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Experimental determination of pore shapes using phase retrieval from q-space NMR diffraction
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This paper presents an approach to solving the phase problem in nuclear magnetic resonance (NMR) diffusion
pore imaging, a method that allows imaging the shape of arbitrary closed pores filled with an NMR-detectable
medium for investigation of the microstructure of biological tissue and porous materials. Classical q-space imaging
composed of two short diffusion-encoding gradient pulses yields, analogously to diffraction experiments, the
modulus squared of the Fourier transform of the pore image which entails an inversion problem: An unambiguous
reconstruction of the pore image requires both magnitude and phase. Here the phase information is recovered from
the Fourier modulus by applying a phase retrieval algorithm. This allows omitting experimentally challenging
phase measurements using specialized temporal gradient profiles. A combination of the hybrid input-output
algorithm and the error reduction algorithm was used with dynamically adapting support (shrinkwrap extension).
No a priori knowledge on the pore shape was fed to the algorithm except for a finite pore extent. The phase
retrieval approach proved successful for simulated data with and without noise and was validated in phantom
experiments with well-defined pores using hyperpolarized xenon gas.
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I. INTRODUCTION

Porous media include a wide range of systems such as
biological tissue, pore spaces of reservoir rocks filled with
fluids [1,2], and chemical catalysts [3]. Inferring information
on the pore structure at the submicrometer scale is highly
desirable in many areas, including life sciences, petrophysics,
and chemical engineering, but it is generally not easily pos-
sible. In nuclear magnetic resonance (NMR) imaging, the
self-diffusion of water molecules is widely probed to gain
information about the microstructure of porous media [4–6],
which would remain concealed in magnetic resonance imaging
(MRI) exams otherwise.

Most commonly, diffusive water molecule motion, which
is restricted by barriers such as cell membranes, is described
by the symmetric diffusion tensor, which quantifies molecular
mobility along each axis and is thus indirectly linked to tissue
microstructure. This enables the computation of quantitative
maps of the apparent diffusion coefficient and fractional
anisotropy [7,8], a parameter characterizing the degree of
directionality of the diffusive motion. These diffusion metrics
allow differentiation between acute stroke lesions and suba-
cute infarcted areas [9,10], identification of malignant tumors
[11–14], and reconstruction of the three-dimensional (3D)
architecture of brain white matter fiber bundles [15–18].

They provide, however, little information about the actual
microstructure restricting the diffusion process, although such
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information would be highly valuable in many circumstances.
It is known that such information can be obtained by means
of “q-space imaging,” which makes use of the application
of two short bipolar gradient pulses. It was used in 1991 by
Callaghan et al. to probe the restricted diffusion in closely
packed polymer spheres, where they observed an echo at-
tenuation highly reminiscent of diffraction patterns [19]. The
signal showed a peak at the wave-vector value corresponding
to the inverse of the pore spacing. The replication of the
sample’s geometry in the signal evolution induced by restricted
diffusion lead to the cognition that NMR q-space imaging
is akin to scattering experiments. Later, diffusion-diffraction
patterns outside of phantoms were reported for samples such
as erythrocytes [20–22]. For continuous media, the relation
between diffusion NMR and the scattering formalism has been
outlined in Refs. [23,24].

One limitation of q-space imaging is that these diffusion
diffraction experiments allow only measuring the modulus
squared of the Fourier transform |ρ̃(q)|2 of the unknown pore
space function ρ(x), which is used to describe arbitrarily
shaped pores filled with an NMR-detectable diffusing medium.
Hence, the diffraction pattern cannot be directly inverted
via a Fourier transform to yield the precise pore shape in
the rotationally asymmetrical case where the pore’s Fourier
transform may be negative and/or complex.

The phase problem was overcome by modifying the tem-
poral gradient profile: Laun et al. replaced one of the narrow
gradient pulses with a very long pulse of equal area and
could thus preserve the phase information [25,26]. With the
greater information content of the thus determinable ρ̃(q),
the direct reconstruction of arbitrary pore space functions was
enabled so that the average pore shape in an imaging volume
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element could be measured [27–31]. This technique, known as
diffusion pore imaging, potentially enables in vivo estimations
of histology-like parameters such as cell-size distributions.
However, the need for application of a long gradient pulse
prevents the use of many NMR sequences, such as those
based on stimulated echoes [32]. Therefore, the alternative
solution to the phase problem offered by a special case of
double-diffusion-encoded (DDE) [33] measurements can be
beneficial: When using three short gradient pulses, imaginary
signal parts can occur [34]. In a subsequent reconstruction of
the Fourier transform of the pore space function, the phase
information can be extracted from the DDE signal [35,36].
The magnitude information is obtainable either from the DDE
signal or by an additional q-space measurement [36,37].
The feasibility of this approach was demonstrated in well-
controlled phantom experiments [38], but robust measurement
of the phase of the diffusion-weighted signal is in general a
challenging task, particularly in vivo [39].

In many fields of physics, it has been shown that lack
of phase information can be overcome by means of phase
retrieval algorithms. For example, phase retrieval algorithms
were used for wavefront sensing for radio antennas [40] and
for turbulence-aberrated optics [41], where it was applied
to evaluate and correct the aberrations in the Hubble Space
telescope [42] and used to align mirror segments of the
future James Webb Space telescope [43]. Through solving the
phase problem in x-ray crystallography [44], the double helix
structure of DNA was uncovered [45]. In lensless imaging,
phase retrieval algorithms are used as a substitute of the lens
to recombine the scattered x-ray light offering aberration-free
diffraction-limited images [46,47]. Three-dimensional images
can be constructed tomographically [48,49], and application
to biological samples is feasible [50–52]; for more application
areas see Ref. [53].

In this work, we propose to apply phase retrieval algorithms
to q-space imaging data to reconstruct pore shapes. The
phase information is retrieved by an iterative process from the
available magnitude information using additional conditions,
in particular assuming that the imaged pores are of finite size
while employing a dynamic support estimation [54]. Validation
using diffusion simulations and measurements in well-defined
geometries using hyperpolarized xenon-129 is presented.

II. THEORY

A. The pore space function

A pore is understood to be a finite volume V that has a closed
boundary and whose interior is defined by the support �. Its
volume is filled with an NMR-detectable diffusing medium.
The pore shape is described by the pore space function

ρ(x) =
{

1/V, if x ∈ �

0, if x /∈ �
. (1)

In diffusion pore imaging, one is interested in determining
ρ(x) by measurement of its Fourier transform ρ̃(q), where q
represents a vector in q space and |q| is referred to as the q
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FIG. 1. Schematic depiction of the diffusion-encoding gradient
profiles and pore imaging phantoms. (a) Effective q-space imaging
gradient profile G11(t). (b) DDE gradient profile G121(t). Gradient
durations δ are composed of the gradient ramp-up time plus flat top
time. Pore imaging phantoms form arrays of pores with (c) equilateral
triangular cross section with edge length L = 3400 μm or (d) star
shapes with L1 = 3100 μm, L2 = 3000 μm.

B. q-Space imaging and the phase problem

In NMR diffusion experiments, the signal attenuation is
given by the ensemble average 〈exp(iψ)〉 over all possible
random walk trajectories, where ψ = −γ

∫ T

0 G(t) · x(t)dt is
the acquired spin phase by a random walker traversing on
the trajectory x(t) during 0 < t < T in the presence of the
temporal magnetic field gradient profile G(t), and γ is the
gyromagnetic ratio [55]. For q-space imaging, two short
bipolar gradient pulses of duration δ are applied with gradient
vectors −G at t = 0 and G at t = T − δ. For a spin echo
version of the gradient profile see Fig. 1(a). With this definition,
immobile particles accumulate no net phase, whereas moving
particles cause a signal attenuation given by

S11(q) =
〈
exp

{
−iq ·

[
−1

δ

∫ δ

0
x(t)dt + 1

δ

∫ T

T −δ

x(t)dt

]}〉
(2)

with q = γ Gδ. In the limit of narrow gradient pulses (δ → 0),
the time integrals equal the particles’ starting position x1 =
x(0) and final position x2 = x(T ), and in the limit of long
diffusion time (T → ∞), each exponential can be evaluated
separately because the correlation between x1 and x2 is lost
[19,56,57]:

S11(q) = 〈eiq·x1〉〈e−iq·x2〉
=

∫
Pore

ρ(x1)eiq·x1dx1

∫
Pore

ρ(x2)e−iq·x2dx2

= ρ̃∗(q)ρ̃(q) = |ρ̃(q)|2, (3)

where the asterisk marks the complex conjugate. In Eq. (3)
the phase information on the form factor ρ̃(q) is absent so
that q-space imaging only allows measuring the magnitude
spectrum. Hence, an unambiguous determination of ρ(x) from
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q-space measurements via a Fourier transform is impossible,
which is known as the phase problem.

C. Phase extraction from phase-containing measurement:
Double diffusion encoding

The phase information can be recorded using two diffusion
encodings with antiparallel wave vectors [34] applied without
temporal separation so that the second and third gradient pulses
are superimposed [Fig. 1(b)]. For this special form of double
diffusion encoding [33], the signal in the short-gradient-pulse
approximation is given by [34,35]

S121(q) = ρ̃∗(q/2)2ρ̃(q). (4)

The desired phase of ρ̃(q) is not directly accessible but can
be disentangled from Eq. (4) with an iterative phase estimation
approach [36,38]. Either the phase can be combined with
the magnitude information from q-space imaging, or the full
complex signal in q space can be obtained solely from the
DDE measurement when the magnitude is as well estimated
from Eq. (4).

D. Phase retrieval

Using phase retrieval, a function, here the pore space func-
tion ρ(x), is recovered from the magnitude measurement of its
Fourier transform, |ρ̃(q)|, or, equivalently, ϕ(q) = arg[ρ̃(q)] is
retrieved from |ρ̃(q)|. Without further information on ρ(x), the
phase retrieval problem is ill-posed. A better posed problem
can be obtained by imposing additional properties on the image
space candidate solution such as compact support constraint
and that ρ(x) is real. With such additional information, ρ(x)
can be uniquely determined up to trivial ambiguities [58,59].
Even in settings for which uniqueness is guaranteed, no general
phase retrieval method exists to recover the unknown phase.
The most popular class of phase retrieval methods are alternat-
ing projection algorithms, which are based on the pioneering
work by Gerchberg and Saxton [60], who presented the first
iterative method, capable of phasing diffracted intensities
measured in the object and Fourier domain. This approach was
extended by Fienup, who swapped the magnitude information
in the object’s domain against feedback and compact support
constraints [61]. He proposed different versions with differing
constraints imposed on the current image estimate: two of these
are the error reduction algorithm (ER) [62] and the hybrid
input-output algorithm (HIO) [62].

The basic outline of the ER algorithm is as follows: First,
an initial random guess of the pore image ρ1(x) is made,
and then repeated Fourier transforms between image and
q space are performed after the known information on the
pore image to be reconstructed are imposed on the current
estimate in each domain. In Fourier space, consistency with
the measured magnitude |ρ̃(q)| is imposed. In the beginning,
a random phase is assigned to the known magnitude. In image
space, the pore is constrained to have a finite support �; i.e.,
there is an area outside the pore which is identically zero.
Assuming that the pore is a finite-size object is an essential
step in solving the phase problem. The algorithm can be
formulated mathematically in four simple steps, which are

repeated iteratively with k as the iteration index:

Step 1: ρ̃k(q) = |ρ̃k(q)| exp[iϕk(q)]

= FT{ρk(x)}, (5)

Step 2: ρ̃
′
k(q) = |ρ̃(q)| exp[iϕk(q)], (6)

Step 3: ρ
′
k(x) = |ρ ′

k(x)| exp[iϑ
′
k(x)]

= FT−1{ρ̃ ′
k(q)}, (7)

Step 4 (ER): ρk+1(x) =
{

ρ
′
k(x), if x ∈ �

0, if x /∈ �
. (8)

For better readability, a block diagram of the algorithm is
shown in Fig. 2 with notation adapted to NMR diffusion pore
imaging [63]. In the beginning, the current estimate ρ ′

k(x) is
in general incorrect. However, when the calculated Fourier
magnitude ρ̃k(q) is substituted with the measured magnitude
|ρ̃(q)| in step 2 while the calculated phase is kept the same, the
inverse Fourier transform (step 3) yields a refined estimate
of the pore image ρ ′

k(x). After correcting the estimate by
imposing a boundary and setting all elements outside the
boundary to zero (step 4), transforming the image again into
Fourier space (step 1) provides a refined estimate of the phase
ϕk(q), which is again combined with the measured magnitude
for the next iteration. As the iterations proceed, the pore image
estimate will converge to the correct image that satisfies the
constraints in both x and q space.

FIG. 2. Block diagram of the iterative phase retrieval algorithm
based on Ref. [63]. The algorithm is seeded with a random starting
image. Afterwards, the algorithm iterates in four steps as illustrated
by the red arrows between Fourier (q) and image (x) space using
corresponding Fourier transforms (steps 1 and 3). In step 2, the
estimated Fourier magnitude is replaced with the measured magnitude
from q-space imaging while keeping the estimated phase. In step 4
a support constraint is enforced. In this case the hybrid input-output
(HIO) version is depicted.
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It is known that the error reduction algorithm is prone
to stagnation in local minima of the error between the
measurement |ρ̃(q)| and estimate |ρ̃k(q)| [59]. To avoid stag-
nation in a local minimum, Fienup proposed the HIO version
[61,63], for which the first three steps are identical to the
ER version, but it differs in the fourth: The outer region,
where |ρ ′

k(x)| should converge to zero, is suppressed by taking
the result of the previous iteration ρk(x) into account and
subtracting the new estimate from the current iteration times
a feedback coefficient 0 � β � 1. Typical values for β range
between 0.5 and 0.9 [53,63]. Equation (8) is replaced by

Step 4 (HIO): ρk+1(x) =
{

ρ
′
k(x), if x ∈ �

ρk(x) − βρ
′
k(x), if x /∈ �

. (9)

By means of the negative feedback component, the starting
point for the next iteration is pushed into the desired direction
and the algorithm is able to escape from local minima of the
error metric; i.e., the errors can increase temporarily and there
is no proof of convergence.

To help the algorithm to converge, other prior information
on the sought-after pore space function can be incorporated, for
example, imposing a non-negativity (NN) constraint on ρ ′

k(x)
in addition to requiring a compact support:

Step 4 (ER + NN):

ρk+1(x) =
{

ρ
′
k(x), if (x ∈ �) ∧ [ρ

′
k(x) � 0]

0, if (x /∈ �) ∨ [ρ
′
k(x) < 0]

, (10)

Step 4 (HIO + NN):

ρk+1(x) =
{

ρ
′
k(x), if (x ∈ �) ∧ [ρ

′
k(x) � 0]

ρk(x)−βρ
′
k(x), if (x /∈ �) ∨ [ρ

′
k(x) < 0]

.

(11)

Negativity refers to the real part of ρ ′
k(x). The imaginary

part is ignored.
When applying phase retrieval to q-space data to perform

diffusion pore imaging, the pore boundary is the main unknown
information to be determined, and at the same time a compact
support is essential to solve the phase problem. Therefore, �

needs to be deduced from information that is available in the
measurement. Back-transforming the q-space measurement,
Eq. (3), results in

FT−1{ρ̃∗(q)ρ̃(q)} = FT−1{ρ̃∗(q)}∗FT−1{ρ̃(q)}
= ρ(−x)∗ρ(x) =: A(x), (12)

where the convolution ρ(−x) ∗ ρ(x) is known as the pore’s
autocorrelation function A(x), which is nonzero over a range of
twice the pore’s extent for each of both dimensions. By thresh-
olding A(x) appropriately, a first loose support of the pore is
found, which is large enough to comprise the pore but does
generally not allow for an exact determination of the support.
One solution to this problem is the shrinkwrap extension that
has been developed to find the support dynamically [54,64]:
While the algorithm is progressing, the support will be tight-
ened by thresholding a blurred version of ρ ′

k(x) until it wraps
around the actual pore shape (Fig. 2). In this way the shape of
the pore is determined together with the image of the pore.

The squared Fourier modulus is insensitive to multiplica-
tive constant phase factors eiα for αε[0,2π ), translations of
ρ(x) by some x0 = (x0,y0), or conjugate reversal [complex
conjugation plus rotation by 180°, i.e., ρ(x) → ρ∗(−x)], with
the latter being referred to as image twinning: |FT{ρ}(q)|2 =
|FT{ψ}(q)|2 if ψ = eiαρ∗(−x − x0, − y − y0). In phase
retrieval, these ambiguous solutions are considered to be
equivalent.

E. Pore shape and size distributions

The total q-space signal over M different separated pores
with different pore space functions ρn(x) and pore volumes Vn

is given by [65]

S11,tot(q) =
M∑

n=1

fn|ρ̃n(q)|2 (13)

with the volume fraction of the NMR-detectable medium fn =
Vn/(

∑M
n=1 Vn). The form factor does not contribute linearly

to the total signal, but instead the product with its complex
conjugate, ρ̃∗(q)ρ̃(q), enters. Thus recording the q-space
signal over a volume element with different pores does not
return an arithmetic average pore image. In contrast, for the
long-narrow gradient scheme [25], where changing one of
the short q-space gradient pulses to a long pulse with an
identical first moment preserves the phase information, the
form factor appears linearly in the respective signal equation
[65] (δ → 0, T → ∞):

SLN,tot(q) =
M∑

n=1

fn ρ̃n(q) exp[iq · xn,cm].

As a result of the factor exp[iq · xn,cm], where xn,cm is
the respective pore’s center of mass, all pores in the imaging
volume are shifted on top of each other. Under ideal conditions
(δ → 0, T → ∞), an average pore image is obtained by taking
the inverse Fourier transform of SLN,tot(q). For the derivation
of SLN(q) analogous to Sec. II B, the reader is referred to
Refs. [25,26].

III. METHODS

A. q-Space, double diffusion encoding, and long-narrow data

1. Simulations of uniform samples

Numerical simulations of the diffusion process within con-
fining triangular pore shapes were performed as in Ref. [38]:
The q-space and DDE signals were computed using an eigen-
value decomposition approach [using Eq. (144) of Ref. [66];
see also Refs. [26,67–70]]. The expense on computational time
is very low with this approach, but it requires that the Laplacian
eigenfunctions and matrices are known analytically for the
pore domain, as is the case for the equilateral triangular pore
shape [26]. It was ensured that the used number of eigenvalues
was sufficient by varying the number of eigenvalues. The
edge length of the triangular shape was L = 3400 μm. The
diffusion time was T = 270 ms, and the gradient duration was
δ = 5.46 ms. For phase retrieval, 25×25 points in q space
were sampled with maximum q values qmax of ±12 mm−1

in both vertical and horizontal dimensions corresponding to
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a nominal resolution of x = 0.26 mm. For the recursive
reconstruction, q-space and DDE signals were sampled at a
spacing of 0.12 mm−1 for the vertical and horizontal gradient
directions.

For star-shaped pores, Monte Carlo simulations with
1.5×106 random walkers and 6×104 steps per random walk
trajectory were used to compute the q-space signal. Parameters
used were a pore size as in Fig. 1(d), 27×27 sampling points in
q space, qmax = ±13.5 mm−1, x = 0.23 mm, T = 340 ms,
and δ = 6.15 ms.

The effect of a limited signal-to-noise ratio (SNR) was
estimated by adding Gaussian noise with a standard deviation
equal to 1/150 times the signal at q = 0 to the signal S11(q).

2. Simulations of pore distributions

To assess the performance of the phase retrieval method for
imaging volumes containing not identically shaped or sized
pores in comparison to the long-narrow approach, simulations
were performed for four different settings: In the first setting,
the q-space imaging and long-narrow signal of a shape dis-
tribution containing the equilateral triangle and the star shape
were simulated with the following parameters: triangle and
star size as in Figs. 1(c) and 1(d), T = 340 ms, δ = 6.15 ms,
27×27 points, qmax = ±13.5 mm−1, and x = 0.23 mm. Fur-
ther, two homogenous size distributions of 101 triangles with
mean size L0 = 3400 μm (L = 0.75 L0 . . . 1.25 L0 for a
narrow distribution, L = 0.15 L0 . . . 1.85 L0 for a broad distri-
bution) were simulated as well as one orientation distribution
of identically sized triangles (L = 3400 μm), which were
rotated in steps of 1° from −20◦ to 20◦. Parameters for the
three settings were T = 270 ms, δ = 5.46 ms, 27×27 points,
qmax = ±12 mm−1, and x = 0.26 mm. Additionally, for all
distributions the volume fraction-weighted average pore space
function under idealized conditions (δ → 0, T → ∞) was
computed analytically for the triangular domains or from the
Monte Carlo simulation for the star shape.

3. Experiments

All experiments were conducted on a clinical MR scan-
ner of 1.5 T static magnetic field (Magnetom Symphony,
A Tim System, Siemens Healthcare, Erlangen, Germany)
with a maximal employed gradient amplitude of 29.5 mT/m.
q-Space diffusion measurements require the diffusion process
to reach the long-time limit during the diffusion time, while the
typical diffusion distance during gradient application has to be
small compared to the pore size, imposing high requirements
on the gradient amplitude. As previously described, both
requirements can be met on a clinical MR scanner by using
phantoms containing pores on the millimeter scale filled with
a hyperpolarized xenon-129 gas mixture [27,38]. The xenon
diffusion coefficient of the mixture containing Xe (0.95 Vol%),
N2 (8.75 Vol %), and He (rest) was estimated to D0 =
(37 000 ± 2000) μm2/ms [27], which is almost one order of
magnitude higher than for pure xenon gas [71]. Hyperpolarized
gas was generated using spin exchange optical pumping and
was transferred to the phantom in the MR scanner as detailed
in Refs. [27,38].

Diffusion pore imaging phantoms with two different pore
shapes were studied: The first type consists of acrylic glass

plates with cutout grooves of equilateral triangular shapes
and was built by the in-house workshop. The plates were
stacked on top of each other to form an array of 170 pores
[Fig. 1(c)]. The second phantom was 3D-printed as one
block with the PolyJet technology (Objet30 Pro, VeroClear
as printing material, Stratasys, Ltd., Eden Prairie, MN, USA)
and contained 135 tubes with a star-shaped cross section as
illustrated in Fig. 1(d). These phantoms were positioned in the
isocenter of the magnet in an in-house built xenon coil, and a
constant gas flow of 140 ml/min through the pores was directed
parallel to the main magnetic field.

The radiofrequency pulses were applied to select one thick
slice of 45 mm with the plane normal vector parallel to the gas
flow covering the complete length of the pore tubes. In this way
the diffusion encoding gradients were applied in the transversal
plane of the scanner orthogonal to the flow direction, i.e.,
in the plane of the triangular and star-shaped cross sections.
q space was sampled on a Cartesian grid using the q-space
gradient profile depicted in Fig. 1(a) by varying the gradient
amplitudes while keeping the gradient duration δ constant. For
triangular pores the gradient duration was δ = 5.46 ms and the
diffusion time was T = 270 ms. For the maximum q value
±12 mm−1 with q = 1 mm−1 were used corresponding to
a nominal resolution of x = 0.26 mm and 25×25 pixels.
For the star-shaped pores T = 340 ms and δ = 6.15 ms were
used with qmax = ±13.5 mm−1, q = 1.039 mm−1, x =
0.23 mm, and 27×27 pixels. For the triangular pores, addi-
tional DDE measurements were conducted for the vertical
and horizontal gradient directions using the profile depicted
in Fig. 1(b) with q = 0.48 mm−1. Both gradient profiles
were implemented as spin echo sequences by inserting 180◦
refocusing pulses with durations of 2.56 ms, which were
surrounded by spoiler gradients in the slice selection direction.
The durations δ of the trapezoidal gradient pulses are given as
flat top time plus the ramp-up time of 0.30 ms. The repetition
time, i.e., the time between two consecutive 90° excitation
pulses, was set to 18 s to restore the polarization in the
phantom sufficiently via gas exchange before a new point in
q space was acquired. Fluctuations in the polarization level
were accounted for using pre-readouts: The recorded spin
echo was averaged and normalized to an additional signal
acquisition directly after the 90◦ excitation pulses. To obtain
the diffusion-induced signal attenuation, a normalization to
S(q = 0) was conducted afterwards. For phase retrieval, the
absolute value of the q-space signal was used.

For the star-shaped domain, due to limited SNR at the higher
q values, the q-space signal was measured three times and was
then averaged before applying the phase retrieval algorithm.

B. Phase retrieval algorithm: Initialization and used parameters

In this work, the algorithm consists of several cycles of
iterations, where one cycle consists of many hundreds of
iterations of the HIO algorithm followed by a few iterations of
the ER algorithm while incorporating a dynamically adapting
support using the shrinkwrap extension. The first estimate of
the support mask was obtained by thresholding the autocor-
relation function A(x) [Eq. (12)] at 5% of its maximum so
that the upright pore and its twin image fit inside. At every
10 iterations of the algorithm (HIO or ER), � was improved by
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convolving the magnitude of the current estimate ρ ′
k(x) with a

Gaussian kernel and thresholding this blurred version at 20% of
its maximum. The width (standard deviation) of the Gaussian,
initially set to σ = 2.5 pixels, was reduced at each update of
the support by 2% so that the support shrank from update to
update until it enclosed the pore shape tightly. At a minimum
of 0.5 pixels, σ was kept constant.

To begin, an array of random numbers in the interval (0,1)
was generated to serve as an initial unbiased estimate of the
pore image ρ1(x), which was normalized so that its Fourier
transform had the same integral as the measured Fourier
magnitude data, i.e.,

∑
i

∑
j |ρ̃1,ij | = ∑

i

∑
j |ρ̃ij |, where ρ̃1,ij

and ρ̃ij denote the respective elements of the image matrix.
This normalization was also performed on ρ̃k(q) at every
iteration. Since ρ(x) is real per definition, a global phase was
additionally multiplied to every pixel of ρ̃k(q) to zero the phase
in the central pixel at every iteration. Two thousand iterations
of the HIO algorithm with non-negativity constraint [Eq. (11)]
with β = 0.9 were performed followed by 300 iterations of the
ER algorithm with non-negativity constraint [Eq. (10)]. The
shrinkwrap refinements started with the first iteration of the
HIO algorithm. After the last HIO iteration, the newest version
of � and the current σ were passed on to the ER algorithm.
The sequence of random start generation and HIO iterations
followed by ER iterations is referred to as one cycle of the
phase retrieval algorithm.

For each tested cycle, starting each from a random array,
the reconstructed image and the shape of its shrinkwrap
support slightly varied. Therefore 100 cycles were carried out
and averaged: To remove translational ambiguity and image
twinning, each of the 100 pore images was moved to the
image center. As a reference, the image featuring the highest
asymmetry was chosen, i.e., the one with the largest difference
to its rotated version. The other pore images were matched to
this reference by rotation, if rotation decreased the deviation
from the reference. In this work, the average pore image
together with the phase of the inverse Fourier transform of
the average pore image are referred to as the phase retrieval
result.

C. Processing of the DDE signal

To assess and compare the phase retrieval result, the
phase was calculated for the vertical and horizontal gradient
directions in q space from simulated and measured DDE
signals [Eq. (4)] through a recursive reconstruction approach
as described in Refs. [36,38]. Afterwards, an inverse Fourier
transform was applied to both directions returning the projec-
tion of the pores onto the respective gradient direction.

Simulations, signal processing, the phase retrieval algo-
rithm, and the iterative phase reconstruction from the DDE
signal were implemented in Matlab (MathWorks, Natick, MA,
USA).

IV. RESULTS

Figure 3 shows the phase retrieval result for the signals
obtained in diffusion simulations (Sec. III A 1) using a re-
alistic gradient timing for a clinical scanner (δ = 5.46 ms,

FIG. 3. Phase retrieval results for diffusion simulations for the
equilateral triangle. (a) Final pore image ρ ′

k(x). The magnitude of
the phase retrieval result in q space (b) is given by the simulated
diffraction pattern by construction of the algorithm. The retrieved
phase (c) is conjugate symmetric, i.e., ρ ′

k(q) = ρ ′
k
∗(−q), as expected.

For two gradient directions indicated by the vector G, q-space profiles
(d, e) and pore image projections (f, g) of the phase retrieval result
(PR, dots) are compared to the recursive phase reconstruction method
using DDE from Sec. II C (DDE, lines).

T = 270 ms). It demonstrates that the correct pore shape was
found by the phase retrieval algorithm, as well as pixel, that
are crossed by the pore boundary and have low intensity due
to partial volume effects [Fig. 3(a)]. Looking at individual
gradient directions, the algorithm was successful to the same
degree as the recursive phase reconstruction from the simu-
lated DDE signal: Figs. 3(d) and 3(e) show the profiles of
ρ̃ ′

k(q) for the vertical [Fig. 3(d)] and horizontal [Fig. 3(e)]
gradient directions, indicated by dots, and compare them to
profiles where the phase information was disentangled from
the simulated DDE signals, indicated by lines. In Figs. 3(f) and
3(g), the projection of Re[ρ ′

k(x)] onto the respective gradient
direction is shown (dots) and compared to the one-dimensional
inverse Fourier transforms of the ρ̃(q) profiles from DDE
simulations (lines). For the horizontal gradient direction, the
retrieved phase is identical to zero at each q value resulting in a
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FIG. 4. Example on how the HIO algorithm with shrinkwrap extension progresses following the scheme in Fig. 2 plus additional non-
negativity constraint. Following the meandering red line, the algorithm starts with a random guess and then cycles back and forth between
image and q space until the maximum number of 2000 iterations is reached. Thresholding the autocorrelation function gives the initial support,
which shrinks down from the hexagonal shape to the final triangular pore shape with increasing number of iterations k. Since only a limited
number of iterations could be shown, sequences of three dots were inserted for the skipped iterations. Images of Re[ρ ′

k(x)]: Colors for negative
(blue) and positive (red) values are chosen such that in the printed grayscale version the gray levels represent |ρ ′

k(x)|.

purely real ρ̃ ′
k(q) as expected for the mirror-symmetric x-space

profile. For the vertical gradient direction, the phase is not zero,
leading to a complex ρ̃ ′

k(q). The algorithm correctly reproduces
ρ̃ ′

k(q) = ρ̃ ′∗
k (−q), resulting in sign changes of the phase in

[Fig. 3(c)] when replacing q by −q, which is also confirmed
in Fig. 3(d). Both x-space profiles clearly show the projection
of the pore onto the two directions. The reconstructed pore
image shows a signal increase near the boundary [Fig. 3(a)]:
Since the gradient pulse duration is not negligible, the center of

mass of the trajectory of a particle diffusing near the boundary
during the time interval at which a gradient is applied will not
lie directly next to the boundary but will be shifted toward the
center of the pore, causing a shift of the diffraction maxima to
higher q values, and the pore appears smaller than its real size
with an increased boundary signal. This edge enhancement
effect [26,38,72] can also be seen clearly in Fig. 3(f).

For the same q-space data as in Fig. 3, Fig. 4 shows a
sequence of images produced by the phase retrieval algorithm
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FIG. 5. Phase retrieval results for diffusion simulations with
added noise for the equilateral triangle. Except for that the signal-
to-noise ratio of S11(q) was set to 150 at q = 0 mm−1, the figure is
identical to Fig. 3. In (a), colors for negative and positive values of
Re[ρ ′

k(x)] are chosen such that in the printed grayscale version the
gray levels represent |ρ ′

k(x)|.

as the image reconstruction progresses, starting with the
magnitude-only information in q space, the initial random
image in x space, and the support from the autocorrelation
function, which is shaped like a hexagon. For an increasing
number of iterations the random pore image estimate trans-
forms into the triangular shape: The phase profile improves
steadily, and the support shrinks and wraps around the pore
shape tightly. Here both a translation and image twinning
occurred so that the pore appears upside down.

Figure 5 demonstrates that the phase retrieval algorithm is
robust to noise when we set out to find the pore shape in a
uniform sample (SNR = 150). However, details such as the
enhanced edges as for the simulation without noise or the
fine triangle tips at the bottom [Fig. 3(a)] cannot be recovered
unambiguously at this noise level.

Moving on to experimental data (Sec. III A 3), the diffrac-
tion pattern [Fig. 6(b)] shows considerable noise at the higher
q values and in areas where the signal decreases faster, i.e.,

FIG. 6. Phase retrieval results for phantom experiments with the
equilateral triangle. (a) Final pore image. (b) Measured magnitude in
q space. (c) Retrieved phase. For two gradient directions indicated
by the vector G, q-space profiles (d, e) and pore image projections
(f, g) of the phase retrieval result (PR, dots) are compared to the
recursive phase reconstruction method for measured (DDE, crosses)
and simulated DDE signals (DDE, lines). For better visibility, only
positive q values are plotted.

where the x-space projections onto the gradient directions
are mirror-symmetric. At higher q values, these are also the
areas where the retrieved phase becomes inaccurate and the
conjugate symmetry gets lost. However, for the vertical and
horizontal gradient directions, the profiles in q and x space
(dots) agree very well with profiles extracted from simulated
(lines) DDE signals [Figs. 6(d)–6(g)]. For the measured DDE
signals (crosses in Fig. 6), twice the number of q values was
acquired since the recursive phase estimation in Sec. II C takes
the phase of the form factor at half the q value into account, and
therefore involves interpolation between measurement points
[36,38]. Here stronger deviations at high q values from the
simulations and the phase retrieval result are observed: S121(q)
drops relatively fast to the noise level. Therefore, the recursive
phase estimation using the already noisy signal at smaller q

values fails at high q values (for some directions) [38]. The
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FIG. 7. Phase retrieval results for phantom experiments with the
star-shaped domain. (a–c) The phase retrieval result for simulated
q-space data of star-shaped pores, which exhibits noise because the
Monte Carlo method was used instead of the eigenvalue decomposi-
tion approach; (d–f) correspondingly for measured data.

phase retrieval algorithm found the correct pore shape, and the
edge enhancement effect is not concealed by noise [Fig. 6(a)].

Figure 7 illustrates that phase retrieval from q-space imag-
ing data is feasible for a variety of pore shapes as shown here in
an exemplary manner for star-shaped pores. For the simulated
q-space signal, the corners of the q-space magnitude image
have very low signal values such that, even for the simulation,
the corners of the phase image cannot be retrieved reliably
[Fig. 7(c)] due to Monte Carlo noise. Nonetheless, the star
shape was reconstructed successfully [Fig. 7(a)]. The tips of the
angles show an increased signal due to the edge enhancement
effect. Although the signal was measured thrice to improve
SNR, only the first ring of diffraction peaks around the central
maximum could be clearly observed, while the second ring is
lost in noise, so that the phase could be retrieved successfully
only at small q values [Fig. 7(f)]. This resulted in a blurred
version of the star with somewhat less distinct angle tips and
slightly reduced size in Fig. 7(d) compared to Fig. 7(a), but a
distinct star shape could still be formed.

The question of applicability of the phase retrieval method
to pore distributions is addressed in comparison to the long-
narrow approach in Fig. 8. For the case of two different pore
shapes contained in the imaging volume, here triangle and star,
the tips of triangle and star are more pronounced and sharper
for the phase retrieval method compared to the long-narrow
approach, so that the two individual shapes can be better
recognized in the phase retrieval result [Fig. 8(a)]. The true

FIG. 8. Simulations of pore distributions: (a) Shape distribution
containing one triangular and one star-shaped pore. (b) Narrow and
(c) broad size distribution of triangles. (d) Orientation distribution of
triangles. Columns: (1) Average pore image for δ → 0, T → ∞, (2)
result for the phase retrieval method, and (3) result for the long-narrow
approach using finite gradient pulses.

distribution is depicted in the left column for comparison.
While the intensity distribution for the long-narrow approach is
homogenous in the center where both shapes overlap, the phase
retrieval result shows a low-intensity spot at the central bottom
of the triangle. For both size distributions, phase retrieval
returns an image of a single pore of mean size [Figs. 8(b) and
8(c)]. But both of the two compared methods do not allow us on
their own to distinguish whether the imaging volume contained
a distribution of different sizes or only triangles of one size
between the smallest and largest occurring size. For the broader
distribution, artifacts occur at the triangles’ tips for the phase
retrieval method, and the long-narrow approach experiences
heavy blurring. In Fig. 8(d) the phase retrieval method results
in a better representation of the orientation distribution.

V. DISCUSSION

In this work, NMR diffusion pore imaging was extended
by the phase retrieval methodology which proved success-
ful in solving the phase problem in diffusion pore imaging
for simulated and experimental data. This approach differs
from previous approaches in a fundamental way. Whereas
previous approaches employed explicit phase measurements
[27,28,31,38], this approach uses classical single diffusion
encoding, which by itself provides only magnitude informa-
tion. The main feature of this approach lies in recovering the
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full complex signal by applying a phase retrieval algorithm,
which is well known from analogous phase problems in various
fields of physics and eliminates the need for experimentally
challenging phase measurements. Recovery of the missing
phase information in the measured signal S11(q) = |ρ̃(q)|2 was
made possible only by including the knowledge of ρ(x) being
zero outside a finite domain.

However, there is no general algorithm guaranteeing recov-
ery of the true phase of the form factor ρ̃(q). In this work, a
combination of the HIO algorithm and the ER algorithm was
used and complemented with the shrinkwrap extension. One
run of this combination with specific random start image ρ1(x)
is referred to as one cycle. Using only one cycle proved to be
robust for triangular domains without noise. An important issue
is the sensitivity of the phase retrieval algorithm to inaccurate
information on the pore space function to be reconstructed,
i.e., when the modulus of the Fourier transform is not exactly
known due to measurement noise. If the Fourier modulus
is affected by noise, each reconstructed pore image, each
seeded with a different random start, will vary slightly since
there is no true solution that exactly fulfills Fourier and
image domain constraints. In the presence of noise, not every
tested cycle of the algorithm matched the true pore image
perfectly, but generally the triangular and the star shape were
clearly recognizable. Averaging the retrieved pore images from
100 independent cycles led to very good results: Comparing
simulations, noise-free and affected by noise, and experimental
data, we found the phase retrieval algorithm to be robust to
noise and capable of revealing pore shapes at lower SNR values
than occurring in our experimental data.

It was noticed that convergence to the correct solution
can be accelerated if the additional non-negativity constraint
was used. The support plays a key role in finding the true
solution: The initial estimate of the support � needs to be large
enough so thatρ(x) vanishes outside the pore. Thresholding the
autocorrelation function provides a rough guess to determine
an upper boundary of the pore size. Using the shrinkwrap
extension, the support is tightened around the pore, and the
initial symmetry of � inherited from the autocorrelation gets
broken, which makes convergence more likely by ruling out a
twin image. If the support region truncates the pore, i.e., does
not contain all nonzero pixels, it might cause the algorithm
to stagnate; however, overshrinking can usually be corrected
by the shrinkwrap algorithm. A slightly larger support offers
more freedom for the algorithm to reconstruct boundary pixels
that show partial volume effects. The support mask does not
necessarily need to trace the exact boundary of the pore, but,
in practice, the support should be reasonably tight, because
otherwise the pore image estimate might change rapidly
between solutions that differ in regard to trivial ambiguities,
i.e., translation and image twinning. A tight support also helps
to reconstruct intensity variations inside the pore which can
occur due to, e.g., an inhomogeneous magnetization or media
density or, as seen here, finite gradients resulting in enhanced
edges and blurring. The shrinkwrap mechanism is quite robust,
so that, over the course of the iterations, the support might
wander outside of the initial autocorrelation support and is
even often able to converge if the pore is translated in a way
that it crosses the edges of the image array and the support gets
fragmented into two or more parts.

Concerning practical implementation of this q-space
imaging-based method, some limitations have to be noted:
When investigating an imaging volume containing pore size
or shape distributions, relying on two short gradient pulses
only implies that instead of an arithmetical average pore image
the average of the products of ρ̃(q) with ρ̃∗(q) is recorded
[65,73] prohibiting a direct inversion to obtain the actual pore
distribution. If the pores are not relatively monodisperse in
size and have random orientation, the diffraction pattern in
the q-space signal will vanish, making the microstructure
information more difficult to access. The relevance of this
problem depends strongly on the investigated geometries
and distributions. Short gradients cause pore-shape specific
artifacts such as the underestimated area of the phase retrieval
result for the sample containing two different shapes. Not
having to consider each case individually, as given for the long-
narrow approach, is largely beneficial in practical applications.
Nonetheless, phase retrieval yielded a better representation of
the shape distribution as well as for the orientation distribution
in comparison to the long-narrow approach. The problem of
measuring the average of ρ̃∗(q) ρ̃(q) was much more relevant
for broad size distributions where an inversion to the true
distribution seems impossible. It should be noted that the
long-narrow approach as well does not result in the true average
for finite gradients.

Further, the phase retrieval algorithm is based on the as-
sumption that pores are of finite size with a closed boundary and
surrounded by a region with no signal contribution. However,
in biological tissue, the typical setup is quite different, which
makes it a challenge to retrieve a pore image even if the
limitation of size and shape heterogeneity is neglected: Cell
membranes are very thin and permeable, and treating them as
solid casings does not seem feasible. In addition, signals of
extracellular compartments will have to be suppressed, which
may be performed using filter gradients, and high gradient
amplitudes are mandatory to perform pore imaging at the
micrometer scale [26].

Comparison of the phase retrieval approach to the short-
gradient method using recursive phase reconstruction from
DDE signals shows a decreased sensitivity to noise for the
phase retrieval approach. Moreover, using phase retrieval,
the measurement time can be reduced extensively: The DDE
pore imaging approach with the lowest sensitivity to noise
[38] needs at least twice the sampling points since both
q-space and DDE measurements are required. Additionally,
for the DDE approach, a higher sampling density of the
q values is necessary to achieve a stable reconstruction.
Particularly in contrast to the long-narrow gradient scheme,
which records the full Fourier signal [25,26], using the standard
bipolar gradient shape is advantageous because the applica-
tion is especially easy and stable from a technical point of
view.

Eliminating the need for experimentally challenging phase
measurements could in principle be advantageous for in vivo
imaging of tissue microstructure, where cardiac-driven tissue
pulsation and patient movement complicate phase measure-
ments but have no bearing on q-space imaging. This may
improve the applicability of diffusion pore imaging in imaging
porous structures with a higher SNR compared to conventional
MRI.
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In conclusion, it was demonstrated in simulations and phan-
tom experiments that diffusion pore imaging is possible using
q-space imaging data, eliminating the need for additional phase
measurements using specialized temporal gradient profiles.
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