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Deterioration in dynamical activities may come up naturally or due to environmental influences in a massive
portion of biological and physical systems. Such dynamical degradation may have outright effect on the substantive
network performance. This requires us to provide some proper prescriptions to overcome undesired circumstances.
In this paper, we present a scheme based on external feedback that can efficiently revive dynamism in damaged
networks of active and inactive oscillators and thus enhance the network survivability. Both numerical and
analytical investigations are performed in order to verify our claim. We also provide a comparative study on the
effectiveness of this mechanism for feedbacks to the inactive group or to the active group only. Most importantly,
resurrection of dynamical activity is realized even in time-delayed damaged networks, which are considered to
be less persistent against deterioration in the form of inactivity in the oscillators. Furthermore, prominence in our
approach is substantiated by providing evidence of enhanced network persistence in complex network topologies
taking small-world and scale-free architectures, which makes the proposed remedy quite general. Besides the
study in the network of Stuart-Landau oscillators, affirmative influence of external feedback has been justified in
the network of chaotic Rössler systems as well.
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I. INTRODUCTION

Network theory offers an excellent platform to understand
the universal properties of many natural and engineered sys-
tems made up of a large number of units. Study of emergent
collective behaviors in large ensembles of coupled dynamical
units has received enormous appreciation because of its inten-
sive applicability in imitating various self-organized complex
systems [1,2]. Among other perspectives, one which deals
with the exploration of network robustness (i.e., the ability
to withstand perturbations) has extensive importance from
several aspects. This scenario can be thought of in two different
ways: topological robustness [3–11] and dynamical robust-
ness [12–20,28,29]. The first one discusses the persistence
of network activities against structural perturbations in the
form of removal of links (bond percolation) or nodes (site
percolation) in the network. In this context, one of the most
fundamental results demonstrates that the heterogeneous scale-
free structures exhibit high resilience against random failure
in the nodes whereas random networks are much less robust
and the diameter of the network increases monotonically. But,
scale-free networks are vulnerable to targeted attacks, while
for random connection topology there is no significant change
in the way of attacking owing to the homogeneity in the degree
distribution [3,5]. In contrast, for two interdependent networks,
broader degree distribution (like that in scale-free structure) is
much more sensitive to random failures [6,8].

On the other hand, another exploration of robustness is
concerned with the network’s survivability with respect to
local perturbations in the dynamical activities of the nodes.
This can be realized by exploring the evolution patterns of
damaged networks made up of mixed populations comprising
active (healthy) and inactive (ill) dynamical units, known as
aging transition (AT) [12] in the literature. In fact, there exist

several instances in ecological networks [21–23], where some
patches in the metapopulation become extinct, that may have
dramatic effects on the underlying developments. In neuronal
networks, it is the rhythmicity of the neurons that governs the
possibility of information exchange among them. So, loss in
activity of a neuron may have several unexpected consequences
[24]. Moreover, for appropriate functioning in cardiac and
respiratory systems [25], and specific physiological processes
[26], for instance cell necrosis within organs [27], robust
global oscillation is quite necessary. The study of dynamical
robustness has also been extended to a network of complex
topology [28] and a power grid network [29] where the failure
of a node is modeled via injecting noise into the dynamics of
that node.

But despite high relevance the possible remedies to over-
come the comprehensive dynamical failure of the network
and hence to resurrect dynamism are yet to be fully explored
and deserve significant consideration. The existing researches
rather mainly focused on the issue of aging transition un-
der various interactional topologies of the network or using
different coupling functions. For instance, such transitions
are explained in globally [12,13] and locally [14] coupled
networks and in multilayer [15] networks as well. The crucial
role of the low degree nodes in a scale-free network [17] has
also been discussed. Time delay in the interactions may lower
the network resilience under aging [16]. Nevertheless, Liu
et al. [19] put forward the notion of an additional parameter
that controls the diffusion rate in order to enhance network
persistence. Network robustness can also be developed by
bringing uniform and normal random errors into the distance
parameters of the system [20]. In [18], authors rendered a
mechanism of recovering dynamical behavior in aging net-
works by additionally connecting supporting oscillators to the
network. But adding intact oscillators in the network increases
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the effective size of the network. In the current paper, we
present an adaptable mechanism that involves introduction
of external feedback in resurging dynamical activity in the
network and hence development of network survivability, for
which one does not need to change the intrinsic parameters of
the system or to increase the effective network size.

The concept of feedback is considered as one of the most
important scientific understandings and as the heart of control
theory [30,31]. Particularly, positive feedback has been found
to have colossal importance in natural systems [32] having
impacts in evolutionary processes, physical systems, organism
physiology, social evolution, ecosystems, and many more. It is
also used in genetic networks [33], neuronal networks [34,35],
etc. In fact, positive feedback has been found to favor system
instability in dynamical systems and is utilized in elevating
chaotic behavior and diverging from equilibrium, a scenario
that we will be exploring in this paper as well. As far as the
synchronization and control of networked dynamical systems
are concerned, utility of feedback has been well justified
[36–45]. But, the influence of that entity in damaged networks
of active (healthy) and inactive (diseased) dynamical systems is
yet to be given attention, which is the focus of the present paper.
We put forward a detailed study on the ability of external pos-
itive feedback to improve the network survivability while the
network is experiencing aging transition. We present analytical
results on this issue that perfectly match the numerical ones.
As discussed earlier [16], time-delayed interaction among the
systems may lower the network’s persistence against local
inactivation of the dynamical units. Here we show that even
under this situation feedback is a mechanism that is quite capa-
ble in enhancing network robustness. In addition, we explore
this in complex topologies, such as small-world and scale-
free networks, that makes our idea independent of network
architecture. To demonstrate that our scheme is not system
dependent, we provide results on both the Stuart-Landau limit
cycle system and chaotic Rössler oscillator.

This paper is organized as follows. In Sec. II, we provide
a brief description of the network model of coupled Stuart-
Landau oscillators. The general mathematical form of the
network for globally interacting oscillators is provided in
Sec. III. Numerical results followed by analytical study for
globally interacting the nondelay and delay coupled network
are illustrated in Secs. III A and IIIB, respectively. We show the
effect of feedback in complex network topologies in Sec. IV.
Section IVA deals with the results in the case of the small-world
network, whereas the results for the scale-free network are
summarized in Sec. IV B. Section V is devoted to the analysis of
networked Rössler systems. Finally, Sec. VI offers concluding
remarks on the obtained results.

II. MODEL DESCRIPTION OF THE DAMAGED NETWORK
OF COUPLED STUART-LANDAU OSCILLATORS

We consider the following network model of N nodes as

żj = F(zj ) + ε
N

∑N
k=1 Ajk(zk − zj ) + ηf (z̄), (1)

for j = 1,2, . . . ,N where F : Rm → Rm represents the vector
field corresponding to the system evolution whereas the func-
tion f : Rm → Rm defines the external feedback term. Ajk is
the adjacency matrix characterizing the connectivity pattern of

the network, i.e., Ajk = 1 if j th and kth nodes are connected
and zero otherwise. The parameters ε and η, respectively,
account for the direct diffusive interaction strength and the
strength of the feedback.

Here we start by taking local dynamical units as the Stuart-
Landau oscillators in the form

F(zj ) = (αj + iω − |zj |2)zj , (2)

for j = 1,2, . . . ,N where αj are the internal parameters of the
j th system that define the distance from a Hopf bifurcation,
ω is the natural frequency of oscillation, and i = √−1. In
isolation, the j th unit displays a stable limit cycle

√
αje

iωt

if αj > 0 and settles into the stable trivial fixed point zj = 0
for αj � 0. As a result of this, active and inactive oscillators
in the network, respectively, possess αj = a > 0 and −b < 0.
For the present paper, we have chosen the external feedback
to be linear of the form f (z̄) = z̄ = 1

N

∑N
k=1 zk (a nonlinear

feedback function could make the system more complicated
without any additional advantage; in fact this simple linear
form is quite effective, as we have shown later).

Next we follow the procedure in [12] that defines the
inactivation ratio (ratio of non-self-oscillatory elements) p,
which is the ratio of the number of inactive nodes and the total
number of nodes in the network. Whenever p exceeds a certain
critical value pc (say), the global oscillation of the network dies
out. So, our aim will be to restrain this sort of phase transition
while utilizing the feedback parameter (η), as long as possible.
We will explore the scenario of aging transition arising in the
network in terms of the normalized order parameter Z = |z̄(p)|

|z̄(0)| ,
so that |z̄| identifies the intensity of global oscillation in
the networked system and Z is the normalized value of it.
We have fixed the network size N = 500 (however, all the
results are tested for larger networks). Without loss of gener-
ality, a = 2, b = 1, and ω = 3 are considered throughout the
paper [46].

III. GLOBALLY COUPLED NETWORK

In this section, we present a comprehensive study on the
effect of feedback parameter to enhance dynamical robustness
in the presence or absence of time-delayed interaction, while
considering network of globally coupled oscillators. Then the
mathematical form of the network reads as

żj = (αj + iω − |zj |2)zj + ε

N

N∑
k=1,k �=j

[zk(t − τ ) − zj ]

+ η

N

N∑
k=1

zk, (3)

where τ refers to the time delay in the direct interactions among
the nodes. For the sake of simplicity, we set the group of active
elements as j ∈ {1,2, . . . ,N − Np} and that of the inactive
elements as j ∈ {N − Np + 1, . . . ,N}.

A. Nondelayed interaction

Whenever there is no time delay, i.e., with τ = 0, the
network (3) reduces to Eq. (1) along with Eq. (2). But before
going into the details of this we first analyze the evolution in
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FIG. 1. The dynamics of N completely synchronized globally
coupled Stuart-Landau oscillators in (a) active state, i.e., when p =
0, and (b) inactive state, i.e., when p = 1. The behavior of (c)
(1 − p)N active and (d) pN inactive oscillators corresponding to
the inactivation ratio p = 0.2. Here, coupling strength ε = 3 and
feedback parameter η = 0.

the dynamics of the oscillators before and after the inactivation
procedure. The dynamics of N globally coupled synchronized
Stuart-Landau oscillators for nonzero interaction strength,
particularly for ε = 3 (with η = 0), is depicted in Fig. 1, which
is of limit cycle type with amplitude

√
2 for the active state (i.e.,

p = 0), while in the inactive state (i.e., p = 1) the nodes are
stable at the trivial fixed point, i.e., the origin. The respective
real parts of zj , i.e., Re(zj ), are shown in Figs. 1(a) and 1(b). But
considering a specific p = 0.2 (i.e., when 20% of the nodes are
in the inactive state) the inactive nodes start oscillating, relying
on the influence of the active nodes, which is depicted through
Re(zj ) in Figs. 1(c) and 1(d).

Figure 2 shows the variation in Z with respect to the
increasing inactivation ratio p (0 � p � 1) for different values

FIG. 2. The order parameter Z vs the inactivation ratio p corre-
sponding to various coupling strengths ε = 2,3,5, and 7 without feed-
back parameter (η = 0). The critical inactivation ratio pc decreases
gradually as ε increases.

FIG. 3. (a) The order parameter Z against the inactivation ratio
p corresponding to coupling strength ε = 5 and various feedback
parameter values η = 0,0.1,0.3,0.5, and 0.8. As η increases pc value
increases gradually. (b) Dependence of the critical ratio on coupling
strength ε and feedback parameter η. The colorbar indicates the value
of critical ratio pc.

of ε while η = 0. As can be seen, AT occurs at pc = 0.89
(for ε = 3.0) where the order parameter Z vanishes and the
entire system gets stabilized to the trivial fixed point for
p � pc. However, with smaller ε = 2.0, the transition appears
only when all the nodes of network are made inactive, i.e.,
with pc = 1. Also, for higher ε = 5.0 and 7.0, the aging
transition can be observed much earlier at pc = 0.8 and 0.77,
respectively. In fact, as the coupling strength ε increases, the
critical inactivation ratio pc decreases [12].

Now we will inspect the effects of introducing nonzero
feedback strength η into the network for a fixed value of
diffusive coupling strength ε. For this, we first choose a definite
value of ε = 5.0 and then see the diversity in the network
dynamics by changing the feedback strength η. As shown
earlier, pc is found to be pc ≈ 0.8 when η = 0. But a minute
increment in η to η = 0.1 revives the dynamical activity and
hence enhances the network robustness to some extent, as pc

increases to pc = 0.82 [see Fig. 3(a)]. As we increase the
value of η to η = 0.3 and 0.5, the critical values pc become
pc = 0.87 and 0.91, respectively. This indicates a significant
improvement in the resilience of the network to progressive
dynamical inactivation of the nodes. Even higher η = 0.8 leads
the aging transition to occur at pc = 0.97. Thus, for increasing
η, the network is able to survive exhibiting global oscillation
even when almost all the nodes are in inactive modes. For a
better perception of this effect, next we plot the values of pc in
the ε-η parameter plane, as in Fig. 3(b). The positive influence
of increasing η in resurgence of global oscillation for any ε (no
matter how large) is conspicuous from the figure.

Now, to derive the critical value of the inactivation ratio
analytically, we assume zj = A(j = 1,2, . . . ,N − Np) for
active oscillators and zj = I (j = N − Np + 1, . . . ,N) for
inactive oscillators. Then, from Eq. (3) with τ = 0, the reduced
coupled system becomes

Ȧ = (a + iω − εp + ηq − |A|2)A + (ε + η)pI,

İ = (−b + iω − εq + ηp − |I |2)I + (ε + η)qA,
(4)

where q = 1 − p. Now, as the aging transition corresponds to
the stabilization of the trivial fixed point A = I = 0, we go
through a linear stability analysis around the origin, that gives

052313-3



SRILENA KUNDU, SOUMEN MAJHI, AND DIBAKAR GHOSH PHYSICAL REVIEW E 97, 052313 (2018)

0 10 20 30
0.5

0.6

0.7

0.8

0.9

1
p

c

η = 0.0
η = 0.5
η = 0.7
η = 0.9

FIG. 4. The critical ratio pc vs the coupling strength ε for
different η values obtained from the analytical Eq. (5). The dynamical
robustness of the system (1) enhances with increasing η.

the following Jacobian matrix:(
a + iω − εp + ηq (ε + η)p

(ε + η)q −b + iω − εq + ηp

)
.

The negativity of real parts of all the eigenvalues of this
matrix characterizes the stability of the origin (A = I = 0),
investigation of which leads to the critical inactivation ratio pc

as

pc = (a+η)(b+ε)
(ε+η)(b+a) , (5)

with ε � εc = a. Of course, for the case with no feedback,
pc = a(b+ε)

ε(b+a) is the same as in [12]. This value of pc matches
with the numerically calculated pc for a,b,ε, and η taken so
far while generating Figs. 2 and 3. The analytically obtained
pc [see Eq. (5)] with respect to increasing values of ε is figured
out in Fig. 4 for several values of η. The blue curve signifies
the pc values against ε (0 � ε � 30) whenever η = 0. Initially,
pc starts falling quite rapidly, but after certain ε � 15 this fall
is rather insignificant. As expected, a similar sort of drop in
pc is observed whenever η = 0.5 is chosen (the curve in red),
but more importantly this curve stays well above the previous
one (in blue), indicating resumption of the dynamism in the
network to a great extent irrespective of the interaction strength
ε. For higher η = 0.7 and 0.9, the curves (respectively, in green
and purple) depict even more enhancement in the network
persistence. However, in all the cases after a certain ε, minimal
changes in the value of pc can be seen but AT is realized for any
amount of coupling strength ε. This scenario is in contrast to
the pc − ε variation reported in [19], where AT was observed
only for finite intervals of coupling strength.

As we are dealing with a mechanism of inducing external
feedback in a blended network ensemble of active and inactive
dynamical systems, one needs to scrutinize the impacts of dif-
ferent possible approaches of adding feedback to the network
in detail. In order to do this, we plot the critical inactivation
ratio pc versus the feedback strength η while feedbacks are
added to all the nodes, both active and inactive, in Fig. 5 (in red,
circles are analytical results whereas the solid line corresponds
to the numerical result). Since feedback is basically making
the network more resilient (as discussed earlier), pc values
monotonically increase with increasing η (0 � η � 1). After

0 0.5 1
η

0.5

0.6

0.7

0.8

0.9

1

p
c

FIG. 5. The critical ratio pc against the feedback parameter η

for three different procedures of adding feedback to the network.
Feedback is added to all the nodes (red), only to the inactive nodes
(blue) and only to the active nodes (black). Here the coupling strength
is fixed at ε = 5.

that, we employ feedback only to the nodes in inactive mode,
for which the reduced system becomes

Ȧ = (a + iω − εp − |A|2)A + εpI,

İ = (−b + iω − εq + ηp − |I |2)I + (ε + η)qA,
(6)

and there exists meager difference in the pc values compared
to the previous case. The analytical (pc = a(b+ε)

ε(a+b)+η(a−ε) ) and
numerical results [47] are, respectively, shown by blue squares
and a solid line. This implies that it may be enough to apply
feedback only to the inactive nodes in order to enhance the
dynamical survivability in the network. At the time of giving
feedback to the active group of nodes only, the reduced system
becomes

Ȧ = (a + iω − εp + ηq − |A|2)A + (ε + η)pI,

İ = (−b + iω − εq − |I |2)I + εqA.
(7)

In this case, pc = (a+η)(b+ε)
ε(a+b)+η(b+ε) shows increasing feedback

strength, η makes the network more robust but not as much
as in the preceding two cases. The black diamonds and the
solid line are below the red and blue ones, as in Fig. 5. This
study helps one to perceive the way one should embed the
feedback function in the system.

B. Time-delayed interaction and feedback

It is the purpose of this subsection to inspect what feedback
does whenever there is time delay in the diffusive interaction
among the globally coupled nodes. According to the results
addressed in [16], pc decreases for increasing values of τ ,
that readily suggests a deenhancing tendency of delay, in the
absence of the feedback term. As reported in the previous
subsection, for a fixed coupling strength ε = 5 and feedback
strength η = 0, without delay τ , the value of pc happens to be
pc = 0.8. But as delay τ = 0.5 is incorporated in the system pc

decreases to pc = 0.63, as displayed in Fig. 6(a). Remarkably,
if η is now introduced in the network, it becomes more
resilient, which can be easily discernible from the values of
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FIG. 6. (a) The order parameter Z against the inactivation ratio
p for various η values in the delay coupled network (3) with N =
500, τ = 0.5, and ε = 5. (b) Dependence of the value of critical ratio
pc on η − τ parameter space.

pc = 0.69 and 0.77, respectively, for η = 0.2 and 0.5. Higher
η = 0.8 and 1.0 are perfectly able to resume dynamical activ-
ity in the form of global oscillation to a greater extent aspc turns
into pc = 0.85 and 0.9, respectively, as depicted in Fig. 6(a).
Moreover, the impact of η is illustrated for a sufficiently long
range of the delay τ ∈ [0,1] in Fig. 6(b), that readily describes
the enhancing effect of increasing η for any value of τ . Thus as
observed in the instantaneous interaction scheme, here again η

is developing the network survivability altogether even in the
presence of time delay in the coupling.

On the other hand, following a similar approach as in the
previous case for globally coupled oscillators, the reduced
model for active and inactive oscillators in the case of time-
delayed interaction with feedback mechanism becomes

Ȧ(t) =
[
a + iω − ε

(
1 − 1

N

)
− |A(t)|2 + ηq

]
A(t)

+ηpI (t) + ε

(
q − 1

N

)
A(t − τ ) + εpI (t − τ ),

İ (t) =
[

− b + iω − ε

(
1 − 1

N

)
− |I (t)|2 + ηp

]
I (t)

+ηqA(t) + ε

(
p − 1

N

)
I (t − τ ) + εqA(t − τ ). (8)

From linear stability analysis of Eq. (8) around the origin and
setting the real part of the eigenvalue equal to zero, we obtain
the characteristic equation for eigenvalues as[

a − ε

(
1 − 1

N

)
+ i(ω − λI ) + ηq + ε

(
q − 1

N

)
e−iλI τ

]

×
[

− b − ε

(
1 − 1

N

)
+ i(ω − λI ) + ηp

+ ε

(
p − 1

N

)
e−iλI τ

]
− pq(η + εe−iλI τ )2 = 0, (9)

where λI is the imaginary part of the eigenvalue λ, i.e., λ =
iλI . Separating real and imaginary parts we get the following
equations:

[ω − λI − B sin(λI τ )][ω − λI − C sin(λI τ )]

− [g1 + g3 + B cos(λI τ )][g2 + g4 + C cos(λI τ )]

= −g3g4 − D1 cos(λI τ ) − D2 cos(2λI τ ), (10)

0.2 0.4 0.6 0.8 1 1.2 1.4

τ

0

5

10

15

20

η = 0.0

η = 0.02

η = 0.04

η = 0.07

FIG. 7. Aging islands in the ε − τ parameter plane at different
values of the feedback parameter η for fixed inactivation ratio p =
0.65. Here the size of the aging islands reduces significantly with the
increase of η value.

[ω − λI − B sin(λI τ )][g2 + g4 + C cos(λI τ )]

+ [ω − λI − C sin(λI τ )][g1 + g3 + B cos(λI τ )]

= −D1 sin(λI τ ) − D2 sin(2λI τ ), (11)

where g1 = a − ε(1 − 1
N

),B = ε(q − 1
N

),g2 = −b − ε(1 −
1
N

),C = ε(p − 1
N

),g3 = ηq,g4 = ηp,D1 = 2ηεpq, and
D2 = ε2pq.

Figure 7 depicts the aging islands in the ε-τ parameter plane
obtained from the set of equations (10) and (11) for different
values of the feedback strength η. For a fixed inactivation ratio
p = 0.65, first the aging island is plotted (in black) whenever
η = 0. Next the same is displayed for η = 0.02 (in blue) in
Fig. 7. It is easily observed that the aging island in the parameter
plane gets reduced significantly for this nonzero η, that readily
implies enhancement in the network’s dynamical persistence.
Further increment in η to η = 0.04 and 0.07 (in red and green,
respectively) helps in shortening the aging island area more
comprehensively.

IV. INTERACTION ON COMPLEX NETWORKS

This section is devoted to the discussion of efficiency
of the external feedback function on developing dynamical
robustness in a network possessing complex interactional
topologies. Particularly, we will be analyzing this scenario on
top of both small-world and scale-free architectures.

A. Small-world interaction

Small-world networks [48] appear as a result of random
rewiring of links (with a certain probability pSW) in a regular
(lattice) network, interpolating between two limiting cases
of regular (pSW = 0) and random (pSW = 1) topologies that
maintain low diameter and high clustering coefficient in the
network.

Choosing N = 500, pSW = 0.01 and the link density d =
〈k〉/(N − 1) = 0.24 (〈k〉 being the average degree of the
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FIG. 8. Effect of feedback parameter on small-world network: (a)
the order parameter Z against the inactivation ratio p for various η

values in small-world network with d = 0.24 and coupling strength
ε = 20 and (b) dependence of the critical ratio pc in ε − η parameter
space.

nodes). Figure 8(a) shows variation in the order parameter
Z against p for η = 0,0.2,0.4, and 0.7 while the oscillators
are interacting over a small-world topology. In the absence
of feedback, Z declines to zero at pc = 0.805, indicating
aging transition for coupling strength ε = 20. But pc value
increases to pc = 0.85 and 0.892, respectively, with η = 0.2
and 0.4 signifying improvement in the network survivability.
Whenever η = 0.7, the network becomes more resilient as it
turns out to be able to retain dynamism even up to p = 0.95.

Next we analytically derive the critical ratio pc for random
inactivation in a small-world network in the presence of the
feedback parameter η. The reduced model for active and
inactive oscillators in the case of a small-world network with
feedback parameter η can be written as

Ȧ = (a + iω − εdp + ηq − |A|2)A + (εd + η)pI,

İ = (−b + iω − εdq + ηp − |I |2)I + (εd + η)qA,
(12)

as the number of inactive oscillators in the neighborhood of
each oscillator is expected to be p〈k〉 and that of the active
oscillators is (1 − p)〈k〉, where q = 1 − p and d = 〈k〉/N − 1
is the link density of the network. From the linear stability
analysis around the fixed point A = I = 0, we get the critical
inactivation ratio pc as

pc = (a+η)(b+εd)
(εd+η)(b+a) , (13)

with ε � εc = a/d.
Having this value of the critical inactivation ratio pc [see

Eq. (13)], we plot its dependence on simultaneous variation of
the coupling strength ε ∈ [8,40] and feedback parameter η ∈
[0,1] for a small-world network in Fig. 8(b). From the figure, it
is quite conspicuous that the higher the feedback strength the
more the network is dynamically persistent, irrespective of the
strength of interaction ε.

B. Scale-free interaction

On the other hand, a scale-free architecture [49] corresponds
to a highly heterogeneous scenario as far as the degree
distribution is concerned, that basically follows a power law
P (k) ∼ k−γ , where P (k) is the probability of finding a node
of degree k and γ is the power-law exponent (in our case,
γ = 3.0). First we concentrate on how the degree-weighted
mean-field approach yields a good approximation for the
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FIG. 9. Validation of the original fields forgj
by the approximated

mean fields fappj
considering N = 500,d = 0.078,ε = 80, and p =

0.5. The upper panel shows the original local fields of several oscil-
lators while the lower panel shows the corresponding approximated
fields. Here black and brown color, respectively, corresponds to the
real and imaginary parts of the local fields.

original local fields associated to the scale-free architecture, the
process that we will be mainly following in order to analytically
estimate the critical ratio pc. According to the degree-weighted
mean field approximation [50], the original local field forgj

can
be approximated by fappj

as

forgj
=

N∑
k=1

Ajkzk 
 (1 − p)kjHA(t)

+pkjHI (t) = fappj
, (14)

where HA(t) =
∑

j∈SA
kj zj (t)∑

j∈SA
kj

and HI (t) =
∑

j∈SI
kj zj (t)∑

j∈SI
kj

are the

degree-weighted mean fields for active and inactive groups
of dynamical units, respectively, and kj (j = 1,2, . . . ,N ) is
the degree of the j th node. Here SA and SI are the sets
of all active and inactive nodes, respectively. Though the
scale-free network is highly heterogeneous as far as the degree
distribution is concerned, since we are actually dealing with
degree-weighted mean fields HA(t) and HI (t) that involve a
normalization through the degrees, this mean-field approach
fappj

yields quite a good approximation for the local fields
forgj

arising from a scale-free dynamical network. We justify
this claim in Fig. 9 while plotting the approximated results
of several oscillators through the mean-field approach that
matches the original local fields.

Now we numerically study this transition for a scale-free
network of N = 500 oscillators and d = 0.078. As can be
observed from Fig. 10(a), with a fixed interaction strength
ε = 200 and no feedback, the order parameter drops down to
zero for p � pc = 0.723. Importantly enough, with a nonzero
feedback η = 0.2, the value of pc increases to pc = 0.782. In
a similar fashion, higher feedback strengths η = 0.5 and 0.8
lead to highly improved critical inactivation ratios pc = 0.867
and 0.95, respectively. These outcomes are the indicators of
resumption of dynamism in damaged complex networks of
active and inactive units.
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FIG. 10. Effect of feedback parameter in scale-free networks: (a)
the order parameter Z against the inactivation ratio p for various η

values in scale-free network with ε = 200 and (b) dependence of the
critical ratio pc in ε − η parameter space.

According to Eq. (14), the original system (1) can be
approximated as

żj = (α + iω − |zj |2)zj+εkj

N
[(1−p)HA(t) + pHI (t) − zj ]

+ η[(1 − p)HA(t) + pHI (t)]. (15)

Assuming that the state variables can be written as zj (t) =
rj (t)ei(ωt+θ), where rj is the amplitude and θ is the phase shift,
and substituting it in Eq. (15) we obtain

ṙj =
(

α − εkj

N
− r2

j

)
rj +

(
εkj

N
+ η

)
× [(1 − p)RA(t) + pRI (t)], (16)

where RA(t) =
∑

j∈SA
kj rj (t)∑

j∈SA
kj

and RI (t) =
∑

j∈SI
kj rj (t)∑

j∈SI
kj

. Assuming

the time independence of RA(t) and RI (t) in the station-
ary oscillatory regime, the phase transition from oscillatory
(RA,RI > 0) to nonoscillatory (RA = RI = 0) takes place due
to the change in stability of the fixed point at the origin. The
stability is determined by the following Jacobian matrix:

J0 =
(

∂GA(RA,RI )
∂RA

∂GA(RA,RI )
∂RI

∂GI (RA,RI )
∂RA

∂GI (RA,RI )
∂RI

)∣∣∣∣
RA=RI =0

,

where

GA(RA,RI ) =
∑

j∈SA
kj r

∗
j (RA,RI )∑

j∈SA
kj

,

GI (RA,RI ) =
∑

j∈SI
kj r

∗
j (RA,RI )∑

j∈SI
kj

(17)

and the stationary amplitude r∗
j is given by a positive real

solution of the following equation:

r3
j −

(
αj − εkj

N

)
rj −

(
εkj

N
+ η

)
[(1 − p)RA + pRI ] = 0.

(18)

Equation (18) has only one positive real root if we assume
αj − εkj

N
< 0 for all j ∈ SA. Differentiating Eqs. (17) and (18)

with respect to RA we obtain the first entry of J0 as follows:

∂GA

∂RA

∣∣∣
RA=RI =0

= (1 − p)ε∑
j∈SA

kj

⎛
⎝ 1

N

∑
j∈SA

k2
j

εkj /N − αj

⎞
⎠ + (1 − p)η∑

j∈SA
kj

⎛
⎝ 1

N

∑
j∈SA

kj

εkj /N − αj

⎞
⎠


 1

d

⎛
⎝ 1

N

∑
j∈SA

d2
j

dj − αj/ε

⎞
⎠ + η

dε

⎛
⎝ 1

N

∑
j∈SA

dj

dj − αj/ε

⎞
⎠, (19)

where dj = kj/N is the ratio of the degree of the j th oscillator and the system size, and d = 〈k〉/(N − 1) is the link density of
the network. Here the following approximations hold in the limit N → ∞:

∑
j∈SA

kj 
 (1 − p)dN2,
∑
j∈SI

kj 
 pdN2,
1

N

∑
j∈SA

d2
j

dj − αj/ε

 (1 − p)F (ε,a),

1

N

∑
j∈SI

d2
j

dj − αj/ε

 pF (ε, − b),

1

N

∑
j∈SA

dj

dj − αj/ε

 (1 − p)F̄ (ε,a)

1

N

∑
j∈SI

dj

dj − αj/ε

 pF̄ (ε, − b),

where

F (ε,α) 
 1

N

N∑
j=1

d2
j

dj − α/ε
, F̄ (ε,α) 
 1

N

N∑
j=1

dj

dj − α/ε
.

Therefore we obtain

J0 =
⎛
⎝ (1−p)

d
[F (ε,a) + η

ε
F̄ (ε,a)] p

d
[F (ε,a) + η

ε
F̄ (ε,a)]

(1−p)
d

[F (ε,−b) + η

ε
F̄ (ε,−b)] p

d
[F (ε,−b) + η

ε
F̄ (ε,−b)]

⎞
⎠.
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The fixed point changes its stability at the phase transition
point at RA = RI = 0, which compels us to obtain the follow-
ing critical inactivation ratio:

pc = F (ε,a) + η

ε
F̄ (ε,a) − d

[F (ε,a) − F (ε, − b)] + η

ε
[F̄ (ε,a) − F̄ (ε, − b)]

,

(20)

for ε > εc(= a/dmin), where dmin = kmin/N . Particularly, for
η = 0, i.e., when there is no feedback in the system, the critical
inactivation ratio becomes

pc = F (ε,a) − d

F (ε,a) − F (ε, − b)
.

We also plot the critical ratio pc [see Eq. (20)] as a function
of ε ∈ [50,250] and η ∈ [0,1] for scale-free configuration of
the network in Fig. 10(b) with the same network and system
parameters used for the numerical simulations. Analytically
found critical values perfectly match the numerical ones, and
external feedback has been observed to develop dynamical
survivability throughout all values of ε.

V. EFFECT OF FEEDBACK ON INTERACTING
RÖSSLER SYSTEMS

Finally, we examine the effectiveness of our approach while
choosing a chaotic dynamical system coupled through both
regular (global) and complex topologies. The mathematical
form of the damaged network of N interacting delay coupled
Rössler systems is as follows:

ẋj = −yj − zj + ε

N

N∑
k=1,k �=j

Ajk[xk(t − τ ) − xj ] + η

N

N∑
k=1

xk,

ẏj = xj + cjyj + ε

N

N∑
k=1,k �=j

Ajk[yk(t − τ ) − yj ] + η

N

N∑
k=1

yk,

żj = dj + zj (xj − ej ) + ε

N

N∑
k=1,k �=j

Ajk[zk(t − τ ) − zj ]

+ η

N

N∑
k=1

zk, (21)

FIG. 11. Dependence of the critical ratio pc on (a) ε − η

parameter space for nondelayed interaction (τ = 0) and (b) τ − η

parameter space for delayed interaction with fixed coupling strength
ε = 0.15 in a network of N = 500 globally coupled chaotic Rössler
oscillators.

FIG. 12. Dependence of the critical ratio pc on coupling strength
ε and feedback parameter η considering (a) small-world and (b) scale-
free network of N = 500 coupled chaotic Rössler oscillators.

for j = 1,2, . . . ,N . Here cj = dj = 0.2, ej = 5.7 for the ac-
tive (chaotic) group of oscillators and cj = dj = −0.2, ej =
2.5 for inactive oscillators.

We start with defining the order parameter M as M =√
〈(Xc − 〈Xc〉)2〉, where Xc = 1

N

∑N
j=1(xj ,yj ,zj ) is the cen-

troid and the bracket 〈. . .〉 means a long time average. Aging
transition of the system (21) is further described in terms of
this M .

Figure 11(a) depicts change in pc for the nondelayed
case, i.e., τ = 0, with respect to simultaneous variation in
the coupling strength ε ∈ [0.1,0.2] and feedback strength
η ∈ [0,0.06]. Whenever η = 0, pc gradually decreases for
increasing ε and reaches pc 
 0.78 for ε = 0.2. But, as we
employ a feeble increment in η, it starts raising this critical
value of p greatly even to pc 
 0.95 for η = 0.06. This
scenario is valid for any value of ε, implying significant
improvement in the network resilience. The impact of η in
the case of delay coupled oscillators is also illustrated in
Fig. 11(b) for time delay τ ∈ [0,1]. Moreover, to corroborate
the generality of our approach, in Fig. 12 we unveil the effect
of feedback parameter η on a network of coupled chaotic
Rössler oscillators with small-world and scale-free topologies.
Figure 12(a) portrays the dependence of the critical ratio pc on
simultaneous variation of the coupling strength ε ∈ [0.4,1] and
the feedback strength η ∈ [0,0.06] in a small-world network
with rewiring probability pSW = 0.01 and link density d =
0.24, whereas Fig. 12(b) depicts the result for variations of
ε ∈ [2.5,5] and η ∈ [0,0.06] in a scale-free network with link
density d = 0.078. Noticeably, for both these architectures, the
applied feedback enhances the network survivability against
badness of the dynamical units. This is how the proposed
mechanism of enhancing survivability for time-delayed and
complex networks works whenever chaotic systems are used
to cast the active units in the damaged network.

VI. CONCLUSIONS

Network robustness has recently become a topic of great
research interest because it bears resemblance to various
natural occurrences. In the present paper, we have gone through
the notion of rescuing networks from a comprehensive collapse
due to a specific type of dynamical perturbation. Particularly,
we have examined the dynamical robustness of damaged
networks in terms of aging transition and demonstrated how
one can resume dynamism through a feedback mechanism.
We have shown that by simply adding an appropriate linear
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feedback term in the aging network the network’s survivability
can be developed quite substantially. This enhancing impact
of the feedback is observed to be effective irrespective of the
coupling strength. We have illustrated this scenario through
both numerical and analytical findings while considering limit
cycle Stuart-Landau systems as the local dynamical units. A
comparative study on the process of adding feedbacks to only
active, only inactive, and both active and inactive groups of
nodes has also been presented. Notably, we have been able
to develop network persistence even in the presence of time
delay in the interaction among the nodes, although delay is a
candidate that may effectively lower the network resilience.
As far as the generalization of our approach over different
network topologies is concerned, we have realized the same

qualitative features of external feedback in small-world as well
as scale-free complex structures of the aging networks. In order
to reveal the local system independence of our scheme, we
successfully performed similar analysis for chaotic Rössler
oscillators. Our paper may have important applications in
increasing the survivability of several natural systems that
experience local inactivation of their components.
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