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General two-species interacting Lotka-Volterra system: Population dynamics and wave propagation
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The population dynamics of two interacting species modeled by the Lotka-Volterra (LV) model with general
parameters that can promote or suppress the other species is studied. It is found that the properties of the two
species’ isoclines determine the interaction of species, leading to six regimes in the phase diagram of interspecies
interaction; i.e., there are six different interspecific relationships described by the LV model. Four regimes
allow for nontrivial species coexistence, among which it is found that three of them are stable, namely, weak
competition, mutualism, and predator-prey scenarios can lead to win-win coexistence situations. The Lyapunov
function for general nontrivial two-species coexistence is also constructed. Furthermore, in the presence of spatial
diffusion of the species, the dynamics can lead to steady wavefront propagation and can alter the population map.
Propagating wavefront solutions in one dimension are investigated analytically and by numerical solutions. The
steady wavefront speeds are obtained analytically via nonlinear dynamics analysis and verified by numerical
solutions. In addition to the inter- and intraspecific interaction parameters, the intrinsic speed parameters of
each species play a decisive role in species populations and wave properties. In some regimes, both species can
copropagate with the same wave speeds in a finite range of parameters. Our results are further discussed in the
light of possible biological relevance and ecological implications.
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I. INTRODUCTION

The population of a species is often affected by other
species forming an ecological web in nature. Furthermore,
the population dynamics of a certain species is strongly
dependent on another species that is directly interacting. Such a
two-species interacting system has received extensive interest
both in theories and in ecological observations. In particular,
the Lotka-Volterra (LV) model [1–3] is believed to be an
appropriate model to study such an interacting community
[4,5]. In addition to population dynamics, LV models have
been employed in different contexts, such as evolutionary game
theory [6–8], food webs [9], and replicator equations [10].
While the dynamics and stability of the LV system for the case
of well-mixed populations have been rather well investigated
in some situations, such as competitive, cooperative, and
predator-prey interactions by various groups, there is little
or no complete study on the system with different possible
interaction parameters under a unified description. In addition,
the case in which the species can undergo spatial diffusion are
much less studied. Motility or diffusive motion can drastically
alter the temporal dynamics and spatial patterns, and in some
situations traveling wave or directed motion can propagate
[11,12]. The spatiotemporal patterns resulting from the inter-
and intrainteraction dynamics of two species (or agents) are
also of recent interest in other dynamical systems, such as
evolutionary game theory [8], replicator dynamics [13], and in
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general reaction diffusion systems. For example, spatial diffu-
sion can lead to various spatiotemporal pattern formations [14],
spiral waves in complex Ginzburg-Landau equations [15], and
cooperation patterns in prisoners’ dilemma dynamics [16,17].

It is known that for LV model with diffusion, there exists
traveling wave solutions propagating from one stationary point
to another [18–25]. At first glance, diffusion is a kind of
random motion that should not be associated with directed
motion. However, nonlinearity resulted from the interactions
between the species can produce propagating waves, which
travel much faster than the species’ diffusional speeds. Such
a propagating wavefront represents a progressive replacement
of one equilibrium (ahead of the front) by another (behind the
front). Moreover, it has been shown that propagating wavefront
can exist for the competitve [24] and mutualistic [25] LV
system with diffusion. It would be of interest to find out
other possible wave dynamics and their properties for species
interactions in addition to the competitive and mutualistic ones.

In this paper, we consider the LV model of two interacting
species with spatial diffusion and investigate the population
dynamics and steady wavefront propagation. One of the aims
is to summarize all the interaction types between two species
described by the LV model and obtain the phase diagram to
provide deeper insights in the interacting mechanism in a two-
species community. Another goal is to figure out the conditions
and properties of wave propagation in the presence of species
diffusion for general species interactions. In particular, we
shall classify different dynamical scenarios under a unified
phase diagram and investigate the wavefront profiles and wave
speeds. Analytical results for the wavefront and waveback
speeds are obtained using nonlinear dynamics techniques and
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tested with numerical solutions. Our results indicate that the
intrinsic speed parameters of the two species play a dominant
role in determining the wave properties and speeds of the
species. The paper is organized as follows: Sec. II gives the
classification results of the general LV population dynamics
model in terms of the nullclines and presents the phase diagram
classifying six dynamical regimes. The presence of species
diffusion is considered in Sec. III, in which some analytical
results are presented for the wave speeds using nonlinear
dynamical analysis. Section IV presents the steady-state wave
profiles and wave speeds in various regimes obtained from
numerical solution of the partial differential equations and
compared with the analytical results. Section V summarizes
our result with possible outlooks and further discusses our
findings in terms of the biological relevance and implications
on ecology or population strategies.

II. TWO-SPECIES INTERACTING
LOTKA-VOLTERRA MODEL

We consider the two-species LV model whose populations
are denoted by n1 and n2. The population dynamics is described
by

ṅ1 = r1n1(1 − a11n1 − a12n2),
(1)

ṅ2 = r2n2(1 − a22n2 − a21n1),

where rα > 0 (α = 1,2) are the growth rates and species
interactions are described by the elements in the matrix

a ≡ (
a11 a12

a21 a22
). There are two kinds of interactions among

the members in the population: intraspecific and interspecific,
which are modeled by the parameters aαα and aαβ (α �= β

throughout this paper unless otherwise stated), respectively.
The growth is taken to be logistic with aαα > 0 representing
intraspecific competition. The interspecific interactions are
determined by a12 and a21, which in general can take positive
or negative values. The environmental carrying capacity is
taken to be 1. The competition of the β species to suppress the
population of the α species is the case with aαβ > 0 (α �= β).
However, the interspecific cooperation of the β species in
promoting the population of the α species can be modeled
with aαβ < 0 and nα can be > 1 due to the assistance from the
β species. For the case in which the species can undergo spatial
diffusion, the spatial temporal dynamics (in one-dimension) is
described by the time-dependent profiles n1(x,t) and n2(x,t),
which obey the reaction-diffusion equations

∂n1

∂t
= d1

∂2n1

∂x2
+ r1n1(1 − a11n1 − a12n2),

(2)
∂n2

∂t
= d2

∂2n2

∂x2
+ r2n2(1 − a22n2 − a21n1),

where dα > 0 (α = 1,2) are the diffusion coefficients of the
corresponding species. In this paper, we will investigate the
interplay between population growth, mobilities, and the inter-
actions among the species, and we will classify the population
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FIG. 1. The nullclines of the kinetic ODE system in Eq. (1) shown in the positive quadrant of the n1-n2 phase plane. Solid black and dashed
red lines represent the nullclines of species 1 and 2. Stable and unstable fixed points are denoted by • and ◦, respectively. (a) Regime I, strong
competition; (b) Regime II, weak competition; (c) Regime III, weak mutualism; (d) Regime IV, predator-prey (species 2 is the predator); (e)
Regime V, one-species dominating (species 1 is dominating), the slope of the n1 nullcine (solid line) can be positive or negative as long as the
two nullclines do not intersect; (f) Regime VI, strong mutualism.
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FIG. 2. The phase diagram of two-species interacting Lotka-
Volterra model for given intraspecific interactions. The intraspecific
interactions are always competitive with both aαα > 0. Depending
on the properties of the two nullcines, the population dynamics
and propagating wave profiles can be classified into six regimes:
(I) strong competition regime, (II) weak competition regime, (III)
weak mutualism regime, (IV) predator-prey regime, (V) one-species
dominating regime, and (VI) strong mutualism regime. In the presence
of species diffusion, Regime V can further be subdivided (by the a12

or a21 axes) into V+ and V− regimes. The curve separating Regimes
III and VI is given by a12a21 = a11a22.

dynamics and the associated wave propagations. Some results
for the competitive and mutualistic interactions for the special
cases of a11 = a22 = 1 have been considered in Refs. [24] and
[25], respectively; they are also included here for general values
of a11 and a22 for completeness.

A. Nullclines and homogeneous steady states

Steady states of Eq. (1) occur at the fixed points:
(0,0), (1/a11,0), (0,1/a22), (n∗

1,n
∗
2), where n∗

1 ≡ a22−a12
det a and

n∗
2 ≡ a11−a21

det a . Note that the nullclines are two straight lines in
the n1-n2 phase plane given by

a12n2 = 1 − a11n1, (3)

a22n2 = 1 − a21n1. (4)

The steady state (n∗
1,n

∗
2) emerges only when the densities of

the populations are nonnegative, i.e., the nullclines have an
intersecting point in the first quadrant of the phase plane.
Figure 1 shows the possible scenarios in which these two
nullcline straight lines within the quadrant of nonnegative
densities. As shown in Figs. 1(a)–1(f), these two straight
line nullclines can have different slopes that classify the
population dynamics and wave properties into six groups,
which correspond to six regimes in the phase diagram (see
Fig. 2). In the first four cases [Figs. 1(a)–1(d)], the two nullcines
intersect inside the positive quadrant giving the nontrivial
species coexistence fixed point (n∗

1,n
∗
2). Note that Figs. 1(a),

1(b), 1(c), and 1(f) possess 1 ↔ 2 exchange symmetry (i.e.,

topologically invariant under 1 ↔ 2). Regimes IV and V
include the cases shown in Figs. 1(d) and 1(e), respectively,
and their 1 ↔ 2 exchange counterparts. The stabilities of
the fixed points correspond to the homogeneous steady-state
populations can also be obtained easily and are also shown in
Fig. 1. Note that the fixed point (0,0) is always unstable. In the
strong competition of Regime I, depending on the advantage
of its initial population, only one species will survive. Stable
coexistence of the two species is possible only in Regimes II,
III, and IV, which correspond to the cases of weak competition,
weak mutualism, and predator-prey scenarios. In Regime IV,
contrary to the conventional predator-prey model [3], in which
the predator population can only decay in the absence of the
prey, it can be shown that there is no limit cycle oscillation for
the populations in this regime of the LV model. For Regime
V, the slope of the n1 nullcine (solid line) can be positive
or negative as long as the two nullclines do not intersect.
The dominating species will drive the inferior species to
extinction. In Regime VI, the two species are too strongly
mutually beneficial, which leads to population explosion for
both species.

B. The phase diagram

The behavior of various population dynamics and wave
profile scenarios can be classified into six regimes as shown
in the phase diagram of a21 versus a12 in Fig. 2. The two
species are competitive in the regime when both a12 and a21 are
positive, and they are mutually beneficial if both a12 and a21 are
negative. The population dynamics and propagating wave pro-
files can be classified into the following six regimes: (I) strong
competition, (II) weak competition, (III) weak mutualism
(symbiosis), (IV) predator-prey, (V) one-species dominating,
and (VI) strong mutualism. Notice that in the presence of
species diffusion, Regime V can further be subdivided into
two regimes: V+ (both a12 and a21 are >0) and V− (a12 and
a21 are of opposite signs). The curve separating Regimes III
and VI is given by a12a21 = a11a22, with both a12 and a21 < 0.
As discussed above, in the absence of diffusion, the ultimate
populations are given by the stable fixed point(s) as shown
in Fig. 1. Stable two-species coexistence is possible only in
Regimes II, III, and IV. However, when the species can migrate
and diffuse in space, the intrinsic motilities of the species can
alter the fate of the population with the presence of propagating
waves. Nevertheless, the system can still be characterized by
the same phase diagram in the presence of spatial diffusion,
which will be discussed in the following sections.

C. Species coexistence and Lyapunov function

Species coexistence is characterized by the equilibrium
populations n∗

1 > 0 and n∗
2 > 0, which is present in Regimes

I, II, III, and IV. The equilibrium point in Regime I is unstable
and stable species coexistence occurs only in Regimes II,
III, and IV. The global stability of the coexisting populations
in Regimes II, III, and IV (and the unstable coexistence in
Regime I) can be described by constructing a single Lyapunov
function. As shown in the Appendix, an entropylike Lyapunov
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FIG. 3. Lyapunov functions as given by Eq. (5) for species coexistence in various interaction parameter regimes. (a) Regime I for unstable
species coexistence due to strong competition; the parameters are the same as in Fig. 5. (b) Regime II for stable species coexistence in the
weak competition scenario; the parameters are the same as in Fig. 6. (c) Regime III for stable species coexistence due to weak mutualism; the
parameters are the same as in Fig. 7. (d) Regime IV for stable species coexistence in the predator-prey scenario; the parameters are the same
as in Fig. 8.

function,

V (n1,n2) = r2sgn(a11 − a21)|a21|(n1 − n∗
1 ln n1)

+ r1sgn(a22 − a12)|a12|(n2 − n∗
2 ln n2), (5)

is constructed. In Regimes II, III, and IV, V̇ ≤ 0 everywhere
in the n1-n2 phase plane with V̇ = 0 only at (n∗

1,n
∗
2), verifying

the globally stability of the coexisting populations. Figure 3
shows the Lyapunov functions in these four regimes. V is peak
at (n∗

1,n
∗
2), indicating its unstable coexistence in Regime I due

to strong interspecies competition. The global stability of the
species coexistence in Regimes II, III, and IV can be visualized
from the minima in V as shown.

III. DIFFUSION OF SPECIES: ANALYTICAL RESULTS
FOR WAVE SPEEDS

In this section, the lower bound of wavefront speeds are
derived using nonlinear dynamics analysis. Assuming local
plane wavefronts with n1(x,t) = U1(x − c1t) and n2(x,t) =
U2(x − c2t), then Eqs. (2) are expressed as a four-dimensional

first-order ODE system:

U ′
1 = V1,

U ′
2 = V2,

d1V
′

1 = −c1V1 − r1U1(1 − a11U1 − a12U2), (6)

d2V
′

2 = −c2V2 − r2U2(1 − a22U2 − a21U1).

This four-dimensional ODE system always has three
fixed points, X0 ≡ (0,0,0,0), X1 ≡ (1/a11,0,0,0), X2 ≡
(0,1/a22,0,0), and another fixed point X3 ≡ (n∗

1,n
∗
2,0,0)

emerges when both populations are nonnegative. The stability
conditions of these fixed points are analyzed by standard
nonlinear dynamics techniques, which will give analytical
results on the wave speeds.

A. The wavefront speed constraint

In the presence of diffusion, Eqs. (2) resemble the well stud-
ied single species Fisher-Kolmogorov-Petrovskii-Piscounov
equation [26], which supports propagating wavefront with
a constant speed. In this paper, we investigate the stable
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FIG. 4. Schematics illustrating the wavefront propagation for a
wavefront obtained by connecting the two homogeneous steady states.
(a) Schematic wavefront profile propagating with speed c. (b) Four-
dimensional phase space flow from the fixed points X to Y resulting
in a propagating wavefront in (a).

population and the wavefront propagation beyond the simple
Fisher’s wavefronts for the two species interacting LV model
using analytical and numerical means. To begin with, consider
a local wavefront that connects two equilibrium states X and
Y as shown schematically in Fig. 4(a). For local wavefront
solutions propagating in the +x direction, one writes nα(x,t) =
Uα(x − ct), for α = 1,2, for some wavefront speed c to be
determined. Then the reaction-diffusion-type equations such
as Eq. (2) will lead to a system of ODEs with dynamics
described by Eq. (6) in a four-dimensional phase space. Two
fixed points in the corresponding four-dimensional phase space
of the dynamical system are denoted by X and Y, and a
propagating wavefront of speed c is represented by a flow
from X to Y as shown schematically in Fig. 4(b). Suppose the
first two components in the phase space vector represent the
population profiles, physical requirement requires that these
population components to be nonnegative. If the final fixed
point Y consists of some zero population components, e.g.,
Y = (0, ∗ , ∗ ,∗) or (∗,0, ∗ ,∗), then the flow in phase space
when approaching Y cannot be an attracting spiral toward Y;
otherwise, some population components would be negative.
The above physical requirement imposes a constraint on the
eigenvalue of the Jacobian at Y and in turn results in a lower
bound on the speed, c � cmin. In many situations (as observed
in all the scenarios in this study), the stable wavefront will
select to propagate with the minimal speed cmin. However, it
should be noted that even though a wavefront propagation is
possible if there is a flow connecting from X to Y, the stability
of the wavefront is not guaranteed but can be checked by
numerical solution of the PDEs.

Furthermore, in all the numerical solution we obtained, for
sufficiently sharp initial population profiles, steady wavefront
develops and always propagates with its minimal allowed
speed. And steady wavefront that propagates with a speed that
is not the lower bound value has never been observed. Thus,
one can conjecture that all wavefronts will propagate with its
minimal constrained limit.

B. Wavefront speeds for the LV model

The eigenvalues of the Jacobian at the fixed point X0 ≡
(0,0,0,0) obeys [λ(λ + c1

d1
) + r1

d1
][λ(λ + c2

d2
) + r2

d2
] = 0, which

can be directly computed to give

λ
(0)
1,± = − c1

2d1
±

√(
c1

2d1

)2

− r1

d1
,

λ
(0)
2,± = − c2

2d2
±

√(
c2

2d2

)2

− r2

d2
, (7)

with the corresponding eigenvectors

1√
1 + λ

(0)
1,±

2

(
1,0,λ

(0)
1,±,0

)
,

1√
1 + λ

(0)
2,±

2

(
0,1,0,λ

(0)
2,±

)
. (8)

Contrary to the case of no diffusion in which (0,0) is an unstable
fixed point, here all the eigenvalues λ(0) have negative real parts
and X0 is stable. Physical requirement demands the fixed point
must be a stable node but not a stable spiral; otherwise, regions
with negative populations will result. So the wave speeds
for wavefront ending with X0 must exceed the lower bound
given by

c � max[v1,v2], (9)

where

vα ≡ 2
√

dαrα α = 1,2 (10)

is the intrinsic “speed parameter” of the α species. Notice that
the intrinsic wave speed parameter is determined by both the
diffusive mobility and the growth rate of the species. It will be
shown later that the phase diagrams for the wave profiles and
all the wavefront speeds are determined by both the intrinsic
speed parameters and the interaction parameters aαβ of the two
species.

For the fixed point X1, the eigenvalues can be similarly
shown to obey [λ(λ + c1

d1
) − r1

d1
][λ(λ + c2

d2
) + r2

d2
(1 − a21

a11
)] =

0, which can be directly computed to give

2λ
(1)
1,± = − c1

d1
±

√(
c1

d1

)2

+ 4r1

d1

2λ
(1)
2,± = − c2

d2
±

√(
c2

d2

)2

− 4r2

d2

(
1 − a21

a11

)
, (11)

with the corresponding eigenvectors

1√
1 + λ

(1)
1,±

2

(
1,0,λ

(1)
1,±,0

)
,

1√
1 + λ

(1)
2,±

2

(
0,1,0,λ

(1)
2,±

)
.

(12)
One can see that λ

(1)
1,± is always real. For a21 < a11, there is

the possibility of Im{λ(1)
2,±} �= 0 resulting in a spiral. So the

physical requirement ensures that λ
(1)
2,± must be real leads to

c2 �
√

(1 − a21

a11
)v2, for a21 < a11. (13)

In this case, the fixed point X1 is a saddle, which has three stable
directions and only one unstable direction. But for a21 > a11,
all eigenvalues are always real with two stable and two unstable
eigenvector directions and hence will not set a limit to the wave
speed.

Similar analysis applies to X2 ≡ (0,1/a22,0,0) and one can
get the eigenvalues and eigenvectors

2λ
(2)
1,± = − c2

d2
±

√(
c2

d2

)2

+ 4r2

d2
,

2λ
(2)
2,± = − c1

d1
±

√(
c1

d1

)2

− 4r1

d1

(
1 − a12

a22

)
, (14)
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FIG. 5. Steady wavefront profiles in Regime I of the phase diagram Fig. 2 with a12/a22 = 2 and a21/a11 = 3, for (a) v1/v2 = 1/2, (b)
v1/v2 = 2. Three wave profiles each separated by a fixed time difference propagating in the +x direction are shown. (c) Normalized wavefront
speeds vs. the speed parameter ratio v1/v2. The measured speeds of n1 and n2 are denoted by • and �, respectively. Solid and dashed-dotted

straight lines are the theoretical minimal speeds given in Eq. (9). Time is in unit of 1/r1 and space is in unit of
√

d1
r1

.

1√
1 + λ

(2)
1,±

2

(
0,1,0,λ

(2)
1,±

)
,

1√
1 + λ

(2)
2,±

2

(
1,0,λ

(2)
2,±,0

)
.

(15)

X2 is also a saddle with three stable directions and one unstable
direction for a12 < a22, and the wave speed constraints of n1

can be obtained to give

c1 �
√(

1 − a12

a22

)
v1, for a12 < a22. (16)

And for a12 > a22, all eigenvalues are real with X2 having two
stable directions and two unstable directions.

As will be illustrated in the next section, the steady wave
speeds will always take the minimal values given by the right-
hand side of Eqs. (9), (13), and (16). Remarkably, Eqs. (13)
and (16) indicate that the wavefront speed of the α species
depends not only on the interaction from the other species (aαβ )
but also on the intraspecies competition of the other species
(aββ). Furthermore, although the wave speed of the α species,
cα , is proportional to its intrinsic speed vα , it will become
vanishingly small as aαβ → aββ

−. Thus, it would be possible
for a species to have a very fast intrinsic speed, but interaction
from another species would slow it down indefinitely near
the critical value of the interacting parameter, a phenomenon
analogous to critical slowing down.

Finally, for the fourth fixed point X3, the eigenvalues cannot
be expressed analytically, but they are given by the solution of
the quartic equation

λ2

(
λ + c1

d1

)(
λ + c2

d2

)
+ r1a11(a12 − a22)

d1 det a
λ

(
λ + c2

d2

)

+ r2a22(a21 − a11)

d2 det a
λ(λ + c1

d1
)

+ r1r2(a12 − a22)(a21 − a11)

d1d2 det a
= 0, (17)

and the values of the eigenvalues and eigenvectors can be
precisely obtained numerically. From the analysis of the
eigenvalues, X3 does not set a limit to the wave speed, but
the wave solution connecting these fixed points can become
more complicated if X3 emerges. The steady wavefront profiles

are examined in the next section by solving the PDEs in Eq. (2)
numerically, with the steady wave speeds also measured.

IV. STEADY WAVE PROFILES AND WAVE SPEEDS
IN VARIOUS REGIMES: NUMERICAL RESULTS

According to the phase plane analysis for the nondiffusive
LV model, there are six different situations according to the
slopes of the nullclines and whether there is an intersection in
the positive quadrant. The wavefront profiles are examined
by numerically solving the PDEs in Eq. (2) for different
regimes in the phase diagram and the steady wave speeds
are also measured. Open boundary conditions are used. For

convenience, time is in unit of 1/r1 and space is in unit of
√

d1
r1

in these numerical results. In all cases, the steady propagating
wave profiles are determined by the interaction parameters and
the intrinsic speed parameters of the two species.

(I) Strong competition, aαβ > aββ : In this region the com-
peting interaction from the other species is larger than the
intraspecific one. Both species are too aggressive and there
is only one species that can eventually survive. In the absence
of spatial diffusion, the surviving species is determined by its
initial population advantage. On the contrary, the situation is
quite different in the presence of their diffusive motion. The
wave profiles of both species at three different times separated
by equal intervals are shown in Figs. 5(a) and 5(b), which
correspond to the dynamical situations given by X1 → X0 for
v1 > v2 and X2 → X0 for v1 < v2, respectively. The deciding
factor that determines the ultimate survivors will switch to the
intrinsic speed (vα ≡ 2

√
dαrα) of the species in the presence

of diffusion. The winner species is the one that possesses a
faster vα . Even if the initial population of the fast species is
low, its fast propagating wave speed enables them to escape to
regions with no competitors and thus can grow to a dominant
population to wipe out the competitors. The wave speeds are
also measured from the numerical solutions of Eq. (2) for
waves that have attained their steady shapes and are shown
in Fig. 5(c) as a function of the ratio of the intrinsic speed
parameters, showing that the wave indeed propagates at the
minimal speed given by Eq. (9), as claimed in Sec. III.

(II) Weak competition, 0 < aαβ < aββ : In this case, the
competing interaction of the other species is weaker than the
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FIG. 6. Steady wavefront profiles in Regime II of the phase diagram Fig. 2 for (a) v1/v2 = 1/2 and (b) v1/v2 = 2. (c) Normalized wavefront
speeds vs. the speed parameter ratio v1/v2. Horizontal solid and dashed-dotted straight lines are the theoretical minimal speeds given in Eq. (9).
Solid and horizontal dashed lines are the theoretical minimal speeds given in Eqs. (16) and (13), respectively. a12/a22 = 1/4, a21/a11 = 3/4.
Symbols and units are the same as in Fig. 5.

intraspecific competition. In the absence of diffusion, both
species can coexist persistently, which can be seen from the
fact that the intersection of the two nullclines in Fig. 1(b)
is a globally stable fixed point [see also Fig. 3(b)]. Such
competitive-coexistence scenario persists regardless of the
presence of diffusion. In the presence of diffusion, species
coexistence remained alongside with the propagation of wave-
fronts. Figures 6(a) and 6(b) show the wave profiles of the two
species at three different times for v1 > v2 and for v1 < v2,
corresponding, respectively, to the dynamics described by
X3 → X2 → X0 and X3 → X1 → X0. The wavefront ends
at the fixed point X0, which determines the fast propagating
speeds similar to the previous case. But now the wavefront
profile starts from the new fixed point X3 instead and passes
through the fixed points X1 or X2, which in turn sets the wave
speed limit of the slower waveback (trailing edge) [given by
the lower bounds of Eqs. (13) and (16), respectively]. The wave
profiles for the two species are different and determined by their
intrinsic speed parameters. The faster species can propagate
into regions with no competitors with a wavefront speed given
by Eq. (9) and achieving full environmental carrying capacity,
but some of its population still lies in regions that coexist with
the competitors and hence having a lower (coexisting) popula-
tion. This is manifested as a waveback for the profile traveling
with a speed identical to the wave speed of its competitors.

The steady wavefront propagating speeds for both species
are examined as functions of their speed parameter ratio
as shown in Fig. 6(c). Similar to the previous case, the
nature of the propagating waves show a sharp change as
v1 increases across v2. The wavefront speeds are also well
predicted by minimal speed values from the analytic results
in Sec. III. Notice that there is a jump in the wavefront speed

of δc1 = v1(1 −
√

1 − a12
a22

) for species 1 and a speed drop of

δc2 = v2(1 −
√

1 − a21
a11

) for species 2, as v1 increases across

v2 [see Fig. 6(c)]. It is worth noting that such a “shift of
gears” in the abrupt change of wavefront speeds has also been
observed in reaction diffusion cell lineage models involving
cell differentiation [27,28].

(III) Weak mutualism, aαβ < 0 and det a > 0: In this
regime, both a12 and a21 are negative and the strengths of such
mutualistic interactions are smaller than the intracompetitions,
namely, a12a21 < a11a22. Commensalism corresponds to the

special case of aαβ < 0 and aβα = 0 in which the β species
is beneficial to the α species but is unaffected by the α

species. In the absence of diffusion, the species coexistence
fixed point [see Figs. 1(c) and 3(c)] is also globally stable.
In the presence of such mutual beneficial interactions, the
environment capacities of the both species are boosted to high
values. However, in the presence of diffusive motion which
leads to wave propagation, the faster species may not be able
take advantage of the mutualism if it travels too fast into
regions with only its own species. Figures 7(a)–7(c) show the
wave profiles of the two species at three different times in
three speed ratio parameters, corresponding to the regimes of

(a) 0 < v1
v2

≤ 1√
1+ |a12 |

a22

, (b) 1√
1+ |a12 |

a22

< v1
v2

<

√
1 + |a21|

a11
, and (c)√

1 + |a21|
a11

≤ v1
v2

. In Regimes (a) and (c), the wave profile of
the faster species consists of a fast and a slower wavefronts,
the slower wavefront has a higher population capacity taking
advantage of the mutualistic coexistence of the slower species
which travel with the same wavefront speed. Remarkably, there
exists a finite regime [Regime (b) above] in which the intrinsic
speeds of the two species do not differ too much, both species
can propagate with a similar waveform and speed, allowing
mutualism to function as they travel, we name this scenario
mutualistic propagation. Regimes (a), (b), and (c) correspond
to the dynamics governed by X3 → X2 → X0, X3 → X0, and
X3 → X1 → X0, respectively. The mutualistic propagation
regime would be the best win-win situation [25] that can hap-
pen, where both species travel in synchrony to occupy regions
with maximal population capacities. The steady wavefront
propagating speeds for both species are shown in Fig. 7(d). The
measured speeds are in excellent agreement with the prediction
given in Sec. III. In the mutualistic propagation regime, both
species travel with the same speed which has a kink at v1 = v2.
Due to the presence of the mutualistic propagation regime the
speed of each species has two kinks as v1/v2 increases, as
shown in Fig. 7(c).

(IV) Predator-Prey, 0 < aαβ < aββ and aβα < 0 : Here
predator and prey are species β and species α, respectively.
In this region, interspecific interaction of the prey to the
predator is beneficiary while that of the predator on the prey is
suppressing but not to strong to wipe out the prey to extinction.
In the absence of diffusion, globally stable coexistence of the
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FIG. 7. Steady wavefront profiles in Regime III of the phase diagram Fig. 2 for (a) v1/v2 = 1/2, (b) v1/v2 = 1/
√

1.1 showing mutualistic
propagation, (c) v1/v2 = 2. (d) Normalized wavefront speeds vs. the speed parameter ratio v1/v2. The mutualistic propagation regime is between
the two vertical lines. Horizontal solid and dashed-dotted straight lines are the theoretical minimal speeds given in Eq. (9). Solid and horizontal
dashed lines are the theoretical minimal speeds given in Eqs. (16) and (13), respectively. a12/a22 = −0.4, a21/a11 = −0.5. Symbols and units
are the same as in Fig. 5.

two species results [see Figs. 1(d) and 3(d)]. The majority
species at coexistence is the predator (n∗

α < n∗
β) if aββ − aαβ <

aαα + |aβα|, and viceversa: if aββ − aαβ > aαα + |aβα|, then
the majority specie is the prey. Thus it is possible to have the
coexistence population of the prey exceeds the predator only
if aββ > aαα , i.e., the intraspecies competition of the prey is
relatively low. However, if aββ ≤ aαα , the population of the
predator will always dominate. In this case, the presence of
species diffusion also allows for wave propagation, but the
interplay of the intrinsic speeds can give rise to interesting
scenarios. The wave profiles at different times for both species
with species-1 and species-2 being the predator and prey
respectively, are shown in Figs. 8(a)–8(c) corresponding to
Regimes (a) 0 < v1

v2
≤ 1√

1+ |a12 |
a22

, (b) 1√
1+ |a12 |

a22

< v1
v2

< 1, and (c)

1 ≤ v1
v2

. Scenarios in Regimes (a), (b), and (c) correspond to
the dynamics governed by X3 → X2 → X0, X3 → X0, and
X3 → X1 → X0, respectively.

In Regime (a), although the population of the prey will be
suppressed by the presence of the predator, the prey can escape
to region free from predation if the intrinsic speed of the prey is
faster. The wave profiles for such an “escape mode” is shown
in Fig. 8(a) for v2 > v1 in which the leading edge of the prey is
ahead of the predator’s propagation and the prey can achieve
its full population capacity. Interestingly, in this escape regime,
there is a population spike at the leading edge of the predator’s
wavefront which is due to the increase in the population of the
escaped prey that attract more predator. This can be interpreted
as the effort of the predator in attempt to catch the escaping
prey, but unsuccessfully.

Remarkably, the scenario of propagation in synchrony
in Regime (b) occurs for a finite speed ratio regime for
v1/v2 � 1, which can be interpreted as coexistence in

“nomadic-pastoralism,” namely, traveling tribes carrying along
with their herd/cattle. Notice that there is also a small pop-
ulation spike for both species near their leading wavefront
boundaries, suggesting the need of more predators to keep
the prey from escaping to free regions. Finally, in Regime
(c) the speed of the predator is faster than the prey, resulting
in a portion of the faster predator in the leading edge of
the wavefront along with a slower portion that travels with
the same speed of the prey with the benefaction of a higher
population capacity. The steady wavefront propagating speeds
for both species are shown in Fig. 8(d) which are in excellent
agreement with the predictions given in Sec. III. The region of
nomadic-pastoralism propagation in synchrony (between two
vertical dashed lines) is also indicated.

(V) [Subdivide into V+ and V−] One species dominating,
aαβ > aββ and aβα < aαα: Here species β is the superior or
dominating one and has a stronger interspecific competitive
interaction than its intraspecific competition. The inferior (α
species) competition on the superior ones is weak (weaker than
its own intraspecific competition) and can even be beneficiary
to the superior ones (aβα < 0 Regime V− described below).
In the absence of spatial diffusion, the dominating species will
surely wipe out the inferior ones to extinction as indicated
by the only stable fixed point in Fig. 1(e). But the above
consequence can be quite different in the presence of diffusion
in which steady wavefront propagation is allowed, the two pop-
ulations can coexist but in different regions in some scenarios.
In addition, the cases of aβα being positive or negative can
further be subdiveded into V+ and V−, respectively.

The wave profiles of the two species at three different times
for V+ (aβα > 0) are shown in Figs. 9(a) and 9(b), with species
1 being the superior one. The inferior species can survive if it
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FIG. 8. Steady wavefront profiles in Regime IV of the phase diagram Fig. 2 for (a) v1/v2 = 1/2, (b) v1/v2 = 1/
√

1.25, (c) v1/v2 = 2. (d)
Normalized wavefront speeds vs. the speed parameter ratio v1/v2. The nomadic-pastoralism regime is between the two vertical lines. Horizontal
solid and dashed-dotted straight lines are the theoretical minimal speeds given in Eq. (9). Solid and horizontal dashed lines are the theoretical
minimal speeds given in Eq. (16) and (13), respectively. a12/a22 = −2, a21/a11 = 1/2. Symbols and units are the same as in Fig. 5.

can outrun the superior to regions with its own species only.
Such escape mode occurs when the intrinsic speed parameter
of the inferior species exceeds that of the superior’s, and the
wave profile of the inferior consists of a fast leading front and
a slow waveback with the same wave speed as the superior’s.
The dynamics of this escape mode can be described by the
flow of X1 → X2 → X0. However, if the speed parameter of
the superior species is faster, then the inferior species is wiped
out to extinction everywhere, and the superior propagates
with a speed given by its speed parameter [see Eq. (9)], as
if the inferior species does not exist at all. In this extinction
regime, the dynamics can be described by the flow X1 → X0.
The steady wavefront propagating speeds for both species are
shown in Fig. 9(c), which are in excellent agreement with the
predictions given in Sec. III. Notice that there is also a “switch

of gear” for the speed jump of

δc1 = v1

(
1 −

√
1 − a12

a22

)
(18)

across v1 = v2 for the superior species.
For the case of V− in which the inferior species is ben-

eficiary to the superior ones, the wave propagations contain
three different modes depending on their speed parameter
ratios. The wave profiles at different times for both species
are shown in Figs. 10(a)–10(c), corresponding to Regimes
(a) 0 < v1

v2
≤ 1√

1+ |a12 |
a22

, (b) 1√
1+ |a12 |

a22

< v1
v2

< 1, and (c) 1 ≤ v1
v2

,

respectively. Similar to the case of V+, the fast intrinsic speed
of the inferior species results in the escape mode in Regime (a)
in which the inferior species propagates with a fast wavefront
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FIG. 9. Steady wavefront profiles in Regime V+ (species-1 is the dominating/superior species) of the phase diagram Fig. 2 for (a) v1/v2 =
1/2, (b) v1/v2 = 2. (c) Normalized wavefront speeds vs. the speed parameter ratio v1/v2. Horizontal solid and dashed-dotted straight lines are
the theoretical minimal speeds given in Eq. (9). Solid line is the theoretical minimal speeds given in Eq. (16). a12/a22 = 3/4, a21/a11 = 5/4.
Symbols and units are the same as in Fig. 5.
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FIG. 10. Steady wavefront profiles in Regime V− of the phase diagram Fig. 2 for (a) v1/v2 = 1/4, (b) v1/v2 = 4/5, (c) v1/v2 = 2. (d)
Normalized wavefront speeds vs the speed parameter ratio v1/v2. The co-propagating regime is between the two vertical lines. Horizontal solid
and dashed-dotted straight lines are the theoretical minimal speeds given in Eq. (9). Solid line is the theoretical minimal speeds given in Eq. (16).
a12/a22 = −2, a21/a11 = 5/4. Symbols and units are the same as in Fig. 5.

and a slower waveback of the same speed as the wavefront of
the superior species. It corresponds to the dynamics governed
by X1 → X2 → X0. However, the escape mode in V− has a
distinct population spike of the superior species in the leading
edge of the wave front, which is similar to that of the escape
mode in Regime IV [see Fig. 8(a)] for similar reasons. If the
superior species has a faster intrinsic speed, then the inferior
species will be driven to extinction, similar to V+. Contrary
to V+, in V− there exists a finite range of intrinsic speed
ratios [Fig. 10(b)], such that both species co-propagate with the
same wave speeds. Scenarios in (b) and (c) correspond to the
dynamics of X1 → X0. The steady wave speeds are measured
(symbols) together with the theoretical predictions (lines) are
shown in Fig. 10(d), showing excellent agreement. Notice that
contrary to V+, there is no abrupt speed jump here as the speed
parameter is varied.

(VI) Strong mutualism, aαβ < 0 and det a < 0: In this case,
the mutual benefaction is too strong in boosting mutual growth
that leads to population explosion. The intra-competitions of
the species are not enough to suppress the enhanced growth
due to strong mutualistic interactions and the populations of
both species will diverge rapidly.

V. DISCUSSIONS AND BIOLOGICAL RELEVANCE

In this paper, the population dynamics and wave properties
for the two-species LV model with general interaction parame-
ters are classified in term of a phase diagram. Each regime in the
phase diagram has its own biological implications as indicated
by its name. Wave propagation solutions exist in general
allowing for efficient directional species movement. In this
section, we summarize our findings with possible extensions

or outlooks, and further discuss the relevant biological or
ecological implications of our results.

A. Summary and outlook

Out results are conveniently summarized by the phase
diagram in (Fig. 2). In these different regimes, the steady
wavefront propagating speeds for both species are examined
as functions of their speed parameters by measuring the wave
speeds from the numerical solutions of Eq. (2) for waves that
have attained their steady shapes. The wavefront speeds are
well predicted by minimal speed values from the analytic
results given by Eqs. (9), (13), and (16) in Sec. III. The
wave speeds depend on both the interaction parameters aαβ

and the intrinsic speed parameters vα . The intrinsic speed
parameter, which is determined by both the species growth
rate and its diffusive mobility, plays a decisive role in the fate
of the population survival and territory occupation. In many
situations, the nature of the propagating waves show a sharp
change as v1 increases across v2 suggesting a “switch of gear”
mechanism of effective changing in speeds by employing the
nonlinear dynamical properties.

Our results indicated that diffusion or motility of the
species can strongly alter the spatiotemporal dynamics,
which is also observed for other related dynamical models,
including spatiotemporal patterns described by the complex
Ginzburg-Landau equation [14,15], the mobility-induced
enhancement or breakdown of cooperation in replicator
dynamics [17,29,30], and in the spatial patterns formed in
prisoner’s dilemma models [16,31,32]. The present study of
the general two-species interaction LV model is not restricted
to specific model parameters and provides a connection
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between different models. The cause of the wave dynamics
in the present work is mainly due to the front-propagation
into unstable states [33], or the so-called the “pulled-front”
propagations, while it may be of different mechanisms
for the complex spatiotemporal patterns occurring in other
dynamical systems. For instance, in the phenomenological
quintic Ginzburg-Landau equation (e.g., in first-order phase
transition) or Swift-Hohenberg equation, depending on the
parameters or nonlinearity, both pulled and pushed fronts with
different velocity selection rules are possible [15].

The present study focused on the case of one spatial
dimension but motions in two and three spatial dimensions,
respectively, are needed for organisms that live on land/shallow
water and in ocean or in air. And for the two-dimensional
generalization of Eq. (2), it can be shown, similar to the
case of the standard Fisher-Kolmogorov-Petrovskii-Piscounov
equation [34], that the asymptotic radial symmetric solution
admits a propagating wavefront solution with speed limits
given by the one-dimensional results. Thus, one anticipates
the conclusion in the present work would still hold for weakly
curved fronts in higher spatial dimensions, or for radially
and spherical symmetric cases. However, transverse instability
could result in breaking the radial symmetry resulting in
complex spatiotemporal (nonlinear) patterns that destroys the
simple propagating wavefronts. More detail analytical and
numerical studies can be carried out to investigate systems
in higher dimensions.

The dynamics considered here is purely deterministic with-
out taking into account of possible environmental or intrin-
sic fluctuations. However, different microscopic dynamical
models, such as birth-coagulation reaction-diffusion model
or directed percolation model, can lead to different forms
of multiplicative noises. Such noises can also be included
resulting in stochastic partial differential equations, which can
be investigated systematically using similar approaches for the
stochastic Fisher-Kolmogorov-Petrovskii-Piscounov (sFKPP)
equations [35,36]. It has been shown that the propagating
Fisher wavefronts are still robust in the presence of noises
[36,37] in the sFKPP model, with the wave speed being
modified differently in the weak noise [38] and strong noise
[39] limits. Thus one anticipates that waves found in the present
model should also be robustunder noises, and some analytical
results for the wavefront speeds could be obtained. However,
more thorough analytical and numerical studies should be
carried out to investigate the dynamics of the LV model under
various types of noises.

B. Biological and ecological implications

From the viewpoint of biodiversity, species coexistence is
essential for ecological balance. From the results in the LV
model, two species can coexist in the same spatial domain
by three pathways: (weak) competitive coexistence, (weak)
mutualistic coexistence, and predator-prey coexistence, cor-
responding to Regimes II, III, and IV in the phase diagram.
The global stability is confirmed by the explicit Lyapunov
functions, and such stable coexistence persists also in the
presence of spatial diffusion. In addition, in Regimes III and
IV, there is a special copropagating region in which both
species propagate through with the same wave speed, and

thus sustaining maximal coexistence and biodiversity in space
and time. In addition, one can interpret our results in various
regimes of the phase diagram in terms of the relevance or
implications in biology, ecology, and population development
strategy, which will be discussed below.

The scenario in Regime II can be thought of as the process
of wound healing [40], in which old healthy cells (species 2)
and newly proliferated cells (species 1) compete for resources
but can coexist persistently. Old cells have less competitive
effect on the newly proliferated cells so as to assist the growth
of new cells and is modeled by the condition of a12 < a21.
When there is a wound, the epidermal cell will begin its fast
proliferation and undergoes migration. The old healthy cells
will then reduce their growth rates (r2) such that the condition
v2 < v1 is reached. The newly proliferated cells can then
propagate with a fast speed of c1 while the old cells with a
slow speed of c2 [see Fig. 6(b)]. Remarkably, the system can
exploit the dynamical behavior of “shift of gear” to boost the
speed of the new cells by δc1 and a speed drop of the old cells
by δc2 for efficient adjustment of the cell movement speeds
across v2 = v1, as described in Sec. IV.

The weak mutualistic interactions in Regime III can en-
hance bio-diversity due to its stable species coexistence.
Many symbiotic ecological systems can be modeled by this
scenario, such as plants and pollinators/seed dispersers. In the
presence of species mobility, weak mutualism is essential for
coevolution and maintaining a stable population while at the
same time both species can occupy new territories by efficient
wave propagations. In the case that the mutualism between
the two species is obligate, i.e., one cannot survive without
the other, then two species moving with the same speeds in
synchrony is critical. Remarkably, our result indicated such a
copropagating wave with the same speed is feasible (without
fine tuning) in a finite parameter range of the intrinsic speeds,
as given by region (b) in Fig. 7. One can further examine the
population growth rates of both species under steady wave
propagations. Direct calculations give

dN1

dt
= cmin

1 n∗
1,

dN2

dt
= cmin

1 n∗
2 + v2 − cmin

1

a22
in region III(a), (19)

dN1

dt
= n∗

1Max(v1,v2),

dN2

dt
= n∗

2Max(v1,v2) in region III(b), (20)

dN1

dt
= cmin

2 n∗
1 + v1 − cmin

2

a11
,

dN2

dt
= cmin

2 n∗
2 in region III(c), (21)

where cmin
1 ≡ √

1 − a12/a22v1 and cmin
2 ≡ √

1 − a21/a11v2 are
the minimal speeds given by Eqs. (16) and (13), respectively.
Figure 11 shows the population growth rates of both species as a
function of one of the species’ speed parameter while the speed
parameter of the other species is fixed. As the speed parameter
of one of the species increases, not only its own growth rate
increases, the growth rate of the other species can also increase
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FIG. 11. Steady population growth rates in Regime III as a
function of (a) speed parameter v1 for fixed v2 = 0.7, (b) speed
parameter v2 for fixed v1 = 0.7. Region in which waves of both
species are propagating in synchrony with the same speed is denoted
between two vertical dashed-lines. Other parameters are the same as
in Fig. 7.

due to mutualistic interactions as shown in the small v1 region
in Fig. 11(a) and small v2 region in Fig. 11(b). There are also
regimes in which the growth rate of the other species remains
unchanged (the advantage of mutualism is not utilized), as in
the largev1 region in Fig. 11(a) and largev2 region in Fig. 11(b).
In the copropagating region in which both species are traveling
with the same speed, one might anticipate the species can take
full advantage of mutualism to boost the populations, but this
is not so, as depicted by a local concave region in the growth
rates in this regime as shown in Fig. 11. This is because in this
copropagating regime, both species achieve high population
densities n∗

1 and n∗
2 and the mutualistic interactions are not

strong enough (weak mutualism, a12a21 < a11a22) to counter-
act the strong intraspecies competitions which suppress the
growth rate. It is worth to note that there is a constant growth
rate region for both species within the copropagating regime.
Such a regime would be very suitable for stable development
since both species can maintain a robust growth rate upon
(small) external perturbations or internal fluctuations on the
parameters of the system.

In the absence of species mobility, Regime IV of predator-
prey can also model the parasite-host coexistence. However,
parasites always stuck with their host and cannot be detached,
thus diffusive model is not suitable for modeling of such
a situation. There are numerous predator-prey systems that
possess spatial mobility for animals in land and sea, also for
bacteria and single cell organisms. The diffusive predator-prey
model is important for modeling territorial ecology associated
with food chains. The population growth rates of both species
under steady wave propagations are given by

dN1

dt
= cmin

1 n∗
1,

dN2

dt
= cmin

1 n∗
2 + v2 − cmin

1

a22
in region IV(a), (22)

dN1

dt
= n∗

1v2,

dN2

dt
= n∗

2v2 in region IV(b), (23)
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FIG. 12. Steady population growth rates in Regime IV as a
function of (a) predator’s speed parameter v1 for fixed v2 = 0.7, (b)
prey’s speed parameter v2 for fixed v1 = 0.7. Region in which waves
of the predator and prey are propagating in synchrony with the same
speed is denoted between two vertical dashed-lines. Other parameters
are the same as in Fig. 8.

dN1

dt
= cmin

2 n∗
1 + v1 − cmin

2

a11
,

dN2

dt
= cmin

2 n∗
2 in region IV(c). (24)

Figure 12 shows the population growth rates of both predator
and prey as a function of one of the species’ speed parameter
while the speed parameter of the other species is fixed. As the
intrinsic speed parameter of the predator increases, there is a
plateau region for the predator growth rate corresponding to
the copropagating regime of both species traveling with the
same speed and the growth rate of the prey also stays constant
in this regime [see Fig. 12(a)]. The plateau or local maximum
in the predator’s growth rate indicates that the predators are
taking advantage of propagating with the same speed as their
prey. However, in the copropagating regime, both growth rates
increase with the intrinsic speed parameter of the prey [see
Fig. 12(b)]. As mentioned before, one can interpret the equal
speed copropagating regime as nomadic-pastoralism, thus the
constant population growth rates in this regime [see Fig. 12(a)]
suggest the system is highly robust against perturbations in
the changes of the parameters of the nomadic (species 1),
but the growth rates are more sensitive (proportional) to the
intrinsic speed parameter of the pastoral (species 2), as given by
Eq. (23). Therefore, in order to sustain a stable environment for
development, the nomadic should maintain a low population
(small n∗

1) so that their growth rate will not be too sensitive
to the variation of the parameters of the pastoral. This can be
achieved by maintaining a low intracompetitive environment
for the pastoral (i.e., small a22, since n∗

1 = (a22 + |a12|)/ det a),
and also keeping the environment (parameters) of the pastoral
as stable as possible. In addition, a smaller value of a22 will also
broaden the copropagating regime and enhance the robustness.

In the one-species dominating Regime V+ (shown in Fig. 9),
there is an abrupt jump in the wavefront speed of the superior
species as its speed parameter exceeds that of the inferior
species, as given by Eq. (18). This scenario can be thought of
analogous to the process of cancer development characterised

052413-12



GENERAL TWO-SPECIES INTERACTING LOTKA- … PHYSICAL REVIEW E 97, 052413 (2018)

0 0.2 0.4 0.6 0.8 1v1
0

0.2

0.4

0.6

0.8

1
dN1/dt
dN2/dt

0 0.5 1 1.5 2v2
0

0.2

0.4

0.6

0.8

1

1.2 dN1/dt
dN2/dt

FIG. 13. Steady population growth rates in Regime V− as a
function of (a) speed parameter v1 for fixed v2 = 0.7, (b) speed
parameter v2 for fixed v1 = 0.7. Region in which waves of both
species are propagating in synchrony with the same speed is denoted
between two vertical dashed-lines. Other parameters are the same as
in Fig. 10.

by the uncontrolled growth and fast dispersal of cancer [41,42].
One can think of the cancer cells as the dominating or superior
species in the sense that they have strong competition on
the (inferior) normal cells. The normal cells have stronger
intracompetition due to apoptosis but the cancer cells have
stronger intercompetition to disturb the normal cells. The case
of low speed parameter (v1 < v2 region in Fig. 9) can be
thought of as benign cancerous tumor cells in which they can
proliferate but migrate with a slow speed and healthy cells
can still grow. In the metastasis stage, the proliferation and/or
migration of the cancer cells become active and its speed
parameter increases. As its speed parameter exceeds that of
the normal cells, there is a sharp increase in the propagation
speed of the cancer cells by a factor of 1/

√
1 − a12/a22, and

at the same time the cancer cells will occupy all the possible
resources and suppress the growth of normal cells.

However, there is no sharp jump or drop in the wave speed
in the V− region as the intrinsic speed parameter changes, but
there is a finite region of co-propagation in which both species
have the same wave speeds [see Figs. 10(b) and 10(d)]. The
steady population growth rates of both species under steady
wave propagation are given by

dN1

dt
= cmin

1

a11

dN2

dt
= v2 − cmin

1

a22
in region V−(a), (25)

dN1

dt
= v2

a11

dN2

dt
= 0 in region V−(b), (26)

dN1

dt
= v1

a11
,

dN2

dt
= 0 in region V−(c). (27)

The population growth rates of both superior and inferior
species as a function of one of the species’ speed parameter
while the speed parameter of the other species is fixed are
shown in Fig. 13. As the intrinsic speed parameter of the supe-
rior species (species 1) increases, its growth rate increases at the
expense of the inferior’s (species 2) and eventually extinguish
the growth rate of the inferior species in the co-propagating
region [see Fig. 13(a)]. The growth rate of the dominating
species stays constant inside the co-propagating region and
therefore is robust against variations in its parameters, which

is desirable for stable development of the superior species.
In the copropagating region, the inferior species can only
sustain a small finite population with a vanishing growth
rate. The inferior species can only grow if its intrinsic speed
parameter can evolve to exceed that of the superior species
[see Fig. 12(b)], however as v2 increases to the copropagating
region, the superior species can take advantage and accelerates
its growth rate. The inferior species can only escape the
domination if it can outrun the superior species in the v2 > v1

regime.
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APPENDIX: DERIVATION OF LYAPUNOV FUNCTION
FOR SPECIES COEXISTENCE

Here we are interested in the species coexisting regimes
whose stability can be guaranteed by the existence of a
Lyapunov function. Nontrivial coexistence fixed point n∗

1 > 0
and n∗

2 > 0 exists in Regimes I, II, III, and IV. Furthermore,
notice that the determinant, det a = a11a22 − a12a21 > 0 holds
in these regimes.

For the case of positive a12 and a21, it has been shown [43]
that an energy or fittnesslike Lyapunov function of the form

Vfit(n1,n2) = 1
2D1a11n

2
1 + 1

2D2a22n
2
2

+ 1
2 (D1a12 + D2a21)n1n2 − D1n1 − D2n2

(A1)

exists, where D1,D2 > 0. One can show by direct calculation
that

V̇fit = ∂Vfit

∂n1
ṅ1 + ∂Vfit

∂n2
ṅ2 (A2)

= −r1n1D1(a11δn1 + a12δn2)2 − r2n2D2(a21δn1 + a22δn2)2

+ n1n2

2
(D1a12 − D2a21)[r1(a11δn1 + a12δn2)

− r2(a21δn1 + a22δn2)], (A3)

where δni ≡ ni − n∗
i is the deviation from the coexistence

fixed point. Hence, a suitable choice to guarantee V̇fit ≤ 0
would be D1a12 = D2a21, which was employed in Ref. [44]
with D1 = a21 > 0 and D2 = a12 > 0. It can be easily seen
that Vfit can serve as a Lyapunov function if a12a21 > 0, i.e., in
Regimes I, II, and III (D1 = |a21|,D2 = |a12|), but not so for
the case a12a21 < 0 [Regime IV].

To overcome the above difficulty, here we propose an
entropylike Lyapunov function of the form [2]

V (n1,n2) = A(n1 − n∗
1 ln n1) + B(n2 − n∗

2 ln n2), (A4)

which is legitimate in all regimes, where the con-
stants A and B are to be determined. Direct calculation
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gives

V̇ = ∂V

∂n1
ṅ1 + ∂V

∂n2
ṅ2

= −1

2
δ�nT Mδ�n, (A5)

M ≡
(

2Ar1a11 Ar1a12 + Br2a21

Ar1a12 + Br2a21 2Br2a22

)
. (A6)

For Lyapunov function, one requires V̇ < 0 everywhere except
at the coexistence fixed point at which V̇ (n∗

1,n2∗) = 0. The
eigenvalues of M need to be positive for V̇ < 0 to hold, thus
one has

Tr M = 2(Ar1a11 + Br2a22) > 0, (A7)

det M = 4ABr1r2a11a22 − (Ar1a12 + Br2a21)2 > 0. (A8)

Since both a11,a22 > 0, one must have A > 0 and B > 0.
det M can also be written as

det M = 4ABr1r2 det a − (Ar1a12 − Br2a21)2. (A9)

Notice that since det a > 0 in these regimes and hence the
first terms in the right-hand side of both Eqs. (A8) and (A9)
are positive. Thus, if one can choose A > 0 and B > 0 such
that the second term in the right-hand side of either Eq. (A8) or
(A9) to vanish will guarantee det M > 0 and hence a Lyapunov
function is constructed. It is easy to verify by direct inspection
that A = r2|a21| and B = r1|a12| is a legitimate choice for
stable coexistence in Regimes II, III, and IV. To incorporate the
unstable coexistence populations in Regime I, the Lyapunov

function can be modified to

V (n1,n2) = r2sgn(a11 − a21)|a21|(n1 − n∗
1 ln n1)

+ r1sgn(a22 − a12)|a12|(n2 − n∗
2 ln n2), (A10)

which is valid for all the cases of species coexistence in
Regimes I, II, III, and IV.

To examine whether the above stability properties will be
altered when spatial diffusion is taken into account in the PDE
system Eq. (2), one can construct the following Lyapunov
functional:

V (t) ≡
∫

V (n1(x,t),n2(x,t))dx. (A11)

Using Eqs. (2) and Green’s identity (integration by parts), one
obtains

V̇ =
∫ (

∂V

∂n1

∂n1

∂t
+ ∂V

∂n2

∂n2

∂t

)
dx (A12)

=
∫

V̇ dx − ∂x �nT

(
d1 0
0 d2

)⎛
⎝ ∂2V

∂n2
1

∂2V
∂n1∂n2

∂2V
∂n1∂n2

∂2V

∂n2
2

⎞
⎠∂x �n,

(A13)

where ∂x �nT ≡ (∂xn1,∂xn2). Lyapunov stability of the homo-
geneous coexistence steady-state (V̇ ≤ 0) guarantees the first
term in Eq. (A13) to be nonpositive. And if the Hessian matrix
of V is further shown to be semipositive definite, then one has
V̇ ≤ 0 establishing the stability of the Lyapunov functional.
For the Lyapunov function of the form in Eq. (A4), the
Hessian matrix is diagonal with elements (An∗

1/n2
1,Bn∗

2/n2
2),

and hence the Lyapunov functional for the reaction diffusion
system Eq. (2) has the same stability as the time-independent
ODE system Eq. (1), namely, the two-species coexistence
is unstable in Regime I, but stable in Regimes II, III,
and IV.
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