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Mechanical characterization of disordered and anisotropic cellular monolayers
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We consider a cellular monolayer, described using a vertex-based model, for which cells form a spatially
disordered array of convex polygons that tile the plane. Equilibrium cell configurations are assumed to minimize
a global energy defined in terms of cell areas and perimeters; energy is dissipated via dynamic area and length
changes, as well as cell neighbor exchanges. The model captures our observations of an epithelium from a Xenopus
embryo showing that uniaxial stretching induces spatial ordering, with cells under net tension (compression)
tending to align with (against) the direction of stretch, but with the stress remaining heterogeneous at the single-cell
level. We use the vertex model to derive the linearized relation between tissue-level stress, strain, and strain rate
about a deformed base state, which can be used to characterize the tissue’s anisotropic mechanical properties;
expressions for viscoelastic tissue moduli are given as direct sums over cells. When the base state is isotropic, the
model predicts that tissue properties can be tuned to a regime with high elastic shear resistance but low resistance
to area changes, or vice versa.
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I. INTRODUCTION

Epithelial tissues have significant roles in embryonic de-
velopment, tissue homeostasis, and disease development [1].
Recent work has revealed that many critical functions in
biological tissues are dependent on the accurate organization
of the shapes and packing geometry of the constituent cells
[2]. Disturbances in this organization have been associated
with problems during embryonic development and diseases in
adult life [3,4]. Furthermore, there is evidence that mechanical
forces may directly trigger biochemical responses that regulate
morphogenetic processes [5,6]. However, due to difficulties in
quantifying stresses in tissues, the mechanisms by which tissue
behavior emerges from these multiscale feedback processes
remain poorly understood.

Continuum descriptions can provide useful insights to
tissue-level behavior. For example, elastic-viscoplastic con-
tinuum models can capture the solid- and liquidlike response
of tissues to small and large deformations over differing time
scales [7,8]. However, they are in many cases not built from an
explicit physical description of cells. Furthermore, the interac-
tions of multiple cells can lead to rich emergent behavior at the
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tissue scale, such as yielding and remodeling, that is not easily
accessed through conventional continuum frameworks [9,10].

Discrete vertex-based models of epithelia have been a useful
tool in linking mechanics to tissue morphology [11–15]. These
models have more recently been developed to characterize the
mechanical properties of tissues [16,17] and to infer local and
global stresses [18–20]. This work has predicted interesting
long-range mesoscopic mechanical patterning arising purely
from the mechanical properties and short-range mechanical
interactions of cells within the tissue, which are not seen
in traditional continuum descriptions [20,21]. Relationships
between discrete models and traditional continuum approaches
have been found for spatially periodic cell networks [16,22],
while equivalent relationships for disordered tissues have
only been partially established for isotropic disordered cell
networks [20] or for analogous physical systems such as
two-dimensional (2D) dry foams [23].

Many mechanical models of biological tissues assume that
the material is isotropic. However, recent observations in the
Drosophila melanogaster embryo [24] have provided evidence
that biological tissues may exhibit an orientational, as well
as positional, structure. Likewise, models of 3D foams have
explored how an orientational structure can be introduced
through uniaxial deformations [25]. The deformation induces
a net stress in the material, leading to a series of irreversible
deformations (such as neighbor exchanges). Experimental
observations of epithelial tissues have revealed similar patterns
of orientational order following stretching [19,26,27].

To explore how deformation induces anisotropy, in this
paper we use a variant of a well-studied vertex-based model
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to quantify the mechanical behavior of a disordered cellular
monolayer under an external load. We ignore cell division or
motility but take account of dissipation arising from changes in
cell area and perimeter, motivated by observations of damping
in the cytosol of cells in the Drosophila embryo on a time
scale of minutes [28], evidence of shorter but distinct stress-
relaxation time scales in the cytosol and cortex [29], subcellular
observations of dissipation at cell contacts [30], and evidence
of viscoelastic stress relaxation in a freely suspended cultured
monolayer [27]. We provide observations of stretched Xenopus
embryonic epithelium demonstrating that a uniaxial stretch
enforces order in the tissue, in which cells under net tension
tend to align their principal axis of stress with the stretch
direction and those under compression align perpendicularly.
This behavior is captured in simulations, which are further
used to quantify the tissue’s anisotropy using the deviatoric
(shear) component of the global stress. We then derive a
linearized stress/strain/strain-rate relationship characterizing
the perturbation stress of a prestressed tissue subjected to
a small homogeneous deformation. This allows viscoelastic
moduli to be computed for an anisotropic disordered cellular
monolayer. Finally, we show that the mechanical parameters of
an isotropic tissue can be tuned to elicit high shear resistance
but low resistance to area changes, or vice versa.

II. METHODS

We use a modification of a popular vertex-based model to
describe a planar epithelium [11,13,31], using the notational
framework presented in Ref. [20]. Details of our experimental
protocol follow a summary of the model.

A. The vertex-based model

The epithelial monolayer M is represented as a spa-
tially disordered planar network of Nv vertices, labeled j =
1, . . . ,Nv , connected by straight edges and bounding Nc

convex polygonal cells, labeled α = 1, . . . ,Nc. The cells are
assumed to have identical mechanical properties described in
terms of a preferred area A∗

0, a preferred perimeter L∗
0, a bulk

stiffness K∗, a cortical stiffness �∗, a bulk viscosity γ ∗, and a
cortical viscosity μ∗. Scaling all distances on

√
A∗

0, the vector

from the coordinate origin to vertex j is given by Rj . Each
vertex is shared by three cells and edges are shared by two cells
(excluding cells at the boundary of M). Quantities specific to
cell α are labeled by a Greek subscript and defined relative to
its centroid Rα [Fig. 1(a)].

Cell α has Zα vertices labeled anticlockwise by i =
0,1,2, . . . ,Zα − 1 relative to Rα . We define Ri

α as the vector
from the cell centroid to vertex i, such that

∑Zα−1
i=0 Ri

α = 0.
Anticlockwise tangents are defined by ti

α = Ri+1
α − Ri

α (taking
i + 1 modulo Zα), unit vectors along a cell edge by t̂i

α , and
outward normals to edges by ni

α = ti
α × ẑ (where ẑ is a unit

vector pointing out of the plane). The length liα of an edge
belonging to cell α between vertices i and i + 1, the cell
perimeter Lα , and the cell area Aα are given by

liα = (
ti
α · ti

α

)1/2
, Lα =

Zα−1∑
i=0

liα,

Aα =
Zα−1∑
i=0

1

2
ẑ · (

Ri
α × Ri+1

α

)
. (1)

We note for later reference that ∇Ri
α
Aα = pi

α ≡ 1
2 (ni

α + ni−1
α )

and ∇Ri
α
Lα = −qi

α , where qi
α ≡ t̂i

α − t̂i−1
α ; furthermore [20],

Zα−1∑
i=0

Ri
α ⊗ pi

α = AαI,

Zα−1∑
i=0

Ri
α ⊗ qi

α = −LαQα ≡ −
Zα−1∑
i=0

liα t̂i
α ⊗ t̂i

α. (2)

Qα is a symmetric tensor characterizing the shape of cell α,
satisfying Tr(Qα) = 1.

The dimensionless mechanical energy of an individual cell
Uα (scaled on K∗A∗2

0 ) is assumed to be

Uα = 1
2 (Aα − 1)2 + 1

2�(Lα − L0)2. (3)

Here, the dimensionless parameter � = �∗/(K∗A∗
0) represents

the stiffness of the cell’s cortex relative to its bulk; the preferred
cell perimeter L0 = L∗

0/
√

A∗
0 is often expressed in terms

of a second dimensionless parameter � = −2�L0. Major
features of the (�,�) parameter space are shown in Fig. 1(b).

FIG. 1. (a) Vertex model representation of tissue geometry. The centroid of cell α is located at Rα relative to the fixed origin O. The position
of cell vertices Ri

α are given relative to the centroid of a cell. Each vertex has three vectors, Ri
α,R

i′
α′ ,Ri′′

α′′ , pointing to the same vertex from
cells, α,α′,α′′. Cell properties, such as area and tangents along edges, are also defined relative to the cell centroid. (b) (�,�) parameter space,
showing regimes in which tissues exhibit distinct behavior. Following Ref. [11], region I is a “soft” network with no shear resistance; the
network becomes solidlike in region II. For hexagons, P eff

6 = 0 [see (16)] has a single positive root in region IIa and two positive roots in region
IIb. The network collapses in region III. Circular markers indicate the locations of parameters used for simulations in Fig. 4(b) below.
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A rigidity transition characteristic of a glassy material takes
place along L0 = μ6 for regular hexagons [11,22], where
μZ = 2[Z tan(π/Z)]1/2 (a regular Z-gon has an exact perime-
ter area relationship L = μZ

√
A). For a disordered monolayer,

the transition occurs along L0 ≈ μ5 [31]. The transition be-
tween the fluid regime (I) and the solid regime (II) is indicated
in Fig. 1(b). We avoid region III below, where the network
collapses.

We label derivatives ∂Uα/∂Aα and ∂Uα/∂Lα of (3) as a
pressure and a tension, respectively,

Pα ≡ Aα − 1, Tα ≡ �(Lα − L0). (4)

Setting f i
α ≡ ∇Ri

α
Uα = Pαpi

α − Tαqi
α , we can then interpret

−f i
α as the elastic restoring force generated by cell α when

vertex i undergoes a small displacement.
In a departure from many previous models we introduce the

cell’s (dimensionless) energy dissipation rate as

�α = γ Ȧ2
α + μL̇2

α ≡ γ
∑
i,j

Ṙi
α · Aij

α · Ṙj
α

+μ
∑
i,j

Ṙi
α · Lij

α · Ṙj
α, (5)

where a dot above a variable denotes a time derivative. This
accounts for viscous dissipation associated with the shape
changes of individual cells, and is expressed in terms of the
two geometric variables characterizing cell shape, Aα and Lα ,
that appear in the strain energy Uα; this model does not describe
frictional interactions with a substrate. It follows from (1) that
Ȧα = ∑

i pi
α · Ṙi

α , L̇α = −∑
i qi

α · Ṙi
α , so that Aij

α ≡ pi
α ⊗ pj

α

and Lij
α ≡ qi

α ⊗ qj
α . The parameters γ and μ can be related

to their dimensional counterparts via γ = γ ∗/K∗T ∗ and μ =
μ∗L∗2

0 /K∗T ∗A∗
0 through a choice of time scale T ∗ that we

do not specify immediately. It follows from (5) that �α =
1
2

∑
i Ṙi

α · ∇Ṙi
α
�α and 1

2∇Ṙi
α
�α = γ Ȧαpi

α − μL̇αqi
α . Follow-

ing Fozard et al. [32], who treated the analogous 1D problem,
we minimize the total dissipation rate across the monolayer,
� = ∑

α �α , subject to a constraint ensuring the dissipation
of total mechanical energy U = ∑

α Uα through �,

U̇ ≡
Nc∑

α=1

Zα−1∑
i=1

Ṙi
α · f i

α = −�. (6)

This is achieved by minimizing the Lagrangian L = � +
ζ (U̇ + �) for some Lagrange multiplier ζ . The first variation
of L with respect to the velocity of each vertex in M must
vanish, i.e.,

∇ṘjL =
∑

{Ri
α=Rj }

[
(1 + ζ )∇Ṙi

α
�α + ζ f i

α

] = 0

(j = 1,2, . . . ,Nv), (7)

where for each j the sum is over the three cells adjacent to
Rj ; likewise, Lζ = 0 yields (6). Acting on (7) with

∑
j Ṙj ·

yields (1 + ζ )2� + ζ U̇ = 0, which with (6) implies ζ = −2
and hence (7) gives the net force balance on each vertex as
2Fj = 0 (j = 1,2, . . . ,Nv), where

Fj ≡
∑

{Ri
α=Rj }

Fi
α, where

Fi
α = −(Pα+γ Ȧα)pi

α + (Tα + μL̇α)qi
α. (8)

Fi
α can be interpreted as the viscoelastic restoring force due to

cell α alone following a small displacement of its ith vertex.
It is computationally convenient (particularly when model-

ing a viscous interaction with a substrate) simply to impose a
drag on each vertex, leading to an explicit set of ordinary differ-
ential equations (ODEs, of the form Ṙj ∝ −∑

{Ri
α=Rj } f i

α) that
can be used to step the system forward in time; in contrast,
(8) couples time derivatives in a more complex manner,
falling into a class of models reviewed in Ref. [14]. The
tradeoff is a formulation that combines elastic responses to
area and perimeter changes [via (4)] with their natural viscous
counterparts, leading to an expression for the cell stress tensor
σ α = (1/Aα)

∑
i Ri

α ⊗ Fi
α of the form [using (2) and (8)]

σ α = −(Pα + γ Ȧα)I − (Tα + μL̇α)
Lα

Aα

Qα. (9)

This retains the property that the principal axes of cell stress
and cell shape (as defined by a shape tensor based on vertex
locations) are aligned [20].

B. Tissue-level stress

The stress tensor for a single cell (9) may be rewritten as

σ α = −P eff
α I + (Tα + μL̇α)(Lα/Aα)Jα, (10)

where Jα = 1
2 I − Qα is deviatoric, satisfying Tr(Jα) = 0. The

isotropic component of the stress is given in terms of the
effective cell pressure, defined as

P eff
α = Pα + γ Ȧα + 1

2 (Tα + μL̇α)(Lα/Aα). (11)

Positive (negative) values of P eff
α indicate that the cell is under

net tension (compression).
Assuming the monolayer forms a simply connected region

of tissue, the tissue-level stress σM satisfies [20]

AMσM =
∑

α

Aασ α, (12)

where the sum is over all cells in M and AM = ∑
α Aα .

Correspondingly, the isotropic component of tissue-level stress
is expressed in terms of the effective tissue pressure

P eff ≡ 1

AM

∑
α

AαP eff
α = − 1

2 Tr(σM). (13)

For a monolayer under isotropic external loading, the devia-
toric component of the global stress must vanish. Thus, once in
equilibrium, the system satisfies P eff = Pext, where Pext is the
peripheral pressure, assumed uniform. An isolated monolayer
under conditions of zero external loading must satisfy Pext = 0,
i.e.,

Nc∑
α=1

AαP eff
α = 0, (14)

allowing cells to be grouped into those that are under net ten-
sion (P eff

α > 0) and net compression (P eff
α < 0). The deviatoric

component of the tissue-level stress,

σ̄M = 1

AM

∑
α

(Tα + μL̇α)LαJα, (15)
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has eigenvalues ±ξ , where ξ =
√

det (σM) − Tr(σM)2. These
quantify the tissue-level shear stress, and provide a measure of
the spatial anisotropy of the monolayer [33].

The expression for tissue-level stress σM = −P eff I + σ̄M

using (13) and (15) extends results derived in Refs. [19,20,34]
to account for viscous resistance to area and perimeter changes,
although it does not include additional dissipative stresses
associated with neighbor exchanges or extrusion of very small
cells. An alternative derivation of σM directly from U and �

is provided in Appendix A, where we show that σM : Ė =
−(U̇ + �) = 0 for a small-amplitude homogeneous strain
E; larger deformations, leading to neighbor exchanges, are
therefore needed in order to change the system’s internal
energy. The equilibria reported below are, however, unaffected
by the choice of dissipation in that they are always local minima
of U (R1, . . . ,RNv ).

C. Simulation methodology

Simulations were generated using the methodology outlined
in Ref. [20]. Initial distributions of cell centers were generated
using a Matérn type II random sampling process. Cell edges
and vertices were formed by constructing a Voronoi tessellation

about the seed points, imposing periodic boundary conditions
in a square domain. The system was then relaxed towards
the nearest energy minimum. Following the initialization of
the disordered geometry, a series of isotropic expansions or
contractions was imposed until (14) was satisfied within a
prescribed tolerance. Stretching deformations were imposed
by mapping all vertices and the domain boundary by an affine
transformation and then allowing the system to relax.

The effective pressure (11) of a regular hexagon at equilib-
rium is given by

P eff
6 = A − 1 + �μ2

6

2
+ �μ6

4
√

A
, (16)

where A is the area of the hexagon. We define A∗
6(�,�)

to satisfy P eff
6 (A∗

6) = 0, where the hexagon is stress free,
identifying

√
A∗

6 as a length scale. During relaxation, T1
transitions (neighbor exchanges) were performed on edges
with a length less than 0.1

√
A∗

6. Three-sided cells with an area
less than 0.3A∗

6 were removed via a T2 transition (extrusion).
Fletcher et al. [13] and Spencer et al. [35] outline refined
treatments of these deformations.

FIG. 2. (a) Epithelial apical layer of a Xenopus laevis animal cap, showing 801 cells rendered as polygons superimposed on the original
microscopy image. P eff

α for each cell was calculated assuming P eff = 0 and (�,�) = (−0.259,0.172). Line segments indicate the principal axis
of shape and stress for each cell. Darker (lighter) cells have P eff

α > 0 (<0) and exert a net inward (outward) force along each line segment.
(b) The apical layer in (a) following a 35% instantaneous uniaxial stretch (horizontal) of the membrane beneath the basal cells, resulting in a
19.67 ± 1.91% (95% confidence interval) uniaxial stretch of the apical cells. (c), (d) Histograms showing the frequency density of orientation
of the principal axis of stress for cells under tension (darker) and compression (lighter), for apical layers given in (a) [corresponding to (c)] and
(b) [corresponding to (d)]; bin areas integrate to unity. Bin size was selected using the Freedman-Diaconis rule.
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Our focus is primarily on the mechanical properties of a
monolayer across region II in Fig. 1. For comparison with
experiments we adopt parameters fitted previously to our
experimental system [20], namely, (�,�) = (−0.259,0.172),
acknowledging the imperfection of the fit and the inherent
challenges of parameter estimation in this system [36].

D. Experimental methods

Our Xenopus embryonic animal cap preparation, stretch as-
say, and imaging protocol are described in Appendix B. Briefly,
explants from stage 10 Xenopus laevis embryos were cultured
on a fibronectin-coated poly(dimethylsiloxane) (PDMS) mem-
brane. The tissue layer is three cell layers thick; the basal cells
were attached to the membrane while the apical cells were
imaged with confocal microscopy. The apical cells were not
in direct contact with the PDMS membrane, shielding them
from influences such as substrate-mediated integrin activation
or focal adhesion formation [37]. Uniaxial in-plane stretching
of the rectangular PDMS membrane (with a strain imposed
on two opposite lateral boundaries and no stress imposed
on the other two) deformed the tissue layer, with strains
transmitted from the membrane to the apical layer via the
basal cells. Using green fluorescent protein (GFP)-α-tubulin
cell cortex and cherry-histone nuclear markers, the images of
the apical cells were manually segmented and cell boundaries
were approximated as polygons using a PYTHON script. The

effective tissue pressure P eff of the unstretched monolayer was
presumed to be zero, allowing the preferred area parameter A∗

0
to be calculated following Ref. [26] using fitted parameters
(�,�) = (−0.259,0.172) from Ref. [20]. A∗

0 was assumed to
be unchanged when the epithelium was stretched, allowing P eff

α

of individual cells to be estimated. The principal axis of stress
for individual cells was identified using the shape tensor based
on each cell’s vertex locations, as described in Ref. [20].

III. PERTURBING TISSUE STRUCTURE
USING DEFORMATIONS

A. Stretching embryonic epithelium

Figure 2(a) shows apical cell boundaries, rendered as
polygons, within a Xenopus embryonic epithelium in the
unstretched configuration. Cell shapes are used to infer the
relative isotropic stress P eff

α as described in Sec. II D. Cells
estimated to be under net tension (darker, with P eff

α � 0)
and under net compression (lighter, with P eff

α < 0) appear in
roughly equal proportions, with their orientations distributed
approximately isotropically [Fig. 2(c)]. The stress field is
strongly heterogeneous at the single-cell level: Cells under
tension (compression) generate a primarily contractile (expan-
sive) stress along their long (short) axis. Figure 2(b) shows
the same epithelium after an application of an instantaneous
35% uniaxial stretch (in the horizontal direction) to the PDMS

FIG. 3. (a) A simulation of a representative monolayer realization satisfying P eff = 0 with 800 cells, for (�,�) = (−0.259,0.172) (see
Fig. 1 for the location in parameter space). Cell shadings and line segments follow the scheme in Fig. 2. (b) The monolayer in (a) following a
20% area-preserving uniaxial stretch and subsequent relaxation. (c), (d) Histograms showing the orientation of the principal axis of stress for
cells under tension (darker) and compression (lighter), for monolayers given in (a) [corresponding to (c)] and (b) [corresponding to (d)]. Bin
size was selected using the Freedman-Diaconis rule.
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membrane; the finite thickness of the tissue means that the
apical layer experiences a lower level of strain. The isotropic
distribution of apical cells in the undeformed state is disrupted
by stretching: Cells under net tension (darker) tend to align
their principal axis of stress with the direction of the global
stretch, whereas cells under net compression (lighter) tend to
align their principal axis of stress vertically [Fig. 2(d)]. Stretch
therefore induces anisotropy and a degree of order to the mono-
layer, consistent with previous observations [19,26,27,38,39].

B. Simulated tissue stretching

We mimic these observations using simulations, seeking to
characterize the mechanical properties of the deformed mono-
layer. We describe the passive response to stretch, ignoring
additional mechanosensitive effects of the kind described at
the single-cell level by Xu et al. [40]. Figure 3 shows the result
of performing a 20% area-preserving stretch on a simulated
monolayer, with the mapping of vertices

Rj = (
Rj

x ,R
j
y

) → [
(1 + λ)Rj

x ,R
j
y/(1 + λ)

]
, (17)

where λ = 0.2, followed by relaxation to equilibrium via
T1 transitions. In the undeformed state, the cell orientations
are approximately isotropic [Fig. 3(c)], and roughly equal
proportions of cells are under net tension and net compression
[Fig. 3(a)]. Stretching increases the proportion of cells under
net tension [Fig. 3(b)], inducing a striking degree of orien-
tational order. As in Fig. 2(d), cells under net tension tend
to align their principal axis of stress with the direction of
stretch, whereas cells under net compression tend to align
their principal axis of stress perpendicularly [Fig. 3(d)]. The
ordering is more extreme than in experiments; it is likely that
for this large deformation, refinements of the functional form of
the mechanical energyU [leading to linear pressure and tension
relations in (4)] are needed to make the model quantitatively
accurate.

In addition, the effective tissue pressure P eff , measuring the
isotropic component of stress in the monolayer (11), increases
with the degree of stretch [Fig. 4(a)]. P eff is not significantly

affected by the number of steps in which stretching is done,
even when the monolayer is relaxed after every step [Fig. 4(a)].
In the linear regime (λ 
 1), (17) is a pure shear deformation,
leading to a negligible increase in P eff for small stretches;
however, a nonlinear response emerges at larger amplitudes.
Figure 4(b) demonstrates that the tissue shear stress ξ [see
(15)], induced by individual stretches of increasingly large
amplitude from an unstressed isotropic initial condition (with
subsequent relaxation via T1 transitions), increases with
stretch magnitude. This holds for both the monolayer given
in Fig. 3 and an example closer to the region I/II boundary
[Fig. 1(b)] where (�,�) = (−0.569,0.145). The latter has a
significantly smaller slope, indicating much lower resistance
to shear in this region of parameter space. For reference, the
anisotropy in these examples measured by a more traditional
order parameter is illustrated in Appendix C. The present
model does not account for stress relaxation that may arise
under large strains via cell division, as illustrated in simulations
by Ref. [39].

Given that stretching induces a strong degree of anisotropy
in the tissue, we now assess how this ordering influences further
tissue deformation. An initially isotropic tissue is uniaxially
stretched via (17) and relaxed to equilibrium, as above. This
deformed (i.e., prestretched) configuration has some prestress
σ 0. A further small-amplitude homogeneous strain I → I + E
changes the global stress as σ 0 → σ 0 + �σM. We evaluate the
perturbation stresses �σM arising from unidirectional strains
EX = diag(λ,0) and EY = diag(0,λ) directly from (12), noting
that each deformation combines expansion and shear, e.g.,

EX =
[
λ 0

0 0

]
=

[
λ
2 0

0 λ
2

]
+

[
λ
2 0

0 − λ
2

]
. (18)

It follows that both the shear and bulk elasticity of the tissue
will contribute to the induced perturbation stress.

Figure 5 plots two components of the perturbation stress
against the magnitude of prestretch, for the tissue shown in
Fig. 3(a), when subjected to additional 1% strains in the
x and y directions. When the tissue is subject to a weak

FIG. 4. (a) The effect of incremental stretch on effective tissue pressure. The tissue shown in Fig. 3(a) was subjected to a 30% area-preserving
uniaxial stretch in a varying number of steps (straight lines are drawn between data points). The total stretch was divided into equally spaced
increments and the tissue was relaxed after every stretch. The tissue starts at P eff = 0 and ends at approximately P eff = 0.57, regardless of how
many steps were used. Translucent shading indicates 95% confidence intervals over the five simulations. (b) Shear stress ξ vs magnitude of
stretch with (�,�) = (−0.259,0.172) (solid; the monolayer given in Fig. 3) and (�,�) = (−0.569,0.145) (dashed). See Fig. 1(b) for locations
in parameter space. Each data point represents an instantaneous stretch performed on the same initial isotropic monolayer satisfying Pext = 0.
The monolayers were relaxed to equilibrium following stretch.
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FIG. 5. Perturbation stress response to small-amplitude deforma-
tions in a prestretched monolayer. The stretched monolayers used
were the same as those for the solid line in Fig. 4(b), with (�,�) =
(−0.259,0.172) and the magnitude of prestretch is indicated on the
x axis. The equilibrium prestretched monolayers were subjected to
small deformations in the x [EX = diag(λ,0)] and y [EY = diag(0,λ)]
directions, with λ = 0.01. The component of the perturbation stress
tensor in the direction of stretch is indicated on the y axis, with
�σM

xx (EX) giving the x-directed stress following EX (lower line)
and �σM

yy (EY ) giving the y-directed stress following EY (upper line).
Solid lines indicate values directly evaluated using (12) and dashed
lines are predicted values using (28).

initial stretch, subsequent perturbation stresses are almost
equal [�σM

xx (EX) ≈ �σM
yy (EY )], indicating that the tissue is

mechanically isotropic. However, under increased prestrain,
we see that �σM

xx (EX) > �σM
yy (EY ), indicating increased

anisotropy. The figure demonstrates how the tissue can be
preferentially stiffened in one direction by an imposition of
prestretch. Correspondingly, of the membrane elements shown
in Fig. 3(b), a greater net membrane length is oriented in the
x direction (resisting further stretch) in comparison to the y

direction.

IV. DERIVING THE STIFFNESS TENSOR
FOR ANISOTROPIC TISSUES

We have demonstrated that anisotropic deformations induce
ordering in a tissue, leading to an anisotropic response to
external loading reminiscent of an orthotropic material. We
now evaluate directly the stiffness and damping tensors C(σ 0)
and D(σ 0) appearing in the linearized relation connecting per-
turbation strain and perturbation stress �σ = −(C : E + D :
Ė) for some imposed strain E. This small-amplitude relation
does not account directly for stress relaxation via neighbor
exchanges, although these can influence the prestress σ 0 of
the base state.

A. The perturbation stress of a single cell

We begin by considering a single cell with stress given by
(9). From a stationary state with prestress

σ o
α = −(Aα − 1)I − TαLα

Aα

Qα, (19)

we impose a small-amplitude, homogenous, symmetric, time-
varying strain E, such that position vectors transform as

R → R + E · R. Linearizing in the small strain amplitude
yields the mappings (Appendix A)

Lα → Lα(1 + Qα : E), Aα → Aα(1 + Tr(E)),

Tα → Tα + �LαQα : E, LαQα → LαQα + LαBα : E,

(20)

where Bα is a fourth-order tensor (A4) satisfying

Bα : E = 1

Lα

Zα−1∑
i=0

liα
[
t̂i
α ⊗ (

E · t̂i
α

)
+ (

E · t̂i
α

) ⊗ t̂i
α − t̂i

α ⊗ t̂i
α

(
t̂i
α · E · t̂i

α

)]
, (21)

so that Tr(Bα : E) = Qα : E. Dynamic area and perimeter
changes are coupled to E(t) via Ȧα = AαTr(Ė) and L̇α =
LαQα : Ė.

Writing the stress following the deformation as σ α =
σ o

α + �σ α , we use (20) and (9) to give, for a monolayer at
equilibrium,

σ α = −(Aα − 1)I − Aα Tr(E)I

− Tα + �LαQα : E
Aα(1 + Tr(E))

(LαQα + LαBα : E)

≈ −(Aα − 1)I − Aα Tr(E)I − 1

Aα

(Tα + �LαQα : E)

× [1 − Tr(E)](LαQ + LαBα : E) + · · ·
≈ −(Aα−1)I−TαLα

Aα

Qα−Aα Tr(E)I − �L2
α

Aα

(Qα : E)Qα

+ TαLα

Aα

[Tr(E)Qα − Bα : E] + · · · , (22)

to first order. Including time-dependent terms, the perturbation
stress is therefore

�σ α = −Aα [Tr(E) + γ Tr(Ė)]I − L2
α

Aα

Qα : (�E + μĖ)Qα

+ TαLα

Aα

[Tr(E)Qα − Bα : E]. (23)

We can separate the isotropic and deviatoric contributions as

�σ α = −�P eff
α I + TαLα

Aα

�Jα, (24)

where �P eff
α is the perturbation effective pressure

�P eff
α =

(
Aα − TαLα

2Aα

)
Tr(E) + γAαTr(Ė)

+ �L2
α

Aα

(
1 − L0

2Lα

)
Qα : E + μL2

α

2Aα

Qα : Ė, (25)

and the traceless contribution characterizing perturbation
shear is

Tα�Jα =
[
−Tα

2
Tr(E) + �Lα

(
1 − L0

2Lα

)
Qα : E

+ μLα

2
Qα : Ė

]
I

+ [TαTr(E) − LαQα : (�E + μĖ)]Qα − TαBα : E.

(26)

052409-7



NESTOR-BERGMANN, JOHNS, WOOLNER, AND JENSEN PHYSICAL REVIEW E 97, 052409 (2018)

B. The perturbation stress of the tissue

Applying E to the entire monolayer, the global stress
transforms as σM → σM + �σM so that (12) becomes

AM(1 + Tr(E))(σM + �σM)

=
Nc∑
α

Aα(1 + Tr(E))
(
σ o

α + �σ α

)

=
Nc∑
α

Aα

[−P eff
α (1 + Tr(E)) − �P eff

α

]
I

+ TαLα[Jα(1 + Tr(E)) + �Jα] + · · · , (27)

neglecting terms quadratic in E. Linearizing the left-hand side
of (27), the global perturbation stress is given by

�σM = 1

AM

Nc∑
α

Aα�σ α

= 1

AM

Nc∑
α

[−Aα�P eff
α I + TαLα�Jα

]
. (28)

Thus the effective perturbation tissue pressure is

�P eff = 1

AM

Nc∑
α

Aα�P eff
α . (29)

The predictions arising from (28) in prestretched monolayers
being subjected to small-amplitude strains are tested in Fig. 5,
showing good agreement with direct stress computations.
Thus, for a given E, the stiffness matrix C can be evaluated
directly from the terms proportional to E in (28) and its viscous
analog D from terms proportional to Ė,

C = 1

AM

Nc∑
α

[
A2

αI ⊗ I + �L2
αQα ⊗ Qα

+LαTα(Bα − Qα ⊗ I)
]
, (30a)

D = 1

AM

Nc∑
α

[
γA2

αI ⊗ I + μL2
αQα ⊗ Qα

]
, (30b)

using the notation {A ⊗ B}ijkl = AijBkl . We now illustrate
this in the special case of an initially unstressed disordered
monolayer.

C. Elastic moduli for a disordered isotropic monolayer

When the base state is a disordered isotropic monolayer at
zero stress [satisfying (14) with σ̄M = 0], we can derive bulk
moduli by imposing a small isotropic expansion with E = λI,
where λ 
 1. The deformation satisfies

Tr(E) = 2λ, Qα : E = λ, Bα : E = λQα. (31)

Under an isotropic load, the deviatoric components of the
perturbation stress vanish (

∑Nc

α=1 TαLα�Jα = 0). Using (31),

the bulk perturbation effective pressure (29) is

�P eff = 1

AM

∑
α

{(
2A2

α + �L0Lα

2

)
λ

+
(

2γA2
α + μL2

α

2

)
λ̇

}
. (32)

The bulk and cortical viscosities [appearing in the coefficient
of λ̇ in (32)] contribute in a similar manner to �P eff as the
bulk and cortical stiffnesses, except via a nonlinear dependence
on Lα . Recalling that �AM = AM Tr(E), the bulk elastic
modulus Ke can be derived from (32) with λ̇ = 0 as

Ke = AM �P eff

�AM =
Nc∑

α=1

1

2AM

[
2A2

α + �L0Lα

2

]
, (33)

in agreement with Ref. [20]. Figure 6(a) demonstrates how
Ke varies across parameter space, with the tissue becoming
less resistant to isotropic deformation towards the region II/III
boundary. The tissue stress arises through the area weighting
of cellular stress (12), leading to a nonlinear area dependence
of the bulk modulus on the cell area in (33); thus when cells
are substantially smaller than their target area (near the II/III
boundary), the bulk modulus falls accordingly, approaching
near-zero values.

For the shear moduli, we impose a small simple-shear
deformation with E = κexey , where |κ| 
 1 and ex = (1,0),
ey = (0,1) are the Cartesian coordinate bases, and seek �σ xy .
This simple deformation satisfies Tr(E) = 0. To evaluate Qα :
E and Bα : E, we write t̂i

α = cos θ i
αex + sin θ i

αey , where θ i
α

satisfies t̂i
α · ex = cos θ i

α and t̂i
α · ey = sin θ i

α . Then,

Qα : E = κ

Lα

Z−1∑
i=0

liα cos θ i
α sin θ i

α

= κ

2Lα

Z−1∑
i=0

liα sin
(
2θ i

α

) ≡ κQα,xy . (34)

Similarly, noting that E · t̂i
α = κ sin θ i

αex and t̂i
α · E · t̂i

α =
(κ/2) sin (2θ i

α), we have

Bα : E = κ

Lα

Z−1∑
i=0

liα

[(
cos θ i

αex + sin θ i
αey

)
sin θ i

αex

+ sin θ i
αex

(
cos θ i

αex + sin θ i
αey

)
− (

cos θ i
αex + sin θ i

αey

)
× (

cos θ i
αex + sin θ i

αey

)1

2
sin

(
2θ i

α

)]

= κ

Lα

Z−1∑
i=0

liα

[
exex

(
3

4
sin

(
2θ i

α

) − 1

8
sin

(
4θ i

α

))

+ eyey

(
1

8
sin

(
4θ i

α

) − 1

4
sin

(
2θ i

α

))

+(exey + eyex)

[
3

8
+ 1

8
cos

(
4θ i

α

) − 1

2
cos

(
2θ i

α

)]]
.

(35)
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FIG. 6. (a) Heat map across discrete intervals of (�,�) parameter space showing the value of the analytic bulk elastic modulus Ke [calculated
using (33)] of a disordered isotropic monolayer with 800 cells. (b) Equivalent plot of the analytic shear modulus [calculated using (37)]. (c)
Computationally estimated shear modulus across parameter space. The elastic shear modulus Ge was estimated from the global perturbation
stress as �σM

xy = −κGe, following a 1% simple-shear deformation (κ = 0.01) on the simulated monolayers used in (b). Each data point is taken
as an average from five realizations of a monolayer with 800 cells, with Pext = 0. (d) Percentage difference (|Ge − Giso

e |/[0.5(Ge + Giso
e )])

between the exact modulus Ge (37) and the approximation Giso
e (38), across parameter space; the difference is below 2% in the hatched region.

Thus from (28) we have

�σM
xy = − 1

AM

Nc∑
α

L2
αQα : (�E + μĖ)Qα,xy

+ TαLα(Bα : E)xy. (36)

To evaluate the elastic shear modulus of the disordered mono-
layer, we set �σM

xy = −κGe with κ̇ = 0. The shear modulus
is given by

Ge = 1

AM

Nc∑
α

⎡
⎣�

4

(
Z−1∑
i=0

liα sin
(
2θ i

α

))2

+ Tα

Z−1∑
i=0

liα

(
3

8
+ 1

8
cos

(
4θ i

α

) − 1

2
cos

(
2θ i

α

))]
. (37)

Equation (37) recovers previous predictions for the shear
modulus of periodic monolayers, where all cells are perfect
hexagons (L2

α = 8
√

3Aα , all edges have equal length, θ i
α =

2πi/6, and the terms with sums over cos and sin vanish)
[16,20]; however, it extends these results by allowing the direct
evaluation of the shear modulus for a disordered monolayer.
Figure 6(b) demonstrates how Ge, as predicted by (37),
varies across parameter space. Interestingly, the tissue becomes
less resistant to shear as it becomes increasingly resistant to
isotropic deformations. For comparison, Fig. 6(c) shows the
computationally simulated shear modulus, directly evaluated
from the global perturbation stress tensor as �σM

12 = −κGe,
following a 1% simple-shear deformation (κ = 0.01) on the

simulated monolayers. There is excellent agreement between
the analytic and simulated results.

For a sufficiently large disordered but isotropic monolayer,
we might assume that the terms with sums over cos and
sin in (37) vanish when summed over all cells [the degree
of anisotropy can be assessed with (15)]. The elastic shear
modulus for an isotropic monolayer is then approximated by

Giso
e ≈ 3

8AM

Nc∑
α

�Lα(Lα − L0), (38)

showing how Giso
e falls to zero as the tension in each cell

approaches zero. The percentage difference between Ge and
Giso

e in example simulated isotropic tissues with 800 cells is
shown in Fig. 6(d), showing close agreement (< 2% relative
difference) almost everywhere across region II. Discrepancies
arise only close to the region I/II boundary, where Ge and Giso

e

both approach zero. It is notable that the dynamic shear resis-
tance term μĖ in (36) is discarded under the approximation
that leads to (38).

D. Composite isotropic and shear deformations

Finally, we recall that the perturbation stress tensor
has eigenvalues �σM

± = −�P eff ± �ξ , where (−�P eff , −
�P eff ) and (�ξ, − �ξ ) are the eigenvalues of the isotropic and
deviatoric (shear) components of (28) respectively. Figure 7
shows how �P eff/�ξ varies across parameter space for
isotropic monolayers subjected to static strain EX [see (18)] of
amplitude 0.01, which induces both an isotropic and deviatoric
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FIG. 7. Heat map across discrete intervals of (�,�) parameter
space showing the value of log(�P eff/ξ̂ ). The dashed line represents
the contour where �P eff = ξ̂ : Tissues show dominant resistance to
area change in the shaded region to the left of the dashed line [where
log(�P eff/�ξ ) > 0, region A], and to shear in the region to the right
[where log(�P eff/�ξ ) < 0, region B]. A log scale is used to help
display the differences across a large range of values. The monolayers
used for all heat maps were the same as those used in Fig. 6, where
each data point is taken as an average from five realizations of a
monolayer with 800 cells, with P eff = 0.

stress response. The parameter space partitions into a region
that is more resistant to area change (region A) and one that is
more resistant to shear (region B). Figure 7 highlights how the
isotropic stress, resisting area change, falls dramatically near
the region II/III boundary [see Fig. 1(b)].

V. DISCUSSION

Previous reports have found that internal patterning in
tissues can be linked to the mechanical properties of the
material [41–43]. We find that stretching induces ordering
within the tissue, with cells being elongated on average in
the direction of stretch, consistent with previous observations
[19,27,38,39]. Inferring relative stresses using the vertex-based
model provides additional insight: Distinguishing cells that
are under net tension (with positive isotropic stress P eff

α > 0)
from those under net compression, we find strong alignment
of the former with the direction of stretch [Fig. 2(c)] and of
the latter with the perpendicular direction, in response to the
imposed compressive stress, while retaining heterogeneity at
the single-cell level. This feature emerges strongly in direct
simulations also (Fig. 3). Increased spatial organization of
cells is associated with anisotropic mechanical properties,
which we characterized by deriving an explicit tissue-level
stress/strain/strain-rate relationship (25), (26), and (28) de-
scribing the response of a prestressed tissue to small-amplitude
homogeneous deformations.

The stress tensor we employed builds on the formulation
derived by Nestor-Bergmann et al. [20] and others [44,45],
neglecting nonplanarity [46,47], curved cell edges [18,48],
and further refinements but including internal dissipation due
to dynamic area and length changes of individual cells in a
way that naturally complements the assumed strain energy.
Our formulation ensures no net change in internal energy
under a homogeneous deformation (Appendix A) and is suited
to describing the viscoelastic properties of freely suspended

monolayers, as described by Ref. [27]. The model is in the
spirit of, but differs from, that of Okuda et al. [49], who
proposed a drag force depending on an average of nearby
vertex velocities. The linearized stress/strain relationship (25),
(26), and (28) does not include additional dissipative effects of
substrate drag or irreversible cell rearrangements. A framework
for including additional plastic stresses and strains has been
proposed within a coarse-grained model [10]; simulations
of large-amplitude plastic tissue deformations under exter-
nal loading using a discrete cell model are provided by
Ref. [9].

Under the present vertex model, the perturbation stress
of a prestressed tissue is given by the area-weighted sum of
perturbation stresses of the individual cells (28). This leads
to an expression for the fourth-order stiffness tensor C (30a),
which describes how anisotropic tissues resist deformation
through reversible elastic deformations, and its viscous analog
D (30b). This formulation extends previous approaches to
upscaling the vertex-based model in spatially periodic [16]
and disordered isotropic networks [20]. Exact expressions for
elastic moduli for a given monolayer realization are provided
as explicit sums [for isotropic monolayers, these are (33) and
(37)]. Further work is required to derive a priori predictions
for the behavior of these quantities over multiple monolayer
realizations. However, a crude simplification of the estimate
of the elastic shear modulus (38) for a disordered isotropic
monolayer is accurate across the bulk of region II of parameter
space, but not close to the phase transition along the region
I/II boundary where the shear modulus approaches zero. Our
predictions can be compared with those of Merzouki et al. [17],
who used simulations to impose stress and measure strain of a
periodic hexagonal monolayer in order to infer bulk elastic
parameters. Our results are broadly consistent with theirs,
including evidence of nonmonotonic behavior close to the
region II/III boundary (revealed most clearly in the stress ratios
plotted in Fig. 7). Likewise, Xu et al. [39] report reduced stress
under uniaxial strain for increasing � and �, mirroring the bulk
elastic response in Fig. 6(d). By comparing the relative size
of isotropic and shear stresses induced by a strictly uniaxial
deformation, the vertex model can also be used to partition
parameter space into regions of higher shear modulus and
lower bulk modulus, and vice versa (Fig. 7). This may be
relevant to phases during development when tissues undergo
extreme shape changes and may have a bearing on the different
mechanical environments of epithelial tissues in various organ
systems.

In summary, this study demonstrates how loading organizes
the cell-scale stress field in a stretched monolayer and how
mechanical viscoelastic moduli of disordered or anisotropic
cellular monolayers can be determined as explicit sums over
cells. Further steps towards deriving well-grounded homoge-
nized descriptions of such media will require assessment of
the statistical distributions of different cell classes over the
plane.
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APPENDIX A: A HOMOGENEOUS
SMALL-AMPLITUDE STRAIN

We derive the mappings of key geometric quantities under a
small-amplitude homogeneous and symmetric strain E, which
transforms position vectors as R → R + E · R, and then apply
these mappings to the mechanical energy U .

We assume that all quantities X follow a mapping of
the form X → X + �X, defined relative to the same cell,
and therefore temporarily drop the α subscript. Tangents
are defined as ti = Ri+1 − Ri , giving ti + �ti = Ri+1 + E ·
Ri+1 − Ri − E · Ri , and hence �ti = E · ti . The length of an

edge is given by li = (ti · ti)
1
2 . To linear order,

li + �li = [(ti + �ti) · (ti + �ti)]
1
2 ≈ [(li)2 + 2ti · E · ti]

1
2

≈ li(1 + t̂i · E · t̂i), (A1)

demonstrating that �li = li(t̂i · E · t̂i). The cell perimeter is
L = ∑Z−1

i=0 li , so that

L + �L =
Z−1∑
i=0

li(1 + t̂i · E · t̂i)

= L +
Z−1∑
i=0

li(t̂i · E · t̂i) = L(1 + Q : E). (A2)

Thus �L = LQ : E. It follows that T + �T = �(L + �L −
L0) = T + �LQ : E. Similarly, li t̂i → li t̂i + �(li t̂i). From
the product rule, �(li t̂i) = (�li)t̂i + li(�t̂i). Now, �(li t̂i) =
liE · t̂i and using (A1) gives liE · t̂i = li(t̂i · E · t̂i)t̂i +
li(�t̂i). Thus, �t̂i = E · t̂i − (t̂i · E · t̂i)t̂i . Note that t̂i ·
(�t̂i) = 0, ensuring that unit vectors are rotated but not
stretched.

We now consider the deformation LQ → LQ + �(LQ),
writing

LQ + �(LQ) =
Z−1∑
i=0

[li t̂i + �(li t̂i)][t̂i + �t̂i]

=
Z−1∑
i=0

[li t̂i + liE · t̂i]

× [t̂i + E · t̂i − (t̂i · E · t̂i)t̂i]

≈
Z−1∑
i=0

li t̂i t̂i +
Z−1∑
i=0

{li t̂i[E · t̂i

− (t̂i · E · t̂i)t̂i] + li(E · t̂i)t̂i} (A3)

to linear order. Thus we see that �(LQ) = LB : E, where B
in component form is

{Bα}pqrs = 1

Lα

Zα−1∑
i=0

liα

[
1

2

(
t̂ iα,pIqr t̂

i
α,s + t̂ iα,q Ipr t̂

i
α,s + t̂ iα,pIqs t̂

i
α,r

+ t̂ iα,q Ips t̂
i
α,r

) − t̂ iα,pt̂ iα,q t̂
i
α,r t̂

i
α,s

]
, (A4)

ensuring that {Bα}pqrs = {Bα}qprs = {Bα}pqsr .

FIG. 8. Representative geometry used to calculate the area of a
cell.

To evaluate area changes, we begin by considering the
area of a subtriangle, � = {Rα,Ri

α,Ri+1
α }, comprising the cell

centroid and two vertices from an edge (Fig. 8). We have used
the α subscript notation for clarity in defining the centroid,
but drop it again from this point. The area of this triangle is
A� = 1

2 ẑ · (Ri × Ri+1). Applying E, we have

A� + �A� = 1
2 ẑ · (Ri + E · Ri) × (Ri+1 + E · Ri+1)

≈ 1
2 ẑ · (Ri × Ri+1 + Ri × E · Ri+1

+ E · Ri × Ri+1) (A5)

to linear order. Since E is symmetric, we can make use of the
spectral theorem to write E = λ1e1e1 + λ2e2e2, where (e1,e2)
form an orthonormal basis of eigenvectors. Inserting into (A5)
we have

�A� = 1
2 ẑ · [λ1Ri × e1e1 · Ri+1 + λ2Ri × e2e2 · Ri+1

+ λ1(e1e1 · Ri) × Ri+1 + λ2(e2e2 · Ri) × Ri+1].

(A6)

Defining θ i and θ i+1 such that λ1Ri × e1 = −λ1|Ri | sin θ i ẑ,
and e1 · Ri+1 = |Ri+1| cos θ i+1 (see Fig. 8) gives

�A� = 1

2
|Ri ||Ri+1|

[
− λ1 sin θ i cos θ i+1

+ λ2 sin

(
π

2
− θ i

)
cos

(
π

2
− θ i+1

)

+λ1 cos θ i sin θ i+1 − λ2 cos

(
π

2
− θ i

)

× sin

(
π

2
− θ i+1

)]

= 1

2
|Ri ||Ri+1|[λ1 sin(θ i+1 − θ i)

+ λ2 sin(θ i+1 − θ i)] = Tr(E)A�. (A7)

Summing over subtriangles gives �A = Tr(E)A.
Having shown that under the deformation R → R + E · R,

lengths and areas of individual cells transform according to
Lα → Lα(1 + Qα : E), Aα → Aα(1 + Tr(E)), it is straight-
forward to determine the associated change in recoverable
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mechanical energy (3) as

�U =
∑

α

�Uα =
∑

α

Pα�Aα + Tα�Lα

=
∑

α

(PαAαI + TαLαQα) : E = �(e) : E, (A8)

where �(e) ≡ −∑
Aασ (e)

α . Here, we have decomposed the
stress in (9) into its elastic and viscous components σ α =
σ (e)

α + σ (v)
α . The sign change between σ and � arises from

the difference between the stresses exerted on, or by, a cell or
tissue. Similarly defining �(v) ≡ −∑

Aασ (v)
α , and noting that

for this small deformation Ȧα = AαTr(Ė), it follows that

�(v) : Ė =
∑

α

γAαȦαTr(Ė) + μLαL̇αQα : Ė

=
∑

γ Ȧ2
α + μL̇2

α = �, (A9)

where � = ∑
α �α is the dissipation rate (5). In the absence

of neighbor exchanges, which would contribute additional
stresses and deformations (treated in a coarse-grained approx-
imation by Ishihara et al. [10]), the total rate of change of
internal energy of the system is therefore Ė = � : Ė = (�(e) +
�(v)) : Ė = U̇ + � = 0 [by (6)]. Positing the thermodynamic
relation �E = T �S + �U , where �S is an entropy change
at temperature T , it follows that for the imposed deformation
E, T Ṡ = −U̇ = � � 0.

APPENDIX B: EXPERIMENTAL METHODS

Xenopus laevis female frogs were preprimed 4–7 days in
advance with 50 units of pregnant mare’s serum gonadotrophin
(Intervet UK) and then primed with 500 units of human chori-
onic gonadotrophin (Intervet UK) 18 h before use as detailed
in Ref. [50]. Each frog was housed individually overnight and
transferred to room-temperature1× Marc’s modified Ringer’s
(MMR) solution [100 mM NaCl, 2 mM KCl, 1 mM MgCl, and
5 mM 4-(2-hydroxyethyl)-1-piperazine-ethanesulfonic acid
(HEPES) (pH 7.4)] at least 2 h prior to egg collection. In vitro
fertilization was performed as described previously [50] and
embryos were dejellied using 2% cysteine (in 0.1× MMR, pH
7.8–8.0). Embryos were microinjected with a needle volume
of 5 and 2.5 nl at the two- or four-cell stages respectively, into
all cells, using a Picospritzer III (Parker instrumentation) with
embryos submerged in 0.1× MMR plus 5% Ficoll. RNA was
synthesized as described previously [51] and microinjected
at the following needle concentrations: 0.5 mg/ml GFP-α-
tubulin; 0.1 mg/ml cherry-histone2B [52].

Animal cap tissue was dissected from the embryo at stage
10 of development (early gastrula stage) following a protocol
previously described by Joshi and Davidson [53], and cultured
on a 20 mm × 20 mm × 1 mm elastomeric PDMS membrane
coated with fibronectin (incubated at 4 ◦C overnight with 1 ml
of 10 μg/ml fibronectin). The fibronectin was removed and
each membrane was subsequently washed three times with
1× phosphate buffered saline (PBS) followed by two washes
with Danilchik’s for Amy explant culture media (DFA; 53 mM
NaCl2, 5 mM Na2CO3, 4.5 mM potassium gluconate, 32 mM
sodium gluconate, 1 mM CaCl2, 1 mM MgSO4) prior to the
introduction of each animal cap. Animal cap explants were

excised using forceps and hair knives to make neat squares
of tissue. Each explant was transferred to a PDMS membrane
filled with DFA and a coverslip with vacuum grease at each
end was placed over the top to ensure the explant adhered to
the fibronectin-coated membrane. Each membrane was then
incubated at 18 ◦C for at least 2 h prior to imaging.

Each PDMS membrane was attached to a stretch appara-
tus (custom made by Deben UK Limited) fixed securely to
the stage of a Leica TCS SP5 acousto-optical beam splitter
(AOBS) upright confocal and a 0.5 or 8.6 mm uniaxial stretch
was applied for control (unstretched) and stretched samples,
respectively. Images were collected on the Leica TCS SP5
AOBS upright confocal using a 20×/0.50 HCX Apo U-V-
I [W (dipping lens)] objective and 2× (or 1×) confocal
zoom. The confocal settings were as follows: pinhole 1 Airy
unit, scan speed 400 Hz bidirectional, format 512 × 512 (or
1024 × 1024). Images were collected using hybrid detectors
with the following detection mirror settings: HyD2 fluorescein
isothiocyanate (FITC) 500–550 nm; HyD4 Texas red 590–
690 nm using the 488 nm (20%) and 543 nm (100%) laser lines,
respectively. Images were collected sequentially. The distance
between each optical stack was maintained at 4.99 μm and the
time interval between each capture was restricted to 20 s, with
each sample being imaged for up to 2.5 h. Only the maximum
intensity projections of these 3D stacks are shown in the results.

APPENDIX C: ORDER PARAMETER

A more traditional measure of spatial disorder is provided
by the order parameter Q = 〈cos 2θ〉, where θ measures the
angle of the principal axis of the shape tensor of each cell
(
∑Zα−1

i=0 Ri
α ⊗ Ri

α) with respect to the direction of stretch and
the average is taken over all the cells in the monolayer. Figure 9
illustrates the evolution of Q for the stretch realizations
illustrated in Fig. 4(b). It is notable that while the two examples
are quite similar by this geometric measure, the shear stress
[Fig. 4(b)] is substantially lower for parameters closer to the
region I/II boundary in parameter space [Fig. 1(b)].

FIG. 9. The order parameter Q, for the realizations plotted in
Fig. 4(b).
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