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Cardiac alternans is a disturbance in heart rhythm that is linked to the onset of lethal cardiac arrhythmias.
Mechanical perturbation control has been recently used to suppress alternans in cardiac tissue of relevant size. In
this control strategy, cardiac tissue mechanics are perturbed via active tension generated by the heart’s electrical
activity, which alters the tissue’s electric wave profile through mechanoelectric coupling. We analyze the effects
of mechanical perturbation on the dynamics of a map model that couples the membrane voltage and active tension
systems at the cellular level. Therefore, a two-dimensional iterative map of the heart beat-to-beat dynamics is
introduced, and a stability analysis of the system of coupled maps is performed in the presence of a mechanical
perturbation algorithm. To this end, a bidirectional coupling between the membrane voltage and active tension
systems in a single cardiac cell is provided, and a discrete form of the proposed control algorithm, that can be
incorporated in the coupled maps, is derived. In addition, a realistic electromechanical model of cardiac tissue
is employed to explore the feasibility of suppressing alternans at cellular and tissue levels. Electrical activity is
represented in two detailed ionic models, the Luo-Rudy 1 and the Fox models, while two active contractile tension
models, namely a smooth variant of the Nash-Panfilov model and the Niederer-Hunter-Smith model, are used to
represent mechanical activity in the heart. The Mooney-Rivlin passive elasticity model is employed to describe
passive mechanical behavior of the myocardium.
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I. INTRODUCTION

Electrical alternans is a beat-to-beat long-short alternation
in the cardiac action potential duration (APD) [Fig. 1(a)]
[1], and is believed to be linked to the onset of lethal heart
rhythm disorders such as ventricular fibrillation (VF) [2,3].
The diastolic interval (DI) (Fig. 1) is the time lapse between
the end of the previous action potential and the next one
(Fig. 1). It has been shown both clinically and experimentally
that alternans degenerates quickly into ventricular tachycardia
or fibrillation. Clinical manifestations of alternans is reflected
in a beat-to-beat alternation of T -wave amplitude, known as
T -wave alternans (TWA), on the electrocardiogram (ECG).
The TWA is a marker of vulnerability to VF, and of sudden
cardiac death (SCD) [4]. Experimentally, it has been observed
that alternans can lead to complex spatiotemporal patterns
along the epicardium and endocardium [5], and often precedes
the development of more dangerous arrhythmias. Therefore,
the suppression of cardiac alternans is potentially an effective
strategy in preventing VF and SCD.

In the literature, electrical perturbation control has been the
most studied approach to terminate alternans; see [6] for de-
tails. With this approach, the pacing cycle length (PCL) is per-
turbed by an amount proportional to the difference between the
last two APDs. This control algorithm has been proven to be ef-
fective in controlling alternans in small tissues of up to 1 cm. A
one-dimensional (1D) map that relates the DI at one beat

*Corresponding author: stevan.dubljevic@ualberta.ca

to the APD of the subsequent beat via the restitution curve
(see Sec. IV), is used to describe the alternans [7,8]. Another
important factor influencing alternans is the bidirectional
coupling between the membrane voltage (V ) and intracellular
calcium (Ca2+) dynamics, where the APD alternans induces
alternation in the amplitude of calcium transients through
the V → Ca2+ coupling (Ca2+ alternans) (Fig. 1). Iterative
maps [9–13] have been used to perform stability analysis of
alternans. In [9], a two-dimensional (2D) discrete map at the
single cell level is presented. At the tissue level, the amplitude
of equations derived from the maps by taking into account the
effect of electrotonic coupling is used to analyze the stability
of the system of coupled maps [10]. Moreover, a theoretical
framework of iterative maps describing the coupled dynamics
of V and Ca2+ has been previously used at the subcellular and
cellular levels [11–14].

Nearly all the work that has been done on the stability
and control of alternans is electric based. However, recently
a different approach for the suppression of alternans, based on
the mechanical perturbation of cardiac tissue, was presented
in [6,15]. This perturbation is reflected in cardiac excitation
through the mechanisms of mechanoelectric feedback (MEF).
The main advantage of this approach is that the alternans is
suppressed in cardiac tissues of relevant size. In [6], we used
a simple phenomenological model of cardiac excitation, while
active tension was generated with an oversimplified isotropic
active tension transient.

In this work, we analyze the effects of mechanical pertur-
bation on the dynamics of the map-based model. This model is
based on coupling between the membrane voltage and active
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FIG. 1. Schematic representation of voltage and calcium alternans.

tension systems at the cellular level, and uses a theoretical
framework of 2D iterative maps of the heart beat-to-beat
dynamics. To make this possible, a simplified description of
MEF is provided, and a coupled map model describing the
bidirectional coupling between the membrane voltage and
active tension at the cellular level is presented. Also, a discrete
form of the proposed control algorithm that can be used in the
coupled map model is derived. The stability of the model can
be analyzed from the eigenvalues of a Jacobian matrix of the
system of coupled maps.

In a second goal of this study, a biophysically detailed model
of cardiac electromechanics is employed to investigate the
control of alternans. We explore the feasibility of suppressing
cardiac alternans in a realistic electromechanical model using
the mechanical perturbation strategy. Luo-Rudy [16] and Fox
[17] models are used to represent electrical activity in heart tis-
sue, while mechanical properties are described by the Mooney-
Rivlin material response [6,18]. Active tension that couples the
electrophysiological model and the cardiac mechanics model
is generated using a smooth variant of the Nash-Panfilov [19]
model and the Niederer-Hunter-Smith [20] model. Numerical
simulations are presented to demonstrate successful suppres-
sion of alternans in two realistic electromechanical models of
cardiac tissue using the proposed control algorithm.

The paper is organized as follows. In Sec. II, we describe the
cardiac electromechanical model used in this work. The me-
chanical perturbation control algorithm is presented in Sec. III.
Section IV is devoted to theoretical analysis and a stability
analysis of the derived system of coupled maps at the cellular
level is provided. Section V presents numerical simulations
demonstrating successful suppression of alternans by the pro-
posed control algorithm, followed by a discussion. The findings
are summarized in Sec. VI and future prospects are proposed.

II. CARDIAC ELECTROMECHANICAL MODEL

In this section, we describe mathematical equations that
model the electrical excitation and mechanical contraction.

A. Cardiac mechanics

Mechanical analysis is based on the finite deformation
elasticity theory, therefore a mathematical model of cardiac

deformation is governed by equations of nonlinear elasticity.
These equations are derived using Newton’s laws of motion
[6,18] and are expressed as

∂

∂XM

(SMNFjN ) = 0, (1)

where FjN = (∂xj/∂XM ) is the deformation gradient tensor,
XM are the reference (undeformed) coordinates, xi are the
material (deformed) coordinates, the uppercase subscripts (M
and N ) and lowercase subscripts (i and j ) correspond to the
reference and current configurations, respectively, and SMN is
the second Piola-Kirchhoff stress tensor.

Two approaches, namely active strain and active stress, have
been proposed to model the active mechanical response of
the myocardium. For the active strain model, a multiplicative
decomposition [21] of the deformation gradient tensor into a
passive and an active part is assumed. The second model, which
is the most widely used and it is adopted in this work, is based
on the concept of active stress [18]. In this approach, SMN is
split into a passive and an active stress component [18], and is
given by

SMN = 1

2

(
∂W

∂CMN

+ ∂W

∂CNM

)
+ TaC

−1
MN, (2)

where W (I1,I2) is the strain energy function, CMN =
(∂xk/∂XM )(∂xk/∂XN ) is the right Cauchy-Green deformation
tensor, and Ta is active tension generated by the electrical
model. The isotropic Mooney-Rivlin constitutive model, which
is used to describe passive mechanical properties of the cardiac
tissue [6,18], is adopted in the present study, where the strain
energy W is given by

W (I1,I2) = c1(I1 − 3) + c2(I2 − 3), (3)

with I1(C) = tr(C) and I2(C) = 1
2 [tr(C) − tr(C2)] are the first

two principal invariants of C, and tr(C) is the trace of C , and
c1 and c2 are material constants.

The elastic equation (1) in one dimension can be written
(see [6]) as

c̃
∂2u

∂X2
+ ∂

∂X

(
Ta

1 + ∂u(X)
∂X

)
= 0, (4)

where u = x − X is the displacement variable, x and X

are material and reference coordinates respectively, and c̃ =
2(c1 + 2c2) is the material stiffness.

It has been shown in [22] that direct physiological influence
of contraction on excitation of cardiac muscle cells, which
is termed as mechanoelectric feedback, is given by depolar-
izing stretch-activated current (Isac) through stretch-activated
channels. Isac can change the shape of the action potential in
response to stretch. A linear voltage-current relationship has
been found in experimental studies and linear ionic models
have been proposed [23] for Isac. In this work Isac as described
in [24] is adopted, and is given as

Isac = Gs

(λ − 1)

(λmax − 1)
(V − Es), (5)

where Gs and Es are maximal conductance and reversal
potential, respectively, and λ is the extension ratio along the
fiber direction, which is normalized by maximal stretch (λmax).
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Following [24], the parameter Gs can take any value between
0 and 100 μS/μF, and Es in most biophysical models takes
the value of −20 mV. As shown in [24], cardiac cells are
assumed to be stretched maximally between 5% and 10% of
the resting position. The Isac [Eq. (5)] is active during stretch,
i.e., it is only present when λ > 1, otherwise, Isac = 0, and is
added to total ionic membrane current generated by the ionic
model discussed under the cardiac excitation. In a 1D cable of
heart tissue, we assume that cardiac fibers are parallel to the X

direction of the undeformed body.

B. Cardiac excitation

A monodomain model is used to represent cardiac excita-
tion, described by the following parabolic partial differential
equation [25]:

Cm

∂V

∂t
= ∂

∂XM

(
DMN

∂V

∂XN

)
− [Iion(u,V ) + Istim],

du
dt

= f(u,V ), (6)

where V is the membrane voltage, DMN is the diffusion
tensor that accounts for electrical anisotropy of cardiac tissue,
Cm is the membrane capacitance, Iion is the ionic membrane
current describing the excitable behavior of cardiac cells, f
is a general function representing the choice of a cell model,
u is the vector of dependent state variables containing ionic
concentrations and membrane gating variables, and Istim is
the externally electrical stimulus applied at the pacing site.
Two cardiac ionic models, namely, the Fox model given in
[17] and the Luo-Rudy-1 (LR1) model [16], are employed in
the present study to represent electrophysiological properties
of the heart. LR1 is a mammalian ventricular cell based
model which incorporates interaction between depolarization
and repolarization and accounts for the calcium dynamics
in cardiac myocyte. In total, the Luo-Rudy model consists
of six individual currents, and of a system of eight ODEs
including the intracellular calcium ion concentration. In 2002,
Fox et al. [17] presented the canine ventricular myocyte, and
it was the first model to ensure occurrence of alternans at
fast pacing rates. This model uses 13 currents and consists
of a system of 13 ODEs. Moreover, compared to the LR1
model, the Fox model incorporates a simplified description
of intracellular calcium, therefore, it explicitly accounts for
bidirectional coupling between the transmembrane potential
and the intracellular Ca2+ concentration, while the LR1 model
does not.

To take into account mechanical deformation of the tissue,
neglected in this model, we modify Eq. (6) as described in
[18,24] to obtain

Cm

∂V

∂t
= 1√

C

∂

∂XM

(√
CDMNC−1

MN

∂V

∂XN

)

− [Iion(u,V ) + Isac(λ,V ) + Istim],

du
dt

= f(u,V ), (7)

where C = det(CMN ). A different approach, based on the
concept of stress-assisted diffusion [26] to describe diffusion
processes in a deforming excitable medium, such as cardiac

tissue, is proposed. The diffusion tensors employed in [26] are
directly influenced by the mechanical stress. Important effects
of stress-assisted diffusion in the drifting and conduction
velocity of excitation waves are revealed in their study.

C. Generation of active tension

In this study, two models of active tension, generated in
response to electrical activation and coupled to nonlinear stress
equilibrium equations, are considered.

The first model for the active tension generation is a smooth
variant of the Nash-Panfilov (SVNP) model [18,19,27] which
consists of one ODE and takes voltage as an input, and is given
as follows:

∂Ta

∂t
= ε(V )

[
kTa

(V − Vr ) − Ta

]
,

ε(V ) = ε0 + (ε∞ − ε0)exp{−exp[−ξ (V − Vs)]}, (8)

where the parameter kTa
controls the maximum value of Ta for

a given potential V and a given resting potential Vr . ε(V ) is
the smoothly varying form for the switch function proposed in
[18], given in terms of the parameters ε0 and ε∞ that represent
the two limiting values of the function for V < Vs and V > Vs

about the phase shift Vs , respectively, and the parameter ξ that
determines the transition rate of ε from ε0 to ε∞ about Vs .

The second one is the Niederer-Hunter-Smith (NHS) model
[20], which is an advanced model that depends on quantities
derived from both the cardiac mechanics and excitation mod-
els. The NHS model consists of a system of five ODEs and the
general form of the system can be written as

dw
dt

= g
(

w,λ,
dλ

dt
,[Ca2+]i,Ta

)
,

Ta = h(w), (9)

where w = [w1,w2,w3,w4,w5] is the vector of internal state
variables for the contraction model, g = [g1,g2,g3,g4,g5] and
h are prescribed nonlinear functions. [Ca2+]i is the intracellular
concentration of Ca2+ ions generated by the ionic model,
and λ is the extension ratio calculated from the mechanics
model. The detailed form of equations for this model is given
in [20]. In this model, cardiac contraction results from active
tension generated by the myofilaments dynamics initiated by
an increase in intracellular calcium concentration [Ca2+]i,
where the concentration of calcium binds to troponin C (TnC),
and follows tropomyosin kinetics with actin sites for myosin
crossbridges. In this model, the Ca2+ binding to TnC is
defined by

d[Ca2+]Trpn

dt
= kon[Ca2+]i([Ca2+]TrpnMax − [Ca2+]Trpn)

− krefoff

(
1 − Ta

� Tref

)
[Ca2+]Trpn, (10)

where kon and krefoff are the binding and unbinding rates of
Ca2+ binding to TnC, [Ca2+]Trpn is the concentration of Ca2+
bound to TnC, [Ca2+]i is the cytosolic Ca2+ concentration,
[Ca2+]TrpnMax is the maximal concentration of Ca2+ that can
bind to site (II), Ta is the active tension generated by the cell,
and Tref is the maximal isometric tension under zero strain
while � is tension dependent buffering parameter. The values
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of these parameters are given in [20]. Equation (10) can be
written as

dw1

dt
= g1

(
w1,λ,

dλ

dt
,[Ca2+]i,Ta

)
, (11)

where w1 = [Ca2+]Trpn, and g1(w1,λ, dλ
dt

,[Ca2+]i,Ta) is equal
to the right-hand side of Eq. (10).

III. CONTROL ALGORITHM

Our control strategy is based on combining the spatially
distributed mechanical perturbation algorithm [6] with the
electrical boundary pacing algorithm [10] in order to control
alternans. First, the tissue is paced at the boundary at PCL,
named τ ∗, such that the APD alternates. Under constant PCL,
the amplitude of alternans [Eq. (26)] grows.

Boundary pacing control is realized by modulating the
pacing interval based on the consecutive APDs at the pacing
site, and is determined by the dynamic control scheme [10]:

T n = τ ∗ + γ [APDn(ζ = 0) − APDn−1(ζ = 0)]. (12)

T n represents the amount of time between the (n − 1)th and
nth stimuli, and ζ represents space. Here γ is the feedback
gain. As described in [6], this feedback control has the effect
of lengthening or shortening T n at the nth stimulus based on the
difference of two consecutive APDs. This approach is capable
of suppressing cardiac alternans at the pacing site and up to
a finite distance (� 1 cm) [10,28,29]. Beyond that region, the
instabilities grow along the tissue. To overcome this limitation
in controllability, we combined it with a spatially distributed
mechanical perturbation algorithm [6].

Depending on the active tension mathematical model em-
ployed, two different mathematical implementations are used
to implement the mechanical perturbation control strategy.

For the SVNP model, the spatially distributed mechanical
perturbation control algorithm is implemented as follows:

∂Ta

∂t
= ε(V )

[
kTa

(V − Vr ) − Ta

] + βen(ζ ),

en(ζ ) =
{

APDref(τ ∗) − APDn−1(ζ ), if ρ > 0

0, if ρ � 0
, (13)

where β is the controller gain, and ρ = APDref(τ ∗) −
APDn−1(ζ ). The error en(ζ ) is generated from the difference
between APD references [APDref(τ ∗)] recorded between the
time we reach τ ∗ and the following beat, over the local
area under control, and the APDs at the (n − 1)th stimulus
(APDn−1), over the same area length. This means that the
mechanical properties of cardiac tissue are perturbed as a result
of Ta perturbation [an additional term given by βen(ξ ) is added
into Ta] when en(ξ ) is not null. The reader can refer to [6] for
more details.

This basic feedback algorithm takes en(ζ ) and provides a
control signal which is applied over the region under control.
The control signal is not null only when en(ζ ) > 0, meaning
that the controller only acts on the short APD. It is added
as a positive quantity to Eq. (13), when the transmembrane
potential crosses the threshold value, named Vth, during the
repolarization phase at the nth stimulus until the resting
potential Vr . In the control algorithm, Vth is set to Es , the

reversal potential defined in Eq. (5). Therefore we can assume
that Isac has the same sign (inward current) when control
is activated. The controller acts after the electrical boundary
feedback controller stabilizes a finite part of the tissue length
(≈1 cm).

For the NHS model, the spatially distributed mechanical
perturbation control algorithm is implemented as follows:

dw1

dt
= g1

(
w1,λ,

dλ

dt
,[Ca2+]i,Ta

)
+ β1e1n(ζ ),

e1n(ζ ) =
{

APDref(τ ∗) − APDn−1(ζ ), if ρ > 0

0, if ρ � 0
, (14)

where β1 is the controller gain, and ρ = APDref(τ ∗) −
APDn−1(ζ ). The functionality of e1n(ζ ) is the same as en(ζ ).
Also, in this model the controller acts after the electrical
boundary feedback controller stabilizes approximately 1 cm
of the tissue length.

IV. THEORETICAL ANALYSIS

In this section, we analyze the effects of the mechanical
perturbation algorithm on the dynamics of the map model that
couples the membrane voltage and active tension systems at
the cell level. Therefore, we introduce a 2D iterative map of
the beat-to-beat dynamics, and a discrete form of the proposed
control algorithm that can be incorporated in the coupled map
model is derived. Then, we perform stability analysis of the
system of the coupled maps. This analysis is performed using
the SVNP model, which describes qualitatively consistent
timing and amplitude of cardiac tissue contraction [30]. While
the active cell tension is better represented using the NHS
model that accurately describes the relationship between the
intracellular calcium transient and tension, the selection of the
SVNP model is made due to the simplicity of the governing
equations of this model, where a discrete form of the control
algorithm can be derived. In addition, in this study, we are
investigating the effects of mechanical perturbation (stretch-
based control algorithm) on alternans to gain insight into
the effectiveness of the control algorithm, that have been
confirmed by numerical experiments, using both SVNP and
NHS models of active tension. While these two models do not
generate the same quantitative results (shape and magnitude)
of Isac, which causes either the lengthening or shortening of the
action potential as discussed in the next section, qualitatively
similar results of Isac (approximately proportional increases
or decreases of Isac from beat to beat) are obtained for both
models.

A. Map model development

The electrophysiology of a cell experiences feedback from
tissue deformation, which activates stretch sensitive ion chan-
nels, is described in Sec. II. Therefore, Isac [Eq. (5)], which is
a function of two variables λ [Eq. (5)] and V [Eq. (7)], should
be expressed only in terms of V and Ta [Eq. (8)], to have direct
coupling between voltage and active tension. To this end, an
approximation of λ in terms of Ta is given in Appendix A. Thus,
λ as given in Eq. (A7) is a function of Ta only, and the simplified
description of Isac, after replacing the approximate value of λ
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TABLE I. Parameter values used in SVNP model.

Active tension kTa
= 0.34 × 10−3 MPa mV−1

Switch function ε0 = 1 ms−1, ε∞ = 0.1 ms−1,
ξ = 0.3 mV−1, Vs = −70 mV

in Eq. (5), becomes a function of V and Ta . Therefore, the
simplified fully coupled electromechanical cell (CEC) model
is constituted by Eqs. (7), (8), (5), and (A7).

In the following, we check the effectiveness of mechanical
and electrical perturbation controls in suppressing the alternans
using the simplified CEC model. For numerical demonstration,
a 1D cardiac cable of length L = 1 cm and fixed at end points
is considered. The step sizes and parameters of this model are
given in Sec. V and in Tables I and II. The APD alternans is
induced by pacing the cable in the middle with PCL = 200 ms
until steady state is reached. Electrical perturbation control is
given in Eq. (12) with γ = 0.15, and mechanical perturbation
control is given in Eq. (13), and en(ζ ) takes the form given by
Eq. (65) in [15], and therefore we obtain

∂Ta

∂t
= ε(V )

(
kTa

(V − Vr ) − Ta

) + βen(ζ ),

en(ζ ) =
{

APDn(ζ ) − APDn−1(ζ ), if ρ < 0
0, if ρ � 0 , (15)

where ε(V ) is defined in Eq. (8). The values of original
parameters of ε(V ), given in [19], are modified (see Table I),
in order to take into account time delay as illustrated in
Fig. 2(a) in [18]. The controller gain β is chosen to be
−0.002. Therefore, in both control algorithms (electrical and
mechanical), we have the same error signal which is generated
by the difference between two consecutive APDs. In the case
of electrical control, the pacing interval is being perturbed,
while in the case of mechanical control, we are perturbing
Ta . As shown in Fig. 2, the alternans is suppressed (no
alternation in the APD at steady state), when control (electrical
or mechanical) is activated. While both control algorithms have
successfully suppressed alternans at a single cardiac cell, their
effectiveness at the tissue level is not equal, since, among other
things, a spatially extended electrical perturbation algorithm
for controlling alternans is not feasible; see [6] for details.

The second step in this development is to introduce a
2D discrete map describing the coupled dynamics of the
membrane voltage and the active tension. The APD alternans
can be mathematically described using the following discrete
map:

APDn = F (DIn−1). (16)

The relation in Eq. (16), known as APD restitution, relates
APD at beat n with DI at beat n − 1. It dictates that a shortened
(prolonged) DI at a given beat will be followed by a shortened

TABLE II. Values of the material parameters used for the models.

Stretched-activated current Gs = 10 μS μF−1, Es = −20 mV,
λmax = 1.1

Mooney-Rivlin c̃ = 0.4 MPa
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n
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P

D
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m
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Electrical perturbation control
Mechanical perturbation control

FIG. 2. Evolution of the APD vs the beat number (n) of a single
cardiac cell in the middle of the cable of length L = 1 cm, when
it is paced at the center with PCL = 200 ms until steady state is
reached (black line), using the CEC model [Eqs. (7), (8), (5), and
(A7)] where FOX model is used to represent electrical activity, with
parameters given in Sec. V and in Tables I and II. Evolution of APD
vs n, when mechanical perturbation control (red dashed line), or
electrical perturbation control (blue dash-dot line), applied at beat
100, are obtained using the CEC model except that Eq. (15) (with
β = −0.002) is used instead of Eq. (8) for the case of mechanical
control, and Eq. (12) (with γ = 0.15) is added to the CEC model for
the case of electrical control.

(prolonged) APD at the next beat. The interval T n [Eq. (12)]
can be written as T n = APDn + DIn. At a constant PCL, where
T n = τ for all n, prolonging a given APD will shorten the
following DI, and therefore the next APD is shortened. APD
restitution is usually measured using an S1S2 pacing protocol.
In the S1S2 protocol, the cell is paced at a fixed cycle length S1
until steady state is reached, and then a premature S2 stimulus
is applied to elicit an extra beat. This S1S2 stimulus train is
repeated and the S2 intervals are shortened each time until
conduction block occurs. Theoretical studies have indicated
that the periodic fixed point of Eq. (16) corresponding to the
stable 1:1 rhythm undergoes a period-doubling bifurcation (2:2
rhythm), leading to the APD alternation, when the slope of the
APD restitution curve is greater than 1. It has to be noted that
in large tissues, while most of the tissue may follow a 2:2
response, some regions can develop into higher-order rhythms
such as 4:4 and 8:8 during fast pacing [5]. However, several
experimental results have shown that this hypothesis (slope >

1) fails to predict the onset of alternans when other factors, such
as calcium cycling, have a strong influence on action potential.
Therefore, in [12,13], a 2D iterative map is used to explore the
effects of coupling between voltage and intracellular calcium
transients, and is given by

APDn = Fc1(APDn−1,Can),

Can = Fc2(APDn−1,Can−1), (17)

which relates the APDn at a given beat to the APDn−1 at
previous beat, due to the APD restitution [Eq. (16)], and the
peak Can (Fig. 1) of the same beat, due to the effects of
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FIG. 3. Schematic representation of membrane voltage and active
tension, illustrating the APD and the ADT, using the CEC model
where Fox model is used to represent the electrical activity, in the
presence of alternans.

calcium-sensitive membrane currents, and relates the Can at
a given beat to the APDn−1 and the peak Can−1 at the previous
one. The Ca2+ modulates membrane currents through the
Ca2+ → V coupling, affecting the APD, and as dictated in
Eq. (17), the coupling from Ca2+ to V occurs during the
concurrent beat. The situation where APD and Ca2+ alternans
are in phase, the case where long and short APD correspond to
large and small Ca2+ respectively, is referred to as electrome-
chanically concordant (EMC) alternans [12] [Fig. 1(a)]. The
opposite situation is known as electromechanically discordant
(EMD) alternans [Fig. 1(b)].

To take into account the effects of MEF, and based on
numerical experiments of the CEC model [Eqs. (7), (8), (5),
and (A7)] where the Fox model is used to represent electrical
activity, with parameters given in Sec. V and in Tables I and
II, we use a semi-implicit formulation of 2D maps that relates
the APD and the active tension duration (ATD) (Fig. 3), and is
given by

APDn = F1(APDn−1,ATDn),

ATDn = F2(APDn−1,ATDn−1), (18)

where ATDn (lower part of Fig. 3) is the Ta width at beat n,
measured from the instant when Ta crosses the threshold value
on the wave front, until the instant it falls below the threshold
value on the wave back, and APDn (upper part of Fig. 3) is
the V width at beat n, measured from the instant when V

crosses the threshold value on the wave front, until the instant
it falls below the threshold value on the wave back. Similarly
to the APD in Eq. (17), the APD of the current beat (APDn)
[Eq. (18)] is a function of both the previous APD (APDn−1)
and the concurrent ATD (ATDn), due to the effects of Isac that
changes the repolarization of membrane voltage. Also in this
model, the coupling from active tension to voltage (Ta → V

coupling) occurs during the concurrent beat. Note that the 2D
map [Eq. (18)] is also valid when the NHS model is used, but
the width of Ta (ATDn) at beat n needs to be replaced by the
Ta transient peak (ATPn).

B. Discrete form of the control algorithm

A discrete form of mechanical perturbation control algo-
rithm that can be incorporated in the 2D maps [Eq. (18)] is
derived in the following manner.

To compute the current value of Ta at a single point in space,
we discretize Eq. (8) in time k using an explicit forward Euler
scheme. The closed-form expression for Ta reads

T k
a = T k−1

a + �t ε(V k−1)
[
kTa

(V k−1 − Vr ) − T k−1
a

]
,

ε(V k−1) = ε0 + (ε∞ − ε0) {−exp[−ξ (V k−1 − Vs)]}. (19)

When control is activated, the current value of active tension,
named T

pert
a , is perturbed, by adding the term �t β en [en =

APDref(τ ∗) − APDn−1, Eq. (13)], into the right-hand side of
Eq. (19), and therefore, at beat n, we can equivalently write

ATDpert
n = ATDn + α [APDref(τ

∗) − APDn−1], (20)

where ATDpert
n is the width of T

pert
a at beat n, and α is a

parameter that depends on β. Note that the discrete form of Ta

[Eq. (20)], expressed in its ATD form, states that the control
signal is delivered in a given beat when control is activated. On
the other hand, continuous-time control law is implemented
[Eq. (13)], which means it is defined over a continuous time
interval in a given beat.

C. Stability analysis

In this section, we present linear stability analysis of the
2D iterative maps describing the coupled dynamics of voltage
and active tension and incorporating mechanical perturbation
control derived in its discrete form. The system’s behavior
of the open-loop or controlled coupled maps, close to the
alternans bifurcation, can be accessed from the eigenvalues of
the Jacobian matrix of the system. First, we linearize the system
[Eq. (18)] around the period-1 fixed point (APD∗,ATD∗) by
letting APDn−1 = APD∗ + δAPDn−1 and ATDn−1 = ATD∗ +
δATDn−1, see Appendix B, and we obtain

δXn ≈ J δXn−1, (21)

where δXn = [δAPDn,δATDn]T , and J is the Jacobian of the
two-variable map evaluated at the fixed point (APD∗,ATD∗),
and is given by

J =
⎛
⎝

∂APDn

∂APDn−1
+ ∂APDn

∂ATDn

∂ATDn

∂APDn−1

∂APDn

∂ATDn

∂ATDn

∂ATDn−1

∂ATDn

∂APDn−1

∂ATDn

∂ATDn−1

⎞
⎠, (22)

which describes the system’s behavior around its fixed point
(APD∗,ATD∗). The signs of the elements of J play an impor-
tant role in the stability of J , hence, descriptions of all the terms
of the Jacobian matrix for the case of CEC model are given
below. In all numerical experiments, we assume voltage-driven
alternans in which APD alternans is caused by instabilities
originating from voltage, and that the width variations of V

and Ta occur when V crosses Es , since control is activated
only when V crosses Es . If only voltage is coupled to tension
(one way coupling), it is the case of a cardiac electromechan-
ical model when MEF is neglected (Isac = 0); −J11 simply
measures the slope of the APD restitution relation [Eq. (16)],
since when Isac = 0, we have ∂APDn/∂ATDn = 0, and conse-
quently J11 = ∂APDn/∂APDn−1 = −∂APDn/∂DIn−1. When
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FIG. 4. (a) Illustration of APD restitution relation and graded
release coupling in CEC model. An increase in the APD (red line)
at a given beat leads to a decrease in the APD (red line) and ATD (red
line) at the next beat (due to a shortening of the DI), and vice versa.
(b) Illustration of Ta → V coupling in CEC model. An increase in
the ATD (red line) at a given beat tends to prolong the APD (red line)
of that beat (due to the effects of Isac). Fox model is used to represent
the electrical activity in CEC model.

the slope is larger than unity, which corresponds here to the
condition J11 < −1, APD alternans occurs and induces ATD
alternans; see also the discussion in Sec. V. In turn, J22

measures the degree of instability of the tension system in the
CEC model, and is negative but greater than −1, since in our
case ATD alternans is secondary to APD alternans. The term
∂APDn/∂ATDn measures dependence of the voltage on the
tension, and is positive in the CEC model [Fig. 4(b)]. This
is equivalent to the so called positive (Ta → V coupling),
which states that a prolongation (shortening) in ATD will
prolong (shorten) concurrent APD, and means that an increase
(decrease) in ATD has a net depolarizing (hyperpolarizing)
effect on voltage. Since ∂ATDn/∂ATDn−1 = J22 is negative
and ∂APDn/∂ATDn is positive, one can conclude that J12 =
(∂APDn/∂ATDn)(∂ATDn/∂ATDn−1) is negative. The term
∂ATDn/∂APDn−1 = J21 measures the dependence of each
beat’s ATD on the preceding APD (V → Ta coupling), called
graded release, and is negative in the CEC model [Fig. 4(a)].
It states that a prolongation of the preceding APD (APDn−1)

will cause a shortening in the subsequent ATD (ATDn), and
vice versa.

The stability of the system of coupled maps [Eq. (18)]
is governed by the eigenvalues of the Jacobian matrix. The
eigenvalues of the matrix J are given by

λ1 = 1
2 (J11 + J22 +

√
(J11 − J22)2 + 4J12J21),

λ2 = 1
2 (J11 + J22 −

√
(J11 − J22)2 + 4J12J21). (23)

The period-1 fixed point is stable provided that the absolute
value of the largest eigenvalue of J , which is λ2, is smaller
than 1. If λ2 < −1, the fixed point goes unstable and a period-
doubling bifurcation occurs, corresponding to the onset of
alternans.

To analyze the effect of the mechanical perturbation control
on the system of coupled maps, we model the effects of
mechanical control on the elements of J [Eq. (22)], by incor-
porating its discrete form [Eq. (20)] in J . The new Jacobian
matrix called J c is given as

J c =
⎛
⎝ J11 − α ∂APDn

∂ATDn
J12

J21 − α J22

⎞
⎠, (24)

where α is not null when control is activated, otherwise
it is set to zero. Mechanical perturbation control will thus
affect two elements in J c (J c

11 = J11 − α (∂APDn/∂ATDn)
and J c

21 = J21 − α). Therefore, we analyze the effect of these
two elements on the stability of the system. Let us assume that
at the beat n the control is activated; the APD dynamics mani-
fested by ∂APDn/∂APDn−1 can be stabilized with negative α,
since ∂APDn/∂ATDn is positive (discussed above). Likewise,
the V → Ta coupling manifested by ∂ATDn/∂APDn−1 will
become weaker with negative α and ∂ATDn/∂APDn−1 − α

remains negative. We can illustrate this by calculating the
eigenvalues of J c, which are given by

λc
1 = 1

2

(
J c

11 + J22 +
√(

J c
11 − J22

)2 + 4J12J
c
21

)
,

λc
2 = 1

2

(
J c

11 + J22 −
√(

J c
11 − J22

)2 + 4J12J
c
21

)
, (25)

where (J12,J22) are elements of J [they are used in Eq. (25),
since they do not depend on α]. For certain values of α, as
shown in Fig. 5, the absolute value of the largest eigenvalue
is smaller than 1. The properties of the 2D discrete maps
determine the range of α, and consequently the controller gain
β [defined in Eq. (13)], which provides effective control. As
demonstrated above, the mechanical perturbation control is
effective in controlling alternans at the cellular level. In the
next section, the suppression of alternans at the tissue level
will be numerically demonstrated.

V. NUMERICAL RESULTS AND DISCUSSION

We have simulated the control algorithms and successfully
suppressed alternans using either SVNP or NHS models for
the active tension generation with either Fox or LR1 models
for the cardiac excitation described in Sec. II. Therefore,
for brevity, only numerical simulations obtained with NHS
model and with either Fox or LR1 models are presented and
discussed in this section. The NHS model is chosen since the

052407-7



AZZAM HAZIM, YOUSSEF BELHAMADIA, AND STEVAN DUBLJEVIC PHYSICAL REVIEW E 97, 052407 (2018)

-1 -0.5 0 0.5 1

Re c
1,2

-1

-0.5

0

0.5

1

Im
 

c 1,
2

  = 0

  = 0

  = -36  = -36  = -11   = -25

c
1
c
2

 decreasing

 decreasing

FIG. 5. Diagram of the two eigenvalues (the imaginary and real
parts of λc

1,2) of the Jacobian matrix J c for various values of α. λc
1,2

(marked by blue squares and red lozenges) are calculated using the
CEC model [Eqs. (7), (8), (5), and (A7)] where Fox model is used to
represent the electrical activity, with parameters given in Sec. V and
in Tables I and II. The 1D tissue is paced at the center with PCL = 207
ms, and the terms that constitute the elements of J are evaluated at the
period-1 fixed point. For α = 0 (no control is applied), the absolute
value of the largest eigenvalue of J c (|λc

2|), which is a measure of the
stability of the fixed point, is greater than 1. When α < 0, the absolute
value of λc

2 is decreased and λc
1 is increased. For α <= −36, λc

1, which
becomes the largest eigenvalue of J c when α < −25, is greater than
1. Both eigenvalues become complex when α < −11 and α > −25.

relationship between Ca2+ and Ta is more accurately described
in this model. Thus, Eqs. (4), (5), (7), and (9) are used to
constitute the two electromechanical models in this section.
In all our simulations, a 1D cardiac cable of length L = 6.25
cm, fixed at end points, is considered, which is consistent
with an isometric contraction regime. In one dimension, the
upper case indices (M,N ) presented in Eq. (7) are set to
1, D11 = D̄ = 0.001 cm2/ms is the diffusion constant, and
Cm = 1 μF/cm2 is the membrane capacitance. The electrical
stimulus is applied as square wave pulses with a magnitude
of 80 μA/μF and a duration of 1 ms. The same numerical
schemes were applied in all simulations, where Eq. (7) was
solved by a semi-implicit time integration scheme, and the
Hodgkin-Huxley type equations for the gating variables in the
ionic models (LR1, Fox) were integrated using the Rush and
Larsen integration scheme [31]. The active tension generation
[Eq. (9)] was solved using the standard Euler scheme, and we
determined the tissue deformation mechanics [Eq. (4)] using
the finite difference scheme. The step time �t = 0.005 ms
and step size �X = 0.0125 cm are used in all simulations,
and no-flux boundary conditions were imposed for Eq. (7).
The parameters for all models, including cardiac mechanics,
used in the simulation are given in Table II.

A. Model 1: Using LR1 and NHS models

In the first electromechanical model, LR1 and NHS models
are used to represent electrophysiological properties and active
tension generation respectively. The LR1 [16] model, where
the resting potential is about Vr = −83.4 mV, is used with
modifications of the maximum conductances of the sodium
current (GNa = 16.0 instead of 23.0), of the slow inward
current (Gsi = 0.06 instead of 0.09), and of the time-dependent
potassium current (GK = 0.432 instead of 0.282), so that the
model is capable of showing alternans at a shorter cycle
length. In this model, the gains γ = 0.23, β1 = −4.2 × 10−4

are chosen.
The amplitude of alternans, an(ζ ), is defined as the dif-

ference between two consecutive APDs at a given point in
space ζ :

an(ζ ) = [APDn(ζ ) − APDn−1(ζ )](−1)n. (26)

To induce alternans, we pace the first ten cells of the cable,
located at one end from the pacing site (P), at τ = 300 ms, until
a steady-state APD is reached, and gradually decreased τ from
300 to τ ∗ = 255 ms. The pacing period was shortened in steps
of 5 ms for τ > 260 ms and in steps of 1 ms for τ < 260 ms.
When pacing with period τ ∗ = 255 ms, the alternans [Fig. 6(a)]
grows, and when the control action is applied at t = 33 000 ms,
over localized region under control (3.25–5 cm), it successfully
suppresses alternans [Fig. 6(c)]. The controller acts after the
electrical boundary feedback controller stabilizes the area up
to 1 cm from P [Fig. 6(b)]. As seen in this figure, the electrical
pacing control cannot achieve stability for the cables exceeding
1 cm, hence the need for a model-based control algorithm that
combines the boundary pacing with the spatially distributed
mechanical perturbation. As shown in Fig. 7, APDs alternate
in a repeating long-short pattern when control is not applied
[Fig. 7(a)] and are restored (normal APDs), in the area up to 1
cm from P [Fig. 7(b)], after the electrical control is applied at
P , and along the cable when both the electrical and mechanical
perturbation controls are applied [Fig. 7(c)].

After applying the spatially distributed mechanical pertur-
bation control at t = 33 000 ms, the largest changes in Isac

[Fig. 8(b)] with respect to Isac, when only the electrical bound-
ary pacing control is applied [Fig. 8(a)], occur in the localized
region (3.25–5 cm) where the control signal is applied. The
mechanical perturbation control perturbs the tissue by exerting
a force that causes deformation in the region under control, and
as a result, the stretch distribution along the tissue changes, it
increases in the region under control, and decreases in other
regions. This is because, since the sum of the length of all
the line segments, when stretched (increased) or contracted
(decreased), of the 1D cable, remains constant when both
ends of the cable are fixed, see Appendix A, some segments
are stretched, while others are contracted. Consequently, the
magnitude of Isac, which is a function of stretch and voltage
[Eq. (5)], when mechanical perturbation control is applied,
increases in the localized region under control (3.25–5 cm from
P), and decreases elsewhere. As can be seen in Fig. 8(d), the
short APDs during one beat [the odd beats in Fig. 8(d)], in
the area under control, are prolonged due to the Isac, which
causes, according to the restitution relation [Eq. (16)], the
shortening of APDs on the following beat [the even beats in
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FIG. 6. Magnitude of the amplitude of alternans for model 1
when a 6.25-cm cable of cardiac cells, the first ten cells to pacing
site P (which corresponds to ζ = 0), is paced at 255 ms, starting
with period =300 ms, and decreased gradually to period =255 ms.
The amplitude of alternans grows, shown in (a), when no control is
applied, while (b) illustrates the alternans suppression by electrical
pacing control applied at P when τ ∗ = 255 ms is reached, and (c)
illustrates the alternans suppression by electrical pacing control and
spatially distributed mechanical perturbation control when the control
action is applied at t = 33 000 ms over localized region under control
(3.25–5 cm from P).

FIG. 7. Time evolution of transmembrane potential for model 1
before control is applied (a), APDs alternate in a repeating long-short
(L-S) pattern, and after (b) electrical pacing control is applied at
pacing site (P), normal (N ) APDs that are closed to P are restored,
while (c) illustrates the restoration of normal APDs along the cable
when electrical and mechanical perturbation controls are applied
respectively at P and over localized region under control (3.25–5 cm
from P).

Fig. 8(d)]. It has to be noted that when the control signal
is applied, Isac is defined as an inward current, as discussed in
Sec. III.

The presence of electrical alternans induces, through the
mechanism of the so-called excitation-contraction coupling, an
alternation in the heart muscle contractile activity; see Fig. 9.
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FIG. 8. (a),(c) Time evolution of stretch-activated current (Isac) and membrane potential for model 1, respectively, when only the electrical
control is applied, and after (b),(d) the mechanical perturbation control is also applied, at t = 33 000 ms, over localized region under control
(3.25–5 cm from P). As seen in this figure, the largest changes in Isac (b) with respect to Isac (a), occur in the region (the region between the
two dash-dot lines) where mechanical control is applied.

The amplitude of tension alternates [Fig. 9(b)] when the APD
alternates [Fig. 9(a)]

As shown in Fig. 10, the error signal decreases from
around 20 ms when control is turned on to less than 3 ms
at steady state, and the percentage variation in the magni-
tude of Ta perturbation, where Ta perturbation occurs as a
result of [Ca2+]Trpn perturbation, varies from around 10%
when control is turned on, to less than 2% at steady state
(see Fig. 11). Note that, in real time experiment, perturbing
[Ca2+]Trpn by an amount equal to β1e1n(ξ ), as described in
Eq. (14), can be difficult to realize, since measurements of
the [Ca2+]Trpnconcentration may not be readily available, and
therefore other means such as magnitude of applied force
can be used to reconstruct the amount of concentration of
[Ca2+]Trpn that needs to be applied. For example, massaging
cardiac tissue can perturb [Ca2+]Trpn (change its magnitude)
since mechanical perturbation modifies [Ca2+]i [32], which in
its turn modifies the [Ca2+]Trpn [Eq. (11)].

In summary, the control signal alters the tissue’s transmem-
brane potential when mechanical perturbation is applied, in
which changes in Ta affect the mechanical deformation term

[displacement variable u in the elastic equation (4)], which
then affects the transmembrane potential [Eq. (7)], through
the conductivity tensor and stretch-activated current [Eq. (5)].
Perturbing MEF alter the tissue’s electric wave profile, and
consequently the APD. Thus, the control of alternans in cardiac
tissues of relevant size can be achieved by the manipulation of
the electrical APD using a model based on the mechanical and
electrophysiological properties of cardiac tissue.

B. Model 2: Using FOX and NHS models

FOX and NHS models are used in the second electrome-
chanical model to represent electrophysiological properties
and active tension generation respectively. The resting poten-
tial for the Fox [17] model is about Vr = −94.7 mV, and the
gains γ = 0.19, β1 = −7.4 × 10−4 are chosen in model 2.

The alternans is induced by pacing the first ten cells from
P of the cable, at τ = 300 ms, until a steady-state APD is
reached, and is gradually decreased τ from 300 to τ ∗ = 192
ms. The pacing period was shortened in steps of 5 ms for τ >

200 ms and in steps of 1 ms for τ < 200 ms. As shown in
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FIG. 9. Time evolution of transmembrane potential variable (a),
and active tension variable (b) for model 1 in the presence of alternans.
As seen above, the alternation in the APDs induces an alternation
in the amplitude of tension through the mechanism of the so-called
excitation-contraction coupling.

Fig. 12, the amplitude of alternans grows [Fig. 12(a)] when
no control is applied, and when the control action is applied
at t = 25 000 ms, over a localized region under control (3.25–
5 cm), it successfully suppresses alternans [Fig. 12(c)]. The
controller acts after the electrical boundary feedback controller
stabilizes a small area (around 1 cm) from P [Fig. 12(b)]. As
can be seen in [Fig. 12(b)], |an(ζ,t)| exhibits ripples at the
pacing boundary before a steady state is reached, which is then
transmitted along the cable. This is due to the pacing period
of the dynamic feedback control [Eq. (12)] which varies over
many different values depending upon the difference between
the last two APDs recorded. The range of variation can be large,
especially at the early stages after the control is applied, but
when γ [the feedback gain in Eq. (12)] is better tuned, while
satisfying the stability requirement [10], the oscillations decay
faster. Also, in this model is demonstrated the need to combine
the boundary pacing with the spatially distributed mechanical
perturbation to successfully suppress alternans.

Similarly to the numerical results for Isac presented in model
1 (see Fig. 8), the largest changes in Isac for model 2, after
the mechanical control is applied [Fig.13(b)], with respect to

FIG. 10. Time evolution of error signal (e1n), defined in Eq. (14),
for model 1, when a spatially distributed mechanical control is applied
over localized region under control (3.25–5 cm).

Isac, when only the electrical control is applied [Fig. 13(a)],
occur in the region under control. As can be seen in this figure,
when mechanical control is turned on at t = 25 000 ms, the
magnitude of Isac increases in the region under control for the
odd and even beats, which differs from the Isac given in model
1, where the magnitude of Isac increases only for the odd beats.
This is because, although the APDs of the even beats remain
longer than APDs of the odd beats in the region under control
in model 2, they are shorter than APDref(τ ∗).

VI. SUMMARY AND FUTURE WORKS

The development of methods to suppress cardiac alternans
has important clinical implications, due to the finding that TWA
often precedes lethal arrhythmias, and is a risk factor for SCD.
We introduce a theoretical framework of 2D iterative maps that
describe the cardiac excitation-contraction coupling. To this
end, the stretch-activated current through the stretch-activated
ion channels that mediate MEF is approximated in terms of
the membrane voltage and the active tension. This allows us
to study the effects of the mechanical perturbation algorithm
on the dynamics of a developed map model that couples the
membrane voltage and active tension at the cellular level. A
stability analysis of the system of coupled maps is performed
by incorporating a discrete form of the control algorithm. We
show that when the mechanical control is turned on, both the
stability of APD dynamics and V → Ta coupling are affected.
That is, the mechanical controller gain affects the eigenvalues
of the Jacobian matrix of the system, and thus its stability.
Therefore, with an appropriate choice of the gain, the system
can be stabilized, and the alternans is suppressed.

The effectiveness of the mechanical perturbation algorithm
is verified by employing a model of cardiac electromechanics.
Two detailed ionic models of cardiac cell electrophysiology,
namely the Luo-Rudy 1 and Fox models, are used, and passive
mechanical properties of cardiac muscle are described using
the Mooney-Rivlin passive elasticity model. Active tension
that couples the cardiac mechanics with excitation is gener-
ated using a smooth variant of the Nash-Panfilov model and
the Niederer-Hunter-Smith model. The control algorithm is
demonstrated to successfully suppress alternans in a 1D cable
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FIG. 11. Time evolution of active tension variable (Ta) [Eq. (9)]
in localized region under control (3.25–5 cm) for model 1 when no
control is applied (a), while (b) illustrates Ta evolution when only
electrical pacing control is applied at pacing site when τ ∗ = 255 ms
is reached, and (c) illustrates the Ta evolution when electrical pacing
control and spatially distributed mechanical perturbation control after
the control is turned on at t = 33 000 ms over localized region under
control.

of cardiac cells using numerical simulations. If the mechanical
perturbation algorithm is incorporated into a mechanical-based
device that can be equipped with a mechanical patch, such as

FIG. 12. Magnitude of the amplitude of alternans for model 2
when a 6.25-cm cable of cardiac cells, the first ten cells to P ,
is paced at 192 ms, starting with period =300 ms, and decreased
gradually to period =192 ms. The amplitude of alternans grows,
shown in (a), when no control is applied, while (b) illustrates the
alternans suppression by electrical pacing control applied at P when
τ ∗ = 192 ms is reached, and (c) illustrates the alternans suppression
by electrical pacing control and spatially distributed mechanical
perturbation control when the control action is applied at t = 25 000
ms over localized region under control (3.25–5 cm from P).

[33], alternans rhythms can be suppressed before they become
fatal rhythm disorders.
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FIG. 13. (a),(c) Time evolution of stretch-activated current (Isac) and membrane potential for model 2, respectively, when only the electrical
control is applied, and after (b),(d) the mechanical perturbation control is also applied, at t = 25 000 ms, over localized region under control
(3.25–5 cm from P). As seen in this figure, the largest changes in Isac (b) with respect to Isac (a) occur in the region (the region between the
two dash-dot lines) where mechanical control is applied.

When Isac is applied over a localized region of tissue
(chosen by trial and error in our experiments), the spatially
distributed mechanical perturbation algorithm successfully
suppresses alternans along the tissue. The remaining questions
are what is the minimum mechanical patch size necessary and
where should the patch be positioned to control alternans?
These questions will be addressed in future studies. In addition,
tissue anisotropy and fiber orientation will be taken into
account when higher-dimensional computational heart models
are considered. These factors will affect the distribution of
fiber stretch along the tissue, and consequently the magnitude
of Isac, which depends on the amount of stretch generated. We
expect the size and position of the adhesive patch will influence
the magnitude of the mechanical perturbation applied. The
majority of studies have neglected the time-dependent inertial
term in the equations governing cardiac mechanics (see [34]
for a demonstration), therefore, in this work, the inertia term
was neglected. But recently [35], it has been shown that
the deformations due to inertia may alter the dynamics of
excitation waves via the MEF, therefore, this term may be
incorporated in future studies.
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APPENDIX A: APPROXIMATION OF THE
EXTENSION RATIO

In one dimension, the extension ratio in the direction of the
fiber is calculated from the soft tissue mechanics model, and
is given by [6,24]

λ =
√

C11 = F (X) = 1 + ∂u(X)

∂X
. (A1)

If we assume that the maximal stretch of cells, from the resting
position, is 5%, we may approximate the inverse of F (X) as

F (X)−1 =
(

1 + ∂u(X)

∂X

)−1

≈ 1 − ∂u(X)

∂X
. (A2)
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The elastic equation (4) can be rewritten as

c̃
∂
(
1 + ∂u(X)

∂X

)
∂X

+ ∂

∂X

(
Ta(X)

1 + ∂u(X)
∂X

)
= 0. (A3)

By integrating Eq. (A3), we obtain

c̃

(
1 + ∂u(X)

∂X

)
+ Ta(X)

1 + ∂u(X)
∂X

= C. (A4)

The integration constant C is determined by applying boundary
conditions. Since a 1D cable fixed at both ends is consid-
ered, and thus ∂u(X)/∂X = 0[F (X) = 1] at the boundaries,
we have C = Tb + c̃, where Tb is the active tension at the
boundary, which satisfies the following condition:∫ L

0
F (X)dX = L. (A5)

Replacing C and the approximation of F (X)−1 [Eq. (A2)]
by their values in Eq. (A4) and solving for ∂u(X)/∂X, we
obtain

∂u(X)

∂X
≈ Tb − Ta(X)

c̃ − Ta(X)
. (A6)

Replacing ∂u(X)/∂X by its value in Eq. (A1), we obtain

F (X) ≈ 1 + Tb − Ta(X)

c̃ − Ta(X)
,

with Tb ≈
∫ L

0
Ta (X)

c̃−Ta (X)dX∫ L

0
1

c̃−Ta (X)dX
, (A7)

where Tb is determined by replacing F (X) [Eq. (A7)] by
its value in Eq. (A5). Therefore, when 1 < λ <= 1.05, an
approximation of λ, given in Eqs. (A1) and (A7), is directly
related to Ta , and thus Isac, which is not zero only when the cell
is stretched (i.e., when λ > 1), becomes a function of V and Ta .
If we assume that the maximal stretch is 10% (i.e., λ <= 1.1),
the same approximation of λ [Eqs. (A1) and (A7)] can be used
to calculate Isac, since the maximum error calculated in the
case of model 2, between the exact instantaneous stretch, found

by solving the elastic equation (4), and the approximate stretch
obtained from Eq. (A7), during one cycle, is less than 1%. This
work is not concerned with the complex dynamics of either V

or Ta at the cellular level, which would require a more rigorous
computation of Isac.

APPENDIX B: JACOBIAN OF THE 2D MAP

The heart beat-to-beat dynamics using a 2D discrete map
between the APD and the ATD is given as

APDn = F1(APDn−1,ATDn), (B1)

ATDn = F2(APDn−1,ATDn−1).

Let F = [F1,F2]T , and Xn = [xn,yn]T = [APDn,ATDn]T ;
then the map [Eq. (B1)] can be written in the matrix
form as

Xn = F (Xn−1). (B2)

At the period-1 fixed point X∗ = [APD∗,ATD∗]T , we
have Xn = F (Xn−1) = Xn−1 = X∗ = F (X∗). Let δXn =
[δAPDn−1,δATDn−1]T be a small displacement from the point
X∗; we can then write

X∗ + δXn = F (X∗ + δXn−1). (B3)

Using the Taylor expansion, we can linearize the system of
coupled maps around the point X∗ as follows:

F (X∗ + δXn−1) ≈ F (X∗) + J δXn−1, (B4)

where

J =
[ ∂F1

∂xn−1

∂F1
∂yn−1

∂F2
∂xn−1

∂F2
∂yn−1

]
, (B5)

where J11 = ∂F1
∂APDn−1

, J12 = ∂F1
∂ATDn−1

, J21 = ∂F2
∂APDn−1

, and

J22 = ∂F2
∂ATDn−1

are the elements of the Jacobian J evaluated at
the fixed point (APD∗,ATD∗) of the map. From Eqs. (B3) and
(B4) we can write

δXn ≈ J δXn−1. (B6)
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