27,28] the-
ory, we derive the chain free energy via a two-step strategy by
separating crystallization and stretching. Although hypotheti-
cal, the method allows us to derive a physically realistic model
insuring that the free energy gradient, used to formulate the
crystallinity evolution law, is null at the initial state under the
melting temperature, ignoring the crystallite surface energy.
The method avoids the introduction of any additional constraint
to describe the progressive evolution of the crystallinity degree
which obeys a linear relationship between the crystallization
rate and the corresponding thermodynamic force.

The outline of the present paper is as follows. We give the
main elements of the developed model in Sec. II. Section III
presents and discusses the model results. Concluding remarks
are finally given in Sec. IV.

II. THEORY

Let us consider a single chain with a total number of N

segments each of length l, for a fully extended chain length of
Nl. During the crystallization, a portion of the molecular chain
crystallizes while the remaining part remains amorphous as
illustrated in Fig. 1. The two amorphous subparts are present
from either side of the crystallized portion, and are assumed to
not interact and to have a random distribution. We confer the
subscript 1 to the left amorphous subpart and the subscript 2
to the right amorphous subpart. The conservation of the total
number of segments leads to

N = Nc + Na_1 + Na_2, (1)

where Nc is the number of crystallized segments and Na =
Na_1 + Na_2 is the total number of amorphous segments:

Na = N (1 − χ), (2)

in which χ ∈ [0,1] is the crystal fraction in the single chain
given by the following ratio2:

χ = Nc

N
. (3)

The chain end-to-end vector r is the sum of three parts:

r = rc + ra_1 + ra_2, (4)

in which rc is the end-to-end vector of the crystallized part and
ra = ra_1 + ra_2 is the sum of the end-to-end vectors of the
two amorphous subparts. Introducing θ ∈ [0,π ] as the angle
between r and rc, a simple relationship between the lengths of
these end-to-end vectors is given:

ra =
√

r2 + r2
c − 2rrc cos θ, (5)

where r = ‖r‖, rc = ‖rc‖, and ra = ‖ra‖.

2We can notice that the single chain crystallization can be general-
ized to define the material crystallinity degree by implementing the
actual chain structure for all chains in the network. This procedure
gives us a spatially averaged measure of the material crystallinity.
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III: Final configuration

II: Intermediate configuration

I: Initial configuration

FIG. 1. Configuration changes in the proposed two-step strategy: I→II, thermal-induced crystallization step, and II→III, absolutely
mechanical stretching step.

A. Configuration

As a matter of fact, the partially crystallized chain con-
tinuously oscillates due to thermal fluctuations. Owing to the
internal rotation of molecular bonds, a huge number of molec-
ular chain configurations are possible, which requires statis-
tical mechanical methods to establish the average mechanical
properties. In our micromechanism inspired molecular chain
model, the configurations of the crystallized part and the two
amorphous subparts are assumed to be independent from each
other and, hence, the configuration of the whole chain can
be identified by comprehensively analyzing the individual
oscillation of the amorphous and crystallized parts.

The amorphous segments are assumed to be rotationally
jointed with complete freedom of orientation and with no
interaction [38]; i.e., the rotation is free at each bond junction
and all bond angles take the same probability with no preferred
bond angle in the absence of external forces. The non-Gaussian
statistical method is used to calculate the configurations of the
two amorphous subparts. Contrary to a Gaussian treatment,
the non-Gaussian probability density function of the molecular
chain configuration allows us to introduce the values of ra_1 =
‖ra_1‖ and ra_2 = ‖ra_2‖ over their whole ranges up to the
fully extended lengths Na_1l and Na_2l:

Pa_1(ra_1) =
(

3

2πNa_1l2

)3/2

exp

{
−Na_1�

(
ra_1

Na_1l

)}
, (6)

Pa_2(ra_2) =
(

3

2πNa_2l2

)3/2

exp

{
−Na_2�

(
ra_2

Na_2l

)}
, (7)

in which we define �(x) as a function depending on the
inverse function L−1(x) of the Langevin function L(x) =
coth(x) − 1/x:

�(x) = xL−1(x) + ln
L−1(x)

sinh[L−1(x)]
, (8)

where the Padé approximation L−1(x) ≈ x(3 − x2)/(1 − x2)
is used.

Considering that the two amorphous subparts have inde-
pendent configurations, the probability density function of
the whole amorphous part Pa(ra) can be derived through
the convolution integration ∗ of the two probability density
functions Pa_1(ra_1) and Pa_2(ra_2):

Pa(ra) = Pa_1(ra_1) ∗ Pa_2(ra_2)

=
∫
R3

Pa_1(ra_1)Pa_2(ra − ra_1)d ra_1 (9)

After a series of lengthy but straightforward derivations, we
obtain the following expression:

Pa(ra) =
(

3

2πNal2

)3/2

exp

{
−Na�

(
ra

Nal

)}
. (10)

The formula (10) points out that the probability density of
the amorphous part is invariant with respect to the position of
the crystallized domain inside the single chain. In other words,
all the possible configurations of the amorphous segments have
been taken into account including those induced by the various
possible partitions of each amorphous subpart.
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In the absence of external forces, the most probable end-to-
end distance of the amorphous part ra, according to Eq. (10),
has the root mean square value l

√
Na. Thus, a kinematic

variable λa of the amorphous part can be introduced through
the effective stretch definition:

λa = ra

l
√

Na
. (11)

Similarly, with regard to the partially crystallized chain, the
whole stretch λ can be defined as

λ = r

l
√

N
. (12)

In our micromechanism inspired molecular chain model,
the crystallized part is considered as a rigid entity with
fully extended segments and its length rc is identically
equal to the algebraic sum of the length of Nc crystallized

segments:

rc = Ncl. (13)

Moreover, the configuration of the crystallized part may
be characterized by the angle θ between r and rc. Due to
the thermal fluctuations, this angle is in nature a continuous
random variable whose probability density function Pθ (θ ) is
related to the number of the crystallized segments Nc. Thus,
for a partially crystallized single chain with a given crystal
fraction χ , all the possible configurations of the crystallized
segments can be taken into account only by considering the
probability distribution of the angle θ . As a consequence, the
probability density function Pc(rc) of the crystallized domain
is identical with that of the angle θ :

Pc(rc) = Pθ (θ ). (14)

Again, considering the configuration independence between amorphous and crystallized domains, the probability density
function of the partially crystallized single chain P (r) is derived through the convolution integration ∗ of the amorphous and
crystallized probability density functions Pa(ra) and Pc(rc):

P (r) = Pa(ra) ∗ Pc(rc) =
∫
R3

Pa(r − rc)Pc(rc)d rc

=
[

3

2(1 − χ)πNl2

]3/2 ∫ π

0
exp

⎧⎨
⎩−(1 − χ )N�

⎡
⎣ 1

1 − χ

√(
λ√
N

)2

+ χ2 − 2
λ√
N

χ cos θ

⎤
⎦

⎫⎬
⎭Pθ (θ )dθ. (15)

Obviously, due to the complexity of the functional form, it is almost impossible to directly obtain a compact expression of
the probability density function P (r) from Eq. (15), even if an explicit expression of Pθ (θ ) is given. In order to overcome this
difficulty, we introduce a representative angle θ̃ by considering the basic property of the probability density function Pθ (θ ), i.e.∫ π

0 Pθ (θ )dθ = 1. Then, Eq. (15) is rewritten as

P (r) =
(

3

2(1 − χ)πNl2

)3/2

exp

⎧⎨
⎩−(1 − χ)N�

⎡
⎣ 1

1 − χ

√(
λ√
N

)2

+ χ2 − 2
λ√
N

χ cos θ̃

⎤
⎦

⎫⎬
⎭

=
(

3

2πNal2

)3/2

exp

{
−Na�

(
λ̃a√
Na

)}
, (16)

in which λ̃a can be regarded as the representative effective stretch corresponding to the angle θ̃ :

λ̃a =
√

λ2 + χ2N − 2λ
√

Nχ cos θ̃

1 − χ
. (17)

Above all, the molecular configuration of the partially
crystallized single chain has been analyzed and calculated by
means of some statistical mechanical methods. Especially for
the random thermal oscillation of the crystal orientation, the
probability density function Pθ (θ ) is treated by introducing
the representative angle θ̃ , which is a nonrandom variable
depending on both the stretch λ and the crystal fraction χ :

cos θ̃ = �(λ,χ). (18)

Using the function (18), the evolution of the random crystal
orientation can be captured and analyzed during the stretch-
induced crystallization process, for which the exact expression
will be specified later.

B. Free energy

A key point in the thermodynamic treatment of the partially
crystallized single chain is the identification of the physical
expression of its free energy. Taking the stretch-free amorphous
state as the reference state, a two-step strategy is adopted
to derive the free energy as illustrated in Fig. 1. Within the
proposed two-step strategy, the description of the first step is
very similar to a thermal-induced crystallization and that of the
second step is similar to an absolutely mechanical stretching.

1. First step: thermal-induced crystallization

In the first step, the transformation of Nc amorphous seg-
ments into crystallized segments is performed on the condition
that the ends of the remaining amorphous subparts stay free to
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occupy most probable locations. This step can be achieved by
applying, in a certain manner, a thermodynamic force driving
crystallization, and the free energy change can be given by

�ψI→II = −Nc(�Hm − T �Sm) + Us, (19)

where �Hm and �Sm are the enthalpy and entropy changes
associated with the fusion of equivalent segments from a
perfect crystal. These two material constants are obtained from
the thermodynamic equilibrium state between crystallized
and melted segments in the stretch-free state, and their ratio
T 0

m = �Hm/�Sm corresponds to a characteristic temperature,
namely, the equilibrium melting temperature. This temperature
is associated to a critical state in which all crystallites can melt
theoretically when heated very slowly. In reality, however,
the rubber chains without stretching can maintain the fully
amorphous state even in a large temperature range quite
lower than T 0

m. This phenomenon is usually attributed to the
additional requirements of the free energy for the formation
of the interface between the crystallite and the surrounding
amorphous phase, and for the formation of the crystallite
surface. These interfacial free energies are totally considered in
our theory by introducing Us in Eq. (19) as a general form. Due
to the fact that all the interfacial free energies depend heavily
on the crystallite morphology, different crystallization theories
can give different expressions for Us [39,40]. In this work,
considering the form of the fully extended crystallization, a
linear relationship between the surface free energy Us and
the crystallized segment number Nc is adopted as a specific
example to simplify the simulation, i.e., Us = usNc, us being
the proportionality coefficient. Accordingly, Eq. (19) can be
rewritten as

�ψI→II = −Nc�Hm

(
1 − T

T 0
m

)
+ usNc. (20)

Besides, recall that after this step, the amorphous subparts
occupy the most probable locations. It means that the end-to-
end distance of the amorphous part ra is identically equal to the
root mean square value l

√
Na. Under this constraint condition,

the chain configuration after the first step is identified and
the corresponding probability density PII can be calculated by
degenerating the convolution integration in Eq. (15):

PII =
(

3

2πNal2

)3/2

exp

{
−Na�

(
1√
Na

)}
. (21)

2. Second step: absolutely mechanical stretching

In the second step, the ends of the partially crystallized
chain are dragged to the expected position, the crystal fraction
remaining unchanged. Since the crystal is considered as a
rigid entity and substantially stiffer than the amorphous part,
we assume no stored strain energy during the stretching. The
free energy change is fully attributed to the change of the
conformational entropy:

�ψII→III = −T (sIII − sII), (22)

where sIII = kB ln(PIII) and sII = kB ln(PII) are the conforma-
tional entropies related to the probability densities PIII = P (r)
and PII. The term kB is the Boltzmann’s constant.

Substituting Eqs. (16) and (21) into Eq. (22), we can obtain

�ψII→III = kBT Na

{
�

(
λ̃a√
Na

)
− �

(
1√
Na

)}
, (23)

which represents the stored free energy resulting from the
change of the representative effective stretch (17) without any
chemical energy change.

3. Final expression

The free energy of the partially crystallized chain ψ is iden-
tified as the sum of the two previous free energy changes, i.e.,
ψ = �ψI→II + �ψII→III. Consequently, it takes the following
final expression:

ψ = −Nc�Hm

(
1 − T

T 0
m

)
+ usNc

+kBT Na

{
�

(
λ̃a√
Na

)
− �

(
1√
Na

)}
. (24)

It is worth noting that, although the two-step strategy
applied for the free energy derivation is hypothetical, it results
in a real and accurate physical expression of the free energy. As
a thermodynamic potential, the value of the free energy is only
dependent on the initial and final states and independent of
the thermomechanical history during processing. The original
intention of conceiving this two-step strategy is to employ the
thermodynamic material parameters coming from the stretch-
free equilibrium state and to satisfy the physical consistency.

C. Kinetics

In general, the stretch-induced crystallization is a recover-
able micromechanism associated with a dissipative hysteretic
response, which can be viewed as an irreversible thermo-
dynamic process accompanied with energy dissipation [41].
In order to exactly describe this process in a single chain,
the set of the selected independent state variables3 includes
not only the temperature T and the stretch λ, but also the
crystal fraction χ . As an internal state variable, the crystal
fraction χ can effectively capture the crystallization-induced
microstructural evolution of the single chain, which leads
to the history-dependent thermomechanical response at the
macroscale. According to the internal state variable theory, the
non-negative intrinsic dissipation D during the stretch-induced
crystallization process can be expressed as

D = κχ̇ � 0, (25)

where χ̇ is the crystallization rate and can be regarded as a
generalized thermodynamic flux, and κ = −∂ψ/∂χ is a ther-
modynamic entity conjugated to the crystal fraction χ and can
be correspondingly regarded as a generalized thermodynamic
force. In line with Eq. (24), the specific expression of the

3All the other thermodynamic quantities are regarded as functions
of these selected independent state variables and, especially, the free
energy function ψ(T ,λ,χ) contains all thermodynamic information
about the partially crystallized single chain.
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thermodynamic force κ can be deduced as

κ = N�Hm

(
1 − T

T 0
m

)
︸ ︷︷ ︸

κT

− usN︸︷︷︸
κS

+ kBT N

{
Z

(
α,

λ̃a√
Na

)
− Z

(
1

2
√

Na
,

1√
Na

)}
︸ ︷︷ ︸

κλ

, (26)

in which we define Z(x,y) as a function written as

Z(x,y) = xL−1(y) + ln
L−1(y)

sinhL−1(y)
, (27)

and the term α is expressed as

α =
� λ√

N
+ χ λ√

N

∂�
∂χ

− χ√(
λ√
N

)2 + χ2 − 2χ� λ√
N

. (28)

From the (nonequilibrium) thermodynamic viewpoint the
partially crystallized single chain tends towards a thermody-
namic equilibrium state, which may be considered as a limiting
case where all the thermodynamic quantities do not depend
upon time. This implies that the internal state variable χ

has a tendency to reach a stable value under the prescribed
stretch λ, i.e., χ̇ = 0. This tendency, characterized by the
thermodynamic flux χ̇ , can be considered to be driven by the
thermodynamic force κ . On the condition that the deviation
from the thermodynamic equilibrium state is small and con-
sidering that the intrinsic dissipation D must be non-negative,
a linear relationship is assumed between the thermodynamic
flux χ̇ and the force κ:

χ̇ = Aκ, (29)

where A is a positive coefficient.
Moreover, from Eq. (26), we can find that the thermody-

namic force κ consists of three parts. The first part, κT , is
the thermally activated crystallization force correlated to the
process activation at temperatures lower than T 0

m and to the
process impedance at temperatures higher than T 0

m. The second
part, κS , is the crystallization resistance which is produced
by the interface and surface formation and accounts for the
delay of crystallization in temperature and stretch. The last and
third part, κλ, is the stretch-induced crystallization force, which
should vanish to zero at the initially fully amorphous state
without stretching, λ = 1 and χ = 0. This initial condition
related to the material thermodynamic stability is crucial for
the model formulation. It can be satisfied by letting cos θ̃ =
�(1,0) = 1/2

√
N in Eq. (18), which may reveal that, for a

single chain with sufficiently large length, the crystallite forms
initially in a direction nearly perpendicular to the chain axis.
However, considering the fact that the newly formed crystal
after stretching tends to orient itself towards the chain direction,
we formulate the specific dependence of θ̃ on both λ and χ as
follows:

cos θ̃ = �(λ,χ) = 2
√

N − 1

2
√

N (1 − e−γ )
(1 − e−γω)+ 1

2
√

N
, (30)

where the parameter γ is a coefficient controlling the orienta-
tion rate of the newly formed crystal with the chain axis, and

FIG. 2. Crystal orientation with the ω parameter, 1: γ = 1, 2:
γ = 2, 3: γ = 5, 4: γ = 10, 5: γ = 20.

the variable ω is given by

ω = a
λ − 1√
N − 1

+ bχ, (31)

in which a ∈ [0,1] and b ∈ [0,1] are the weight coefficients
for the stretch and crystallization effects on the angle θ̃ ,
respectively, and the sum of them is unit, i.e., a + b = 1.
Figure 2 presents the cos θ̃ evolution with the variable ω in
which we can appreciate the γ dependence of the rate in
crystal orientation with the chain axis. Although exponential
functions are introduced in Eq. (30) to describe the evolution
of the crystal orientation, other functional expressions satis-
fying the requirements could be employed. In the remaining
part of the paper, the following values are retained: a = 0.8,
b = 0.2, and γ = 10.

The normalized force f in the single chain is obtained from
the differentiation of the free energy function (24) with respect
to the chain stretch,

f = ∂ψ

∂λ
= kBT NβL−1

(
λ̃a√
Na

)
, (32)

in which the term β is expressed as

β =
λ
N

− �
χ√
N

− χ λ√
N

∂�
∂λ√(

λ√
N

)2 + χ2 − 2χ� λ√
N

. (33)

The macrokinematic variables are obtained through an
averaging over all possible orientations of the microstretch
λ. In this procedure, the average number of chains per unit
reference volume n is introduced and N becomes the average
number of segments in the chain network.

III. MODEL RESULTS AND DISCUSSION

In this section, the main factors governing the crystallinity
and the macroresponse are examined using the proposed
model under the equilibrium state and the nonequilibrium
state involved during stretching and recovery and continuous
relaxation. In the bellow discussion, the term λ corresponds
to the uniaxial stretch applied at the macrolevel. Several
inputs related to microstructural and thermodynamic
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FIG. 3. Thermodynamic force at T = 20◦ C (a) as a function of crystallinity degree for different stretches, 1: λ = 1, 2: λ = 3, 3: λ = 5, 4:
λ = 7, 5: λ = 9, and (b) as a function of stretch for different crystallinity degrees, 1: χ = 0%, 2: χ = 10%, 3: χ = 20%, 4: χ = 30%,

5: χ = 40%.

properties4 are required by the following modeling:
nkBT0 = 0.06 MPa (T0 = 20 ◦C), N = 150, A = 5.0 ×
1016 MPa−1 s−1, �Hm = 4400 J mol−1, T 0

m = 25 ◦C, us =
1500 J mol−1.

A. Equilibrium state

Prior to examining the crystallinity evolution, numerical
simulations are carried out to address the influence of tem-
perature as well as stretch on the equilibrium crystallization.
A key point of our theory is the thermodynamic force κ in
Eq. (26) which is a decreasing function of the crystallinity and
an increasing function of the stretching. These two opposite
evolutions are shown in Fig. 3. Since the thermodynamic force
drives the crystallinity evolution by the kinetics law (29),
the equilibrium state corresponds to a free thermodynamic
force, i.e., κ = 0. From the experimental viewpoint, the true
thermodynamic equilibrium state at a certain temperature T

and a certain stretch λ may require a quasi-infinite duration in
an isothermal monotonic stretching. In order to overcome this
difficulty, two experimental protocols in two steps have been
used in the literature [18–20]. The first method consists of a
cooling of a sample loaded at constant stretch λ well below
a certain temperature T and the quasiequilibrium state can
be then reached after progressively warming back up to T .
The second method consists of a stretching of a sample at
constant temperature T well above a certain stretch λ and the
quasiequilibrium state can be then reached after relaxation to
λ. However, the equilibrium state obtained by means of the two
experimental protocols is usually different, which indicates the
great complexity of the history-dependent thermomechanical
response during the stretch-induced crystallization process.

4It is important to note that nonrealistic values for the melting
enthalpy �Hm and the melting temperature T 0

m must be used as inputs
of existing constitutive theories in order to obtain correct quantitative
comparisons with experiments [24,27–30]. More realistic values are
used in this work by introducing in our theory the crystallite surface
free energy. A quantitative evaluation of our theory remains, however,
an important issue for further studies.

The evolution of the simulated equilibrium state is presented
in Fig. 4 as a function of stretch and in Fig. 5 as a function
of temperature. The plots in Fig. 4(a) show a quasilinear
relationship between the crystallinity degree and the stretch. It
can be observed that the higher the temperature, the lower the
crystallinity degree and the higher the critical stretch at which
the crystallization is nonzero. The critical stretch deduced
from Fig. 4(a) is plotted with the corresponding temperature
in Fig. 4(b) such that a straight-line fit adequately describes
the results. This is a well-known experimental observation
[7]. Figure 5 demonstrates that both the crystallinity degree
and the stress evolve linearly with temperature but in an
opposite manner. This opposite evolution was experimentally
highlighted by several authors [7,20]. The stress increase with
temperature is due to two concomitant factors, the decrease
in crystallinity degree and the increase in entropy stiffness
nkBT of the amorphous domain. That explains why the slope
decreases for the two lower stretch levels after a temperature
where the crystallization does not take place. Indeed, in
the absence of crystallization, the slope only depends on
the entropy effect. Interestingly, this difference in slope was
experimentally highlighted by Toki et al. [14].

B. Nonequilibrium state

The question which arises now is how the above factors
could affect the kinetics of crystallization during the course of
a stretching followed by a recovery. During these simulations,
the stretch λ is ramped to a maximum level λmax and then
ramped down to 1. Figures 6–8 provide the stretching and
recovery response for different key factors (namely, stretch
level λmax, stretch rate λ̇, and temperature T) governing the
micromechanism and the macroresponse. It is satisfactory to
point out that the model is able to reproduce the delay in
the onset of crystallization by using a simple kinetics law
given by Eq. (29) with no additional threshold or restriction. A
global view at these plots shows that the stretch-induced crys-
tallization during stretching and the stretch-induced melting
during recovery differ, which is the exclusive reason for the
observed stress hysteresis. This result reveals that the mechan-
ical hysteresis loop is entirely controlled by the crystallization
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FIG. 4. Equilibrium crystallization: (a) crystallinity vs stretch, (b) temperature vs critical stretch, 1: T = 0 ◦C, 2: T = 20 ◦C, 3: T = 40 ◦C;
4: T = 60 ◦C, 5: T = 80 ◦C.

and melting process and is not due to viscous effects of the
amorphous rubber network since no viscous component is
introduced in our theory, which is in accordance with exper-
imental evidence [5–7]. Actually, all history-dependent ther-
momechanical features at macroscale or microscale originate
from the rate-dependent crystallinity evolution governed by
Eq. (29). More specifically, the crystallization rate depends on
the thermodynamic crystallization force expressed by Eq. (26).
The latter, obtained from the differentiation of the proposed
free energy in Eq. (24) with respect to the crystallization, is a
function of stretch level and temperature. Furthermore, the fact
that the crystallinity degree at a given stretch is higher during
unloading than during loading is a feature well described by
our theory. By decreasing the effective stretch in Eq. (17) the
crystallinity thus induces a stress softening, resulting in the
stress difference between the loading path and the unloading
path. The stress hysteresis and the crystallization hysteresis
can be related from an energetic viewpoint by considering
the two scales. At the scale of the micromechanism, the
crystallization evolution driven by the thermodynamic force
induces a local energy dissipation formulated in Eq. (25). This
local thermodynamic dissipation is the exclusive reason for the

energy dissipation at the macroscale manifested by the stress
hysteresis.

Figure 6 presents the crystallinity evolution and the
macroresponse for various maximum stretch levels. If the
maximum stretch level is lower than a certain critical stretch
[equal to 4.7 at 20 °C as shown in Fig. 4(b)] for the onset
of crystallization the response during stretching and recovery
coincides with that of the amorphous rubber network, shown
by a dashed line in Fig. 6(b). At levels of stretch greater
than the crystallization-onset stretch, a hysteretic response is
observed whose area increases with the maximum stretch.
The crystallinity affects the form of the macroresponse by the
appearance of a stress inflection from which the strain hard-
ening decreases. The stress upturn experimentally observed at
very large stretches requires accounting for a crystallization-
induced stiffening effect since it is not due to the contribution
of the remaining amorphous fraction [9]. The same mechanism
is responsible for two antagonist phenomena, which render it
unique—a softening inducing a stress inflection at moderate
stretches and a stiffening inducing a stress upturn at very
large stretches. Solely the crystallization-induced softening is
accounted for in our theory. As illustrated in Fig. 3(b), the

FIG. 5. Equilibrium crystallization: (a) crystallinity vs temperature, (b) stress vs temperature, 1: λmax = 5, 2: λmax = 6, 3: λmax = 7, 4:
λmax = 8, 5: λmax = 9.
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FIG. 6. Stretch-level influence on stretching and recovery: (a) crystallization kinetics, (b) macroresponse, T = 20 ◦C, λ̇ = 0.05/s, 1:
λmax=5, 2: λmax = 6, 3: λmax = 7, 4: λmax = 8, 5: λmax = 9.

thermodynamic force given by Eq. (26) increases monotoni-
cally with the stretch level. During the course of a stretching,
the stretch level increases the crystallinity which consequently
decreases the strain hardening. The macroresponse is strongly
related to the crystallinity but also to the crystal form. The
stiffening could be accounted for by introducing explicitly
the crystal form into the molecular configuration of the
partially crystallized chain. Consequently, in addition to the
crystallinity and the crystal orientation, the effective stretch
in Eq. (17) could be reformulated to take into account the
crystal form.

Let us now focus on the stretch-rate effects. Remember that
no viscous component is introduced in our theory to repro-
duce any time-dependent feature. Figure 7(a) shows a strong
influence of the stretch rate on the crystallinity evolution.
The crystallization hysteresis loop area gets smaller and the
crystallinity degree increases with decreasing stretch rate. This
feature was already experimentally highlighted in [10,12,13].
The rate dependency of the stretch-induced crystallization is
a consequence of the time dependency of the crystallization
kinetics driven by the thermodynamic force given in Eq. (26).
A large stretch rate leads to less time for crystallization and

melting, and vice versa. The stretch at complete melting is
also found sensitive to the stretch rate whereas the onset of
crystallization is found independent of that. A stretch-rate
dependence of the nucleation may be predicted by introducing
a time-dependent effect into the energy barrier. In addition,
the stretch-rate dependency of the stretch-induced material
transformation leads to the rate-dependent stress response
observed in Fig. 7(b). Indeed, it can be seen that both the
amount of stress hysteresis loop area and the magnitude of
strain hardening decrease with decreasing stretch rate. If the
stretch rate tends to an infinitesimal value the stretch-induced
crystallization appears in the form of an equilibrium state and
no difference between crystallization and melting happens; that
is to say, no mechanical hysteresis is observed. This response is
provided in dashed lines in Fig. 7. This is again a confirmation
that the crystallization and melting process is the source of the
stress hysteresis and more generally of all history-dependent
thermomechanical features.

It is now interesting to focus on the temperature ef-
fects during stretching and recovery. Figure 8 presents the
crystallinity evolution and the macroresponse for various
temperatures. It can be observed that there is a regular decrease

FIG. 7. Stretch-rate influence on stretching and recovery: (a) crystallization kinetics, (b) macroresponse, T = 20 ◦C, 1: λ̇ = 0.025/s, 2:
λ̇ = 0.05/s, 3: λ̇ = 0.1/s, λmax = 8.
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FIG. 8. Temperature influence on stretching and recovery: (a) crystallization kinetics, (b) macroresponse, 1: T = 0 ◦C, 2: T = 20 ◦C, 3:
T = 40 ◦C; 4: T = 60 ◦C, 5: T = 80 ◦C, λ̇ = 0.05/s, λmax = 8.

of the crystal content with temperature which is consistent
with experimental observations [8,10,11]. The temperature
effect on the macrostress implies numerous phenomena yet
misunderstood in the literature, resulting in a high difference
in strain-hardening ability due to chain stretching. Basically,
the temperature affects the macroresponse by the entropy effect
of the amorphous domain. This phenomenon is concomitant
with an increase in crystallinity degree by decreasing the
temperature, as a consequence of the temperature dependency
of the thermodynamic force given in Eq. (26). Recall that
solely the crystallization-induced softening is introduced in our
theory via the effective stretch expressed in Eq. (17). Therefore,
both phenomena contribute to an increase in stress with
temperature. Furthermore, both the onset of crystallization
and the completion of melting are strongly affected by the
temperature, and increase regularly. The delay �T = Tm −
Tc in crystallization is typically termed supercooling under
temperature-induced crystallization. The melting temperature
Tm is usually considered as a thermodynamic property whereas
the crystallization temperature Tc is not, since it depends
on the experimental conditions, in particular on the cooling
rate. The origin of the supercooling comes from the energy bar-
rier to the surface formation of crystallites, which depends on
the crystallite form and dimension, both being sensitive to the
loading conditions. Under isothermal stretch-induced crystal-
lization, the crystallites completely melt at a lower stretch than
that at which crystallization starts. This delay �λ = λm − λc

in crystallization can be seen as a superstretching phenomenon
as named by Candau et al. [40]. The stretch data for the onset of
crystallization λc and the completion of melting λm extracted
from Fig. 8(a) are plotted in Fig. 9 such that two nearly parallel
straight-line fits appear and illustrate these two phenomena.
This temperature dependence of crystallization and melting
is consistent with the experimental observations of Albouy
et al. [8].

As a final point of discussion, we propose to examine the
crystallization response under continuous relaxation. These
simulations consist firstly to apply a stretching up to a pre-
determined level under constant stretch rate and secondly to
keep constant this stretch for a prescribed delay during which
the evolutions in crystallinity and in stress are computed. The

stretching is performed at a sufficiently high rate to limit the
crystallization before relaxation. As shown in Figs. 10(a) and
11(a), the crystallization during relaxation starts to increase
linearly with the time but it rapidly exhibits a curved profile and
tends towards a stabilized state for which there is no change
in crystallinity. The reached maximum crystallinity degree
corresponds to the equilibrium state plotted in Figs. 4(a) and
5(a). This crystallization evolution process, corresponding to
the course of the thermodynamic state from nonequilibrium to
equilibrium, is driven in our theory by the thermodynamic force
given by Eq. (26). The latter decreases monotonically with
crystallinity degree as shown in Fig. 3(a). Recently, Bruning
et al. [16] measured the crystallinity evolution under contin-
uous relaxation for different stretch levels and temperatures,
but without providing the stress evolution. Our simulations in
Figs. 10(a) and 11(a) give similar tendencies. More recently,
Xie et al. [17] measured the stretch-level and temperature
dependencies of the continuous stress relaxation as a signature
of the crystallinity evolution in a crystallizing rubber, but
without definitely providing the crystallinity degree. The au-
thors reported the same trends as those observed in Figs. 10(b)

FIG. 9. Supercooling �T and superstretching �λ phenomena
deduced from Fig. 8; 1: onset of crystallization, 2: completion of
melting.
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FIG. 10. Stretch-level influence on continuous relaxation: (a) crystallization kinetics, (b) macroresponse, T = 20 ◦C, 1: λmax = 5, 2:
λmax = 6, 3: λmax = 7, 4: λmax = 8, 5: λmax = 9.

and 11(b). As for the stress hysteresis for which the viscous
effects of the amorphous rubber network must be not invoked,
according to our simulations the stress relaxation is believed
to be solely controlled by the crystallization process under
relaxation. Quite interestingly, the normalization of the stress
with its maximum value points out a nonlinearity of the
stretch-level and temperature effects.

C. Discussion

Our theory provides significant physical insights about a
fascinating phenomenon still misunderstood and involves very
few physically interpretable material constants: two chain-
scale constants, one crystallinity kinetics constant, three ther-
modynamic constants related to the newly formed crystallites,
and a function controlling the crystal orientation with respect to
the chain. The complex history-dependent thermomechanical
response of natural rubbers necessitates providing a set of
formulas, not to increase the flexibility of the resulting model
but with the aim to describe the entire set of phenomena in con-
nection to the real system. Our theory, based on a micromech-

anism inspired molecular chain approach, formulated within
the context of the thermodynamic framework, requires a few
assumptions, e.g., rotational joints of amorphous segments,
full extension of crystallized segments, and proportionality of
surface free energy. In spite of these assumptions, our model
provides significant insights about the relationship between
the micromechanism of crystallization in stretched rubbers
and the history-dependent thermomechanical response at the
macroscale. The satisfactory simulation results provided by our
theory can be attributed to its solid physical foundation. More
specifically, the molecular configuration of the partially crys-
tallized chain is objectively analyzed and reasonably described
by means of some statistical mechanical methods, especially
considering the random thermal oscillation of the crystal
orientation. The present theory treats the stretch-induced crys-
tallization as an irreversible thermodynamic process driven by
a thermodynamic crystallization force induced by the nonequi-
librium thermodynamic state. A realistic physical expression of
the chain free energy is derived according to a two-step strategy
by separating crystallization and stretching. This strategy can
ensure that the theory satisfies a crucial physical condition

FIG. 11. Temperature influence on continuous relaxation: (a) crystallization kinetics, (b) macroresponse, 1: T = 0 ◦C, 2: T = 20 ◦C, 3:
T = 40 ◦C; 3: T = 60 ◦C, 4: T = 80 ◦C,λmax = 8.
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related to the material thermodynamic stability; that is, the ther-
modynamic crystallization force is null at the initial state under
the melting temperature. This is a key point that earlier Flory
[27] pointed out as a weakness of his theory, and to date only
Mistry and Govindjee [24] try to solve this issue by introducing
a “phenomenological” yieldlike function in their theory. This
key point is treated from a physical viewpoint in our theory.

More work is, however, needed to introduce into our
theory the microstructure of crystallites and their evolution. In
particular, in addition to the crystal fraction and orientation,
it is believed that the crystallite morphology, in terms of
form5 and size, could also control the thermomechanical
macroresponse. It is a way to account for, in our theory, the
crystallization-induced stiffening. Moreover, a morphology
dependence of the surface free energy would be interesting
to establish in order to propose a more realistic onset of
crystallization, in particular in terms of rate dependency which
can be also viewed as a rate dependency of the necessary
supercooling or superstretching. This effect has been exper-
imentally highlighted recently by Candau et al. [13]. Also,
we must recognize that the crystallization kinetics, inherently
dominated by the formula (29) that we have proposed to relate
the thermodynamic force and the crystallization rate, is too
simple to represent the complex phenomenon. The kinetics

5In Anoukou et al. [42] the incidence of the crystal form on the
stiffening has been studied by means of the concepts of microme-
chanical homogenization without molecular configuration. It would
be interesting to consider this aspect in the present theory in our future
works.

law would consider at least (i) a nonlinear relationship that
introduces an increase in crystallization resistance during the
stretch-induced crystallization, (ii) a difference between the
crystallization path during stretching and the melting path
during recovery, and (iii) an explicit temperature dependency.
Further work is needed to incorporate these important ideas in
a comprehensive constitutive theory.

IV. CONCLUDING REMARKS

In this work, we present a new micromechanism inspired
molecular chain model to describe the thermodynamics and
mechanics of stretch-induced crystallization in rubbers. Key
factors governing the phenomenon were investigated to better
understand the relation between the micromechanism and the
macroresponse under the equilibrium state and the nonequi-
librium state involved during stretching and recovery, and
continuous relaxation. The proposed approach contains very
few physically interpretable material constants and seems to
be sufficiently rich to provide important indications concerning
this fascinating phenomenon.

A quantitative evaluation of our approach remains, however,
an important issue for further studies. Furthermore, the capa-
bility of our approach needs to be further verified under more
complex loading conditions. Especially, the coupling between
stored/dissipated energy and material transformation during
cycling loading could be investigated using the constitutive
theory that we have proposed in a recent work [43,44]. More-
over, as introduced in the Discussion section, our approach,
although quite sophisticated, needs improvement for a fully
realistic description of the microstructure, such as size and
form of crystallites, and its evolution.
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