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In this paper we provide a comprehensive analysis of a structural model for the dynamics of prices of assets
traded in a market which takes the form of an interacting generalization of the geometric Brownian motion model.
It is formally equivalent to a model describing the stochastic dynamics of a system of analog neurons, which is
expected to exhibit glassy properties and thus many metastable states in a large portion of its parameter space.
We perform a generating functional analysis, introducing a slow driving of the dynamics to mimic the effect
of slowly varying macroeconomic conditions. Distributions of asset returns over various time separations are
evaluated analytically and are found to be fat-tailed in a manner broadly in line with empirical observations. Our
model also allows us to identify collective, interaction-mediated properties of pricing distributions and it predicts
pricing distributions which are significantly broader than their noninteracting counterparts, if interactions between
prices in the model contain a ferromagnetic bias. Using simulations, we are able to substantiate one of the main
hypotheses underlying the original modeling, viz., that the phenomenon of volatility clustering can be rationalized
in terms of an interplay between the dynamics within metastable states and the dynamics of occasional transitions
between them.
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I. INTRODUCTION

Predicting and measuring the risk that the value of an
investment portfolio will depreciate is a mainstay of financial
mathematics. Integral to the success of these endeavors is iden-
tifying the various market risk (MR) factors and developing
models for their evolution. These MRs include, among others,
fluctuations in stock indices, changes in interest rates, foreign
exchange parities, or commodity (e.g., gold, oil) prices.

In recognition of the importance of MRs, the Basel Com-
mittee for Banking Supervision (BCBS) stipulates that banks
must explicitly reserve a portion of equity capital against MR.
The Basel III accord [1] defines MR as the “the risk of losses
arising from movements in market prices.” It proposes two
approaches to measure MRs, a so-called standardized approach
and an internal models approach.

Within the standardized approach the market risk of a set of
trading positions is defined by their exposure to a standardized
set of risk factors and measured in terms of sensitivities of
the market values of these positions to movements of the risk
factors. To determine the capital to be held against MRs, the
risks of various positions held by a bank are aggregated, using
prescribed risk weights and prescribed correlations between
risk factors.

Under the internal models approach, banks are permitted
to design their own measurement model, which must adhere
to strict guidelines. Guidelines cover a host of qualitative
and quantitative standards. At a minimum, internal models
must encompass the positions covered by the standard model,
be regularly back-tested against historical market data to
demonstrate their adequacy and accuracy, and be supplemented
by a regular and rigorous regime of stress testing.

The collapse of the US based hedge fund Long-Term Capital
Management (LTCM) in 1998, following the East Asian finan-

cial crisis of mid 1997 [2], is a poignant example of adverse
MRs spreading across wide geographic regions. The crisis
was instigated by a devaluation of Thailand’s currency, the
Thai baht. This move sent shock waves through the economies
of East Asian countries, thereby triggering recessions. The
economic downturns led to a sharp decline in the demand and
price of oil. Russia, as a major oil producing country, was
adversely hit and defaulted on its public debt. The culmination
of all these interlinked shocks resulted in huge losses for LTCM
and, in early 2000, its liquidation. It can fairly be argued that
chains of events such as this call for a more interconnected
approach to market risks than stipulated by the BCBS, even
today.

The credit crunch of 2007–2009 provides further evidence
to support the idea of interactions between risky market
positions. While financial derivatives and globalization, which
allow for greater portfolio diversification, may have helped
mitigate MRs, adverse feedback loops between financial mar-
kets and the real economy may be responsible for propagating
asset price shocks across borders and even commodity classes.
A more thorough understanding of the dynamics of asset prices
would thus be welcome.

A model of MRs should reproduce a set of stylized facts
found from empirical analysis of time-series data of returns on
investment [3–7], i.e., (i) return distributions are “fat-tailed,”
(ii) the variance of returns is time-dependent, and (iii) there are
long-range correlations between variance of returns in time, a
phenomenon referred to as “volatility clustering.”

Over the years a variety of descriptive models have been de-
veloped for the returns in financial time series. These models do
not attempt to advance theories of the mechanisms underlying
price processes, but concentrate on capturing their statistics.
Examples include autoregressive conditional heteroscedastic
(ARCH) models and their various generalizations [8–11], and
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stochastic volatility models [12,13]. Other models assume that
the statistics for return increments follow symmetric [3,14] or
asymmetric [15] stable Paretian distributions. Most of these
investigations are concerned with properties of univariate time
series. Yet many issues in asset pricing and portfolio con-
struction can only be meaningfully analyzed in a multivariate
context, and multivariate generalizations of such ARCH-type
models have indeed been proposed [16–18]. As an aside, we
note that empirical properties of correlations between financial
time series have also found considerable interest in the random
matrix community; see, e.g., [19–21].

In an alternative structural model approach one attempts to
model the mechanisms behind market dynamics. One possible
formulation in this regard is to consider the collective results of
actions performed by agents operating in the market. Models
of this type include the Santa Fe Institute’s artificial market
model [22], the minority game [23–27], percolation models
[28–30], Ising type models of interacting agents [31–33], or
models in which a static equilibrium is destabilized by market
imperfections (e.g., [34]), to name but a few. For a broader
overview, we refer to the recent review of Sornette [35].

In [36] the authors take an intermediate approach and pro-
pose an interacting variant of the geometric Brownian motion
model (henceforth referred to as the iGBM) as a structural
model of asset price dynamics. They suggest that the structure
of such a model should follow from very general considerations
concerning market mechanisms, arguing in particular that
the dynamical evolution of a market, when reduced (from a
hypothetically complete description) to a description in terms
of asset price dynamics, using, e.g., Mori-Zwanzig projection
techniques [37], quite generally must exhibit “...interaction[s]
between prices, which may be thought of as arising effectively
through the collection of agents, each acting on the basis of his
or her own, more or less rational perception of the underlying
economy and market mechanisms” [36]. The Bouchaud-Cont
model of market fluctuations and crashes [38] goes even
farther by attempting to describe the macroscopic effects of
interactions between agents in terms of an effective nonlinear
Langevin equation for the evolution of a single global order
parameter.

The iGBM proposed in [36] can be thought of as one of
simplest interacting generalizations of the geometric Brownian
motion model that can be constructed following the above
line of reasoning. No assumptions on structural properties of
markets are invested. The only assumptions used are (i) that
there are effective (nonlinear) interactions between prices, and
(ii) that there are mean-reverting forces, however weak, which
ensure stability of the market in the long-time limit. The status
of the second assumption is debated in economic circles. We
will discuss it, along with a possible resolution within our
model, in the concluding section. It is worth adding that the
version of the iGBM actually analyzed in [36] adopts a sim-
plification in the sense that it assumes a Markovian interaction
between asset prices, whereas according to the general line of
reasoning outlined in that paper, one would generally have to
expect the dynamics of a reduced model to be non-Markovian.
The model analyzed in [36] must therefore be regarded as a
Markovian approximation of a more comprehensive reduced
description. In the present paper we will continue to use this
Markovian approximation.

Using simulations, the authors demonstrate that such a
simplified model is capable of reproducing the main stylized
facts for asset returns [36]. Moreover, analytic investigations
revealed that, in a significant portion of the space of model
parameters, the system is “glassy” and is therefore expected
to exhibit a large number of metastable states. The authors
argue that it is above all the interplay between dynamics
within metastable states and occasional transitions between
them—whether spontaneous or induced by external stimuli—
which accounts for a considerable dynamically generated
heterogeneity of volatilities across assets as well as for the
phenomenon of volatility clustering in time.

The purpose of the present paper is to provide a more
thorough analysis of the iGBM proposed in [36]. Specifically,
we perform a generating functional analysis of the model
in the limit of large system size, keeping the Markovian
approximation of the dynamics used by these authors. We
introduce a slow driving of the dynamics to mimic the effect
of slowly varying macroeconomic conditions, and investigate
statistical properties of asset returns by recourse to a separation
of timescales argument, assuming that the system equilibrates
at given values of the slow variable describing macroeconomic
conditions. This analysis allows one to compute distributions
of asset returns on various timescales, and it also exposes
interesting collective effects on the pricing of assets, which
are driven by a combination of the macroeconomic driving
and the effects of imitation as encoded in the couplings.

The remainder of this paper is organized as follows. In
Sec. II we introduce the model. Section III provides a solution
based on a generating functional analysis (GFA), with tech-
nical details of that analysis relegated to an appendix. Phase
diagrams are provided in Sec. IV along with results of return
distributions predicted by the model at various timescales. By
looking at a variant of the model which has metastable states
of a known structure embedded in its couplings, we are in
a position to elucidate in some detail the relation between
metastable states with a dynamics switching between them
at longer timescales on one hand, and volatility clustering on
the other hand. Finally, in Sec. V we provide a summary and
a concluding discussion.

II. MODEL DEFINITIONS

In this section we describe the model for asset price dynam-
ics as introduced in [36]. One considers a system consisting of
N assets, labeled i = 1, . . . ,N . To each asset i, one associates
a time-dependent price Si(t) > 0. The geometric Brownian
motion model postulates that the relative change of the price
performs a random walk captured by the Langevin equation

1

Si(t)

d

dt
Si(t) = μi + σiξi(t), (1)

where ξi(t) ∈ Rdenotes a Gaussian white noise with zero mean
and unit variance. The factor σi � 0 measures the strength of
the Gaussian fluctuations, and μi � 0 characterizes the growth
rate. Defining a normalized log-price ui(t) = ln[Si(t)/Si0], in
which Si0 is a reference price (needed to nondimensionalize
the argument of the logarithm) we obtain a new stochastic
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differential equation

d

dt
ui(t) = Ii + σiξi(t), (2)

where Ii = μi − σ 2
i /2 by an application of Ito’s lemma. The

iGBM model, at the level of the log-prices ui(t), is now
constructed by introducing three extra terms into Eq. (2), to
give us

d

dt
ui(t) = −κiui(t) +

N∑
j=1

Jijg(uj (t)) + σ0u0(t)

+Ii + σiξi(t). (3)

The first additional term describes what might be thought of
as an effect of fundamentalist traders in the market, creating a
mean reversion effect with reversion coefficients κi > 0. The
natural interpretation of the normalizing factors Si0 introduced
above would in that case be that of “rational prices” of traded
assets. The second additional term in Eq. (3) describes the
interactions between log-prices of mutually dependent assets.
We choose the interaction to be most sensitive in the vicinity
of the rational prices, by taking g(u) to be a nonlinear, sigmoid
function, describing the feedback mechanism. Possible choices
for this function include the error function or hyperbolic
tangent. The strength of this influence is given by Jij ∈ R. The
sign of Jij depends on the nature of mutual interactions. If, for
example, assets i and j refer to firms with mutually beneficial
economic relations, one would have Jij > 0. Conversely if they
refer to two competing firms, a negative shock on asset j , i.e.,
g(uj ) < 0, may positively affect asset i, implying Jij < 0.
Finally, the u0 term is introduced to act as a global risk
component mimicking slowly evolving economic conditions
affecting prices of all traded assets. In the present paper we will
model the u0 term as a (slow) Ornstein-Uhlenbeck process,

u̇0(t) = −γ u0(t) +
√

2γ ξ0(t), (4)

where we take γ � 1 such that the above process becomes
considerably slower than the microscopic asset dynamics
described in Eq. (3).

For symmetrically coupled networks, the combined effect of
mean reversion and the sigmoid nature of the feedback function
is known to render such systems stable at long times [39].

As noted in [36], the model is formally equivalent to
a model describing the stochastic evolution of a system of
graded response neurons [39], with ui(t) playing the role
of a postsynaptic potentials, and with g(u) describing the
neuronal input-output relation, κi representing transmembrane
conductances, and Jij the synaptic efficacies. The Ii finally
represent external (sensory) inputs, and the u0 term—not
typically included in the original neural modeling [39]—could
describe the effects of neuromodulators.

Much is known about systems of this type [36,39–46]. For
the purpose of the present paper, the most important feature is
that iGBM type models as described by Eqs. (3) and (4) are—in
a large part of their parameter space—expected to exhibit
glassy phases [36,41,44,46] characterized by the existence of
a very large number of long-lived metastable states [42,43].
The hypothesis investigated in [36] was that it would be the
interplay between dynamics within metastable states and the

dynamics of (occasional) transitions between them, which
could be held responsible for the intermittent dynamics of
financial markets.

For the purposes of the present analytic study we will keep
a synthetic stochastic setting by taking Jij to be of the form

Jij = cij J̃ij , (5)

where cij ∈ {0,1} are connectivity coefficients describing
whether or not an interaction between the prices of assets
i and j exists, and J̃ij ∈ R describe the strengths of the
interactions. We assume that C = (cij ) is the adjacency matrix
of an Erdös-Rényi random graph of mean degree c, but will
specialize to the regime of sparse yet large connectivity by
taking the limits N → ∞ and c → ∞, with c/N → 0.

J̃ij are taken to be quenched random quantities with mean
and variance scaling with the mean connectivity c to ensure
the existence of the large system; i.e., we put

J̃ij = J0

c
+ J√

c
xij , (6)

in which xij are zero mean and unit variance random variables
chosen to be independent in pairs with xij xji = α. The pa-
rameter α ∈ [−1,1] thus describes the degree of correlations
between J̃ij and J̃j i , with fully symmetric interactions given
by α = 1. It turns out that the collective properties of such a
dilute system in the large mean connectivity limit are actually
indistinguishable from those of a fully connected system.

III. MODEL SOLUTION

In this section we investigate the dynamics and stationary
states for the model introduced in Sec. II. An analysis of
the collective properties of the system in the noiseless limit
σ0 = σi = 0 was presented in [36], and used to identify
parameter ranges, viz., the regions of small κi and sufficiently
large J , where the system would exhibit a large number of
metastable states. We will demonstrate in Sec. IV D below
that our microscopic model described by Eq. (3) does indeed
produce intermittent dynamics in this parameter range.

An exact and formal treatment of the dynamics is possible
using a generating functional analysis (GFA) [47–50], to which
we now turn. For systems of the type considered here the
analysis closely follows [49].

A. Generating functional analysis

In what follows we present a solution of the model based
on the generating functional formalism, which provides tools
for the evaluation of correlation and response functions in
terms of a characteristic functional of path probabilities.
Performing the average over bond disorder in the sum over
dynamical trajectories, details of which are found in Appendix
A, one obtains a family of continuous-time effective single-site
processes, each parametrized by a specific combination of
single-node parameters ϑ ≡ (I,κ,σ ),

u̇ϑ (t) = −κuϑ (t) + I + J0m(t) + σ0u0(t)

+αJ 2
∫ t

0
dsG(t,s)nϑ (s) + φ(t), (7)
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where nϑ (s) = g(uϑ (s)). The noise φ(t) in Eq. (7) is colored
Gaussian noise, with

〈φ(t)〉 = 0, (8)

〈φ(t)φ(s)〉 = σ 2δ(t − s) + J 2q(t,s). (9)

The order parameters m(t) and q(t,s) appearing in the equation
of motion (7) and in the specification (8), (9) of the noise
statistics must be determined self-consistently to satisfy

m(t) = 〈〈nϑ (t)〉〉ϑ , (10)

q(t,s) = 〈〈nϑ (t)nϑ (s)〉〉ϑ , (11)

G(t,s) =
〈
δ〈nϑ (t)〉
δφ(s)

〉
ϑ

. (12)

Here, the inner average 〈. . .〉 refers to an average over colored
noise φ for a given member of the single-site ensemble. The
outer average 〈. . .〉ϑ refers to an average over the ensemble
as characterized by the ϑ distribution. Further details for this
calculation are provided in the Appendix. It should also be
noted that this formalism is exact in the N → ∞ limit.

We highlight the following: (i) there is a dependence of
the single-site dynamics on the overall “magnetization” m(t);
(ii) for any degree of symmetry of the interactions, α 
= 0,
the effective single-node dynamics is non-Markovian, with
memory given by the response function G(t,s); (iii) the
noise appearing in the single-site dynamics is colored, with
correlations determined by the average temporal correlation
q(t,s) of single nodes as described by Eq. (9).

We have thus reduced our system of equations describing
the dynamics of prices of N interacting assets to an ensemble
of dynamical evolution equations self-consistently coupled
via a set of order parameters, which becomes exact in the
thermodynamic limit. As is usually the case with the GFA, the
resulting effective equation of motion is highly nontrivial and
usually relies on sensible assumptions to be analyzed further.

B. Separation of timescales: Quasistationary regime

For sufficiently small values of γ in Eq. (4) one expects
a separation of dynamical timescales to occur, entailing that
the fast uϑ (t) processes become statistically stationary on
timescales on which the slow u0(t) process can be treated as
nonvarying. In what follows we shall thus analyze the uϑ (t)
dynamics under the assumption that it is stationary at a given
value u0 of the slow process.

To assist our analysis further, we approximate Eq. (7) by
neglecting fluctuations in the memory term, rewriting it as

u̇ϑ (t) = −κuϑ (t) + I + J0m(t) + σ0u0(t)

+αJ 2
∫ t

0
dsG(t,s)〈nϑ (s)〉 + φ(t), (13)

in which averages over the effective single-process dynamics
at given ϑ appear in the retarded interaction. We are thereby
discarding one source of noise in the dynamics, and so are
likely to overestimate values of macroscopic order parameters.
The important qualitative aspects of the collective properties

of the system are, however, expected to remain intact as we
shall verify through simulations later on.

Assuming stationarity and time translational invariance for
a given u0, we introduce the integrated response

χ =
∫ t

0
dsG(t,s), (14)

and assume it to remain finite. This allows us to rewrite the
effective dynamics in the stationary regime as

u̇ϑ (t) = − κuϑ (t) + I + J0m + σ0u0

+ αJ 2χmϑ + φ(t), (15)

where mϑ (s) = 〈nϑ (s)〉 can be regarded as independent of s

for s sufficiently close to t for the response function to be
non-negligible.

Anticipating that the correlation q(t,s) might develop a
time-persistent value q,

q(t,s) → q, as |t − s| → ∞, (16)

we decompose the colored noise φ into a static (frozen) and an
independent time-varying component

φ(t) = J
√

qz + η(t), (17)

in which z ∼ N (0,1), and the statistics of the time-varying part
of the noise is given by

〈η(t)〉 = 0, 〈η(t)η(s)〉 = σ 2δ(t − s) + J 2C(t,s), (18)

with

C(t,s) = q(t,s) − q → 0, as |t − s| → ∞. (19)

The effective single-process dynamics within the stationary
regime can then be rewritten in a more suggestive form as

u̇ϑ (t) = −κ(uϑ (t) − uϑ ) + η(t), (20)

in which we have introduced the (long-term) average

uϑ = 1

κ
[I + J0m + J

√
qz + αJ 2χmϑ + σ0u0]. (21)

We note that mϑ = 〈g(uϑ (t))〉, where the average is over the
stationary uϑ distribution that has uϑ as its long-term mean;
thus Eq. (21) is a self-consistency equation for the value of
this long-term mean. Note also that ϑ now includes z, i.e.,
ϑ = (I,κ,σ,z). The solution to Eq. (20) is now easily written
down as

uϑ (t) = uϑ + [uϑ (0) − uϑ ]e−κt +
∫ t

0
e−κ(t−s)η(s)ds, (22)

implying that uϑ (t) is a Gaussian process with expectation

〈uϑ (t)〉 = uϑ + [uϑ (0) − uϑ ]e−κt . (23)

For the auto-covariance

Cuϑ
(t,t ′) = 〈[uϑ (t) − 〈uϑ (t)〉][uϑ (t ′) − 〈uϑ (t ′)〉]〉

of the uϑ (t) in the large time limit we get a stationary law
depending only on time differences, Cuϑ

(t,t ′) = Cuϑ
(t − t ′)

with

Cuϑ
(t − t ′) = 1

2κ
[σ 2e−κ|t−t ′ | + J 2Ĉ(0)], (24)
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in which Ĉ(0) is the zero-frequency limit of the Fourier
transform Ĉ(ω) = ∫∞

−∞ dse−iωsC(s). It is useful to specifically
record the equal time limit of Cuϑ

,

Cuϑ
(0) = 1

2κ
[σ 2 + J 2Ĉ(0)] ≡ σ 2

uϑ
. (25)

C. Self-consistency equations for the quasistationary regime

With full knowledge of the statistics of the uϑ (t) we
can reformulate the self-consistent equations for the order
parameters describing the stationary regime. They are (i) the
stationary magnetization m, (ii) the time persistent part q of the
node autocorrelations, (iii) the integrated response χ , and (iv)
the zero-frequency limit Ĉ(0) of the Fourier transform of the
(non-time-persistent) part C(τ ) of the node autocorrelations in
the stationary regime. To compute the latter, we also have to
evaluate the average node autocorrelations q(τ ).

To formulate the self-consistency equation for m = 〈mϑ 〉ϑ ,
we recall that mϑ = 〈g(uϑ (t))〉 where the average is over the
stationary uϑ distribution, and hence can be rewritten as

mϑ = 〈g(uϑ + σuϑ
x)〉x (26)

with σuϑ
defined in Eq. (25), and 〈. . . 〉x denoting an average

over a N (0,1) Gaussian x. By definition, an average over the
distribution of the set of parameters ϑ then gives m = 〈mϑ 〉ϑ .
Following the same logic for the two-point function q(τ ), we
obtain the following full set of self-consistency equations for
the order parameters:

m = 〈〈g(uϑ + σuϑ
x)〉x〉ϑ , (27)

q(τ ) = 〈〈g(uϑ + σuϑ
x) g(uϑ + σuϑ

y)〉xy〉ϑ , (28)

χ = 〈〈g′(uϑ + σuϑ
x)〉x〉ϑ , (29)

Ĉ(0) =
∫ +∞

−∞
dτ [q(τ ) − q]. (30)

In Eq. (28) the average 〈. . .〉xy is over correlated normal
random variables x,y ∼ N (0,1) with correlation coefficient
given by

ρuϑ
(τ ) = Cuϑ

(τ )

Cuϑ
(0)

= σ 2e−κ|τ | + J 2Ĉ(0)

σ 2 + J 2Ĉ(0)
. (31)

The u0-dependent order parameters of our system are now
given by the solution of Eqs. (27)–(31) supplemented by the
self-consistency equation (21) defining the uϑ . An analytical
characterization of the fixed points is not readily available and
we have to resort to numerical analysis.

D. Analysis of the self-consistency equations

In this section, we present our analysis of the fixed point
equations describing the stationary dynamics of the system. In
particular, we will be taking the error function

g(x) = erf(x) = 2√
π

∫ x

0
dye−y2

(32)

as the sigmoid function that governs the nonlinear feedback
in the dynamics. This choice of feedback function has the

advantage that it simplifies some of the Gaussian averages
needed in the evaluation of Eqs. (27)–(30). To fully exploit
this feature, we further assume that I ∼ N (I0,σ

2
I ), so that

one can combine the two Gaussians z and I in Eq. (21) into
one. Likewise, we keep σ constant across the ensemble of
effective single-node problems. These choices allow for some
simplifications in evaluating the averages appearing in the
original fixed point equations. For example, evaluating mϑ

gives

mϑ = 〈erf(uϑ + σuϑ
x)〉x = erf

⎛
⎝ uϑ√

1 + 2σ 2
uϑ

⎞
⎠, (33)

with now

uϑ = 1

κ

[
J0m + I0 +

√
σ 2

I + J 2qz + αJ 2χmϑ + σ0u0
]
.

(34)

The same simplifications can be made for the other order
parameters, allowing us to rewrite the set of fixed point
equations as

m =
〈

erf

⎛
⎝ uϑ√

1 + 2σ 2
uϑ

⎞
⎠〉

ϑ

, (35)

q(τ ) =
〈〈

erf(uϑ +σuϑ
x)erf

⎛
⎝ uϑ + ρuϑ

(τ )σuϑ
x√

1 + 2[1 − ρ2
uϑ

(τ )]σ 2
uϑ

⎞
⎠〉

x

〉
ϑ

,

(36)

χ = 1√
σ 2

I + J 2q

〈
zerf

⎛
⎝ uϑ√

1 + 2σ 2
uϑ

⎞
⎠
〉

ϑ

, (37)

Ĉ(0) =
∫ +∞

−∞
dτ [q(τ ) − q], (38)

where, given our current system specifications, the average
〈. . . 〉ϑ now corresponds to an average over the Gaussian z and
the κ distribution.

To further accelerate the numerics we follow [46] and avoid
solving the self-consistency problem Eq. (34) for uϑ for every
member of the ϑ ensemble, by using monotonicity of the self-
consistent solution uϑ = uϑ (z) of Eq. (34) to replace the z

average by uϑ integrations instead. To do so we require the
Jacobian of the transformation, which from the z derivative of
Eq. (34), one obtains as

dz

duϑ

= 1√
σ 2

I + J 2q

⎡
⎣κ −

2αJ 2χ exp
(− u2

ϑ

1+2σ 2
uϑ

)
√

π
(
1 + 2σ 2

uϑ

)
⎤
⎦. (39)

Following the reasoning in [46] we realize that for large values
of αJ 2χ/κ the uϑ distribution will have a gap corresponding
to a jump in the self-consistent solution of mϑ . The critical
condition for a jump in the distribution is given by

2αJ 2χ

κ

√
π
(
1 + 2σ 2

uϑ

) = 1 (40)
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with uϑ (z) jumping from the negative to the positive solutions
of

uϑ = 1

κ
αJ 2χerf

⎛
⎝ uϑ√

1 + 2σ 2
uϑ

⎞
⎠. (41)

This concludes the analysis of the general theoretical frame-
work. We now turn to results.

IV. RESULTS

In order to structure our presentation of results, it is useful to
recall that—in the absence of symmetry breaking fields, i.e., for
Ii + σ0u0 ≡ 0—the system described by Eq. (3) has a global
Z2 symmetry ui ↔ −ui . Due to the presence of interactions,
this symmetry can be spontaneously broken, giving rise to
ferromagnetic or spin-glass like phases [41,44] at sufficiently
low noise levels (and for sufficiently small values of the κi).
If couplings are symmetric and if their ferromagnetic bias is
sufficiently small, the system may in fact exhibit exponentially
(in system size) many metastable states in the zero noise limit
[42,43]. Recent work [51] has in fact demonstrated that a large
number of stationary states of the noiseless dynamics continues
to exist in a broad class of nonlinearly interacting systems when
constraints such as symmetries of interactions are dropped.

In the absence of symmetry breaking fields, phases with
spontaneously broken symmetries are usually separated by
sharp phase boundaries from phases where these symmetries
remain unbroken. In the context of modeling the evolution of
interacting prices, however, a situation without any symmetry
breaking fields in the evolution Eq. (3) would be a set of
probability-measure zero for any nondegenerate distribution of
μi and σi , irrespectively of the value u0 of the macroeconomic
risk factor, and would therefore have to be regarded as highly
atypical. Transitions, if any, between phases of broken and
unbroken symmetries would therefore typically appear to be
rounded if described in terms of the order parameters m, q,
and χ appearing in the theory. It would therefore not make
too much sense to precisely locate phase boundaries which
would not exist as sharp boundaries for virtually any realistic
parameter setting. In such a situation the primary interest would
be to locate regions in parameter space where we expect the
existence of ferromagnetic or spin-glass like phases. We will
endeavor to do this in Sec. IV A, taking properties of the phase
structure that exists in the absence of symmetry breaking fields
as a guidance.

Having identified interesting regions in parameter space,
we will in Sec. IV B analyze distributions of log-returns
for representative parameter values within these regions of
interest, evaluating them for various timescales defined relative
to the timescale γ −1 of the slow u0 process that mimics the
effect of macroeconomic conditions. In Sec. IV C we explore
the phenomenon of collective pricing by investigating the
distribution of equilibrium (log-)prices and in particular the
effect that interactions between prices have on that distribution.
In Sec. IV D, finally, we attempt to underpin our hypothesis
concerning the relation between the existence of many long-
lived states in a system and the phenomenon of volatility
clustering by setting up and simulating a system for which

0 1 2 3
0

0.2

0.4

0.6

0.8

1

FIG. 1. Magnetization as a function of u0, shown for three
different values κ0 of the mean of the kappa distribution. Here, we take
J0 = J = 0.5, with α = 0.5, while I0 = 0, σ 2

I = 0.1, and σ = 0.1.
From top to bottom the curves correspond to κ0 = 0.2,0.7, and 1.2,
respectively.

we know—at least partially—the structure of some of its
metastable states.

A. Phase structure

Here, we briefly discuss the phase structure of the model,
with an eye mainly towards identifying regions in parameter
space were we would expect phases with glassy properties
characterized by a large number of metastable states. The
authors of [36] went some way in that direction by analyzing
macroscopic properties of attractors in the noiseless (σi ≡ 0)
limit of the dynamics. In particular it was shown that the mean
reversion constants κi , taken to be homogeneous across the
system in [36], would play a role analogous to temperature.

Continuing on the assumption of Gaussian Ii made in
Sec. III D, and assuming that σi are homogeneous across the
network, σi ≡ σ , we have 7 parameters characterizing the
system, viz., J0 and J determining the mean and variance,
and the parameter α quantifying the degree of asymmetry of
the couplings, as well as the mean I0 and variance σ 2

I of the
distribution of Ii , the strength σ of the noise in the dynamics,
and κ0, the mean of the κ distributions that we will consider
in this paper. Unless stated otherwise, results presented in the
figures below were in fact obtained by choosing an exponential
κ distribution for the mean reversion constants κi .

There can be no question of exploring this 7-dimensional
parameter space completely. Fortunately we find that collective
properties of the system are in the interesting region of
parameter space fairly robust against parameter changes, so
we will restrict ourselves to highlighting a few of the most
important trends.

In Fig. 1 we show the behavior of the stationary macroscopic
magnetization m as a function of the value u0 of the slow
process, using an unbiased Ii distribution with I0 = 0, and
σ 2

I = 0.1. Note that parameters characterizing the distribution
of couplings and the strength σ of the dynamic noise are chosen
such that there is no spontaneous “ferromagnetic” order in
the u0 → 0 limit. We also note that increasing the mean κ0

of the κ distribution has an effect analogous to increasing
the temperature, in that it reduces the degree of macroscopic
(ferromagnetic) order.
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FIG. 2. Magnetization m (blue full line), time-persistent correla-
tion q (red dashed line), and integrated response χ (black dotted line)
as functions of J0 in the absence of any global symmetry breaking
fields, i.e., for I0 = u0 = 0. Other parameters are σ 2

I = 0.1, so there
is a local random field, J = 0.5, α = 0.5, κ0 = 0.2, and σ = 0.1.
The figure shows the appearance of a ferromagnetic phase as J0 is
increased beyond J c

0 � 0.75. For J0 < J c
0 the system is in a frozen

“spin-glass” like phase.

Figure 2 illustrates that in the absence of global symmetry
breaking fields, the system exhibits a sharp second-order
phase transition to ferromagnetic order as the value of the
ferromagnetic bias J0 in the coupling distributions is increased
above a critical value J c

0 . For values of the other parameters
as given, the system is in a frozen “spin-glass” like phase for
J0 < Jc

0 � 0.75. Transitions to ferromagnetic order could also
be induced by reducing the noise level σ at sufficiently large
ratios of J0/J and for sufficiently low κ0. In a similar vein
transitions into the spin-glass like phase could be induced by
lowering the noise level at sufficiently small J0/J ratio, again
provided κ0 is sufficiently small. Alternatively one could chose
to lower κ0 at sufficiently small value of σ to induce these
transitions.

Figure 3 shows the phase boundary separating a spin-glass
like phase at small values of J0 from a ferromagnetic phase at
larger values of J0 as a function of κ0 in the absence of global
symmetry breaking fields. For such a phase boundary to exist
the noise level σ has, of course, to be sufficiently low. It is

0.1 0.5 1 1.5
0.7

0.75

0.8

0.85

0.9

0.95

FIG. 3. Phase boundary separating a spin-glass like phase at small
values of J0 from a ferromagnetic phase at larger values of J0 as a
function of κ0 in the absence of global symmetry breaking fields,
i.e., for I0 = u0 = 0, but σ 2

I = 0.1. Other parameters are J = 0.5,
α = 0.5, and σ = 0.1.

expected that a spin-glass like phase will continue to exist even
in the presence of weak symmetry breaking fields, in analogy
to what is known for the Sherrington-Kirkpatrick (SK) model
[52].

B. Return distributions

We now look to compute distributions of log-returns across
the ensemble of interacting assets. (In what follows, we will
somewhat loosely refer to them as return distributions). To
begin with, we consider the distribution of returns for an
arbitrary member of theϑ ensemble, and so we need to consider
the statistics of differences,

�uϑ ≡ uϑ (t) − uϑ (t ′), (42)

omitting time arguments on the left-hand side for simplicity.
We will always consider late times such that γ t � 1 and

γ t ′ � 1 in order to ensure the slow process is in equilibrium.
Three timescales naturally arise following the above criteria:

(i) The quasistationary regime for which γ |t − t ′| � 1. In
this regime we regard the fast process as stationary at a given
value of the slow process. This constitutes looking at times
for which the macroscopic characterization of the system state
remains constant.

(ii) An intermediate timescale defined by γ |t − t ′| = O(1).
Explicitly, this involves looking at return distributions for
stationary fast processes parametrized by u0(t) and u0(t ′), for
which correlations between the two slow processes still exist.

(iii) The long timescale, which we define as γ |t − t ′| � 1,
so that even the slow process has decorrelated.

In any case, we will be interested in variations induced
by both the ϑ distribution and for generality, the u0 statistics
too. It could, however, also be of interest to inspect return
distributions conditioned on specific values of the slow process.

1. Quasistationary regime

Here, we look at the distribution of returns for the fast
process in equilibrium for a given value u0 of the slow process.
This implies that we look at time differences such that uϑ

obeys the equation of motion Eq. (15) for all times of interest.
Naturally, we are interested in the limits κt,κt ′ � 1 which
again allows us to define three distinct time scales of interest
in the quasistationary regime itself. We will refer to these as

(i) short : κ|t − t ′| � 1,

(ii) medium : κ|t − t ′| = O(1),

(iii) long : κ|t − t ′| � 1.

We note that some initial regularization of the κ distributions
(upper and lower cutoffs) may be needed to make the definition
of these time windows and some of the arguments below
well defined for all members of the ϑ ensemble; regulariza-
tions/cutoffs can then be removed at the end of each calculation
in question. In order not to overburden the presentation, we
will, however, not explicitly retrace and document these steps
in what follows.

Using the solution given in Eq. (22), we see that

�uϑ =
∫ t

0
e−κ(t−s)η(s)ds −

∫ t ′

0
e−κ(t ′−s ′)η(s ′)ds ′. (43)
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As η is a Gaussian noise, we find that the returns for a single
member of the ensemble of effective single-site processes in
the quasistationary regime are normally distributed, i.e.,

�uϑ ∼ N
(

0,
σ 2

κ
[1 − e−κ|t−t ′ |]

)
. (44)

For the short timescale defined above, one may expand
the exponential appearing in the variance, entailing that the
κ dependence vanishes (at first order in the expansion),

�uϑ ∼ N (0,σ 2|t − t ′|). (45)

At these very short time separations the return distribution
thus exhibits simple diffusive broadening. If σ is taken to be
constant across the ensemble, this result remains true across
any portfolio of assets traded in the market.

At the long and intermediate timescales within the quasis-
tationary regime there will of course be a κ dependence of
individual returns. However, if we concern ourselves with the
distribution p(�u) of returns across the ensemble of processes,
we can obtain it by averaging the above over the ϑ distribution,

p(�u) =
∫

dϑP (ϑ)p(�uϑ ). (46)

In general, this integral has to be done numerically. A sim-
plification is possible for very large time separations within the
quasistationary regime, for which the exponential correction in
the variance in Eq. (44) can be neglected, and �uϑ ∼ N (0, σ 2

κ
).

Keeping σ constant across the ensemble, the only ϑ component
to average over in this limit then is κ . An analytically closed
form for the distribution of returns across the ensemble can
then be obtained if we assume the κ to be �-distributed,

P (κ) = 1

κ0�(ν)

(
κ

κ0

)ν−1

exp(−κ/κ0). (47)

Here κ0 is a scale parameter which also defines the mean of
the κ distribution, while ν determines its actual shape. For this
family of κ distributions we obtain

p(�u) =
√

κ0√
2πσ 2

�
(
ν + 1

2

)
�(ν)

(
1 + κ0(�u)2

2σ 2

)−(ν+1/2)

. (48)

Within this family of return distribution we observe power
law tail behavior, p(�u) ∼ (�u)−μ for |�u| � 1, with μ =
1 + 2ν. We note that the case ν = 1 would correspond to an
exponential κ distribution, which would be the distribution
naturally selected by the maximum entropy principle for a
strictly positive random variable with a prescribed mean, in
which case the tail exponent would be μ = 3. In Fig. 4 we
compare this analytical asymptotic result with that of a full
numerical evaluation of the distribution of returns across the
ensemble for κ0|t − t ′| = 20, observing excellent agreement
between the two already for moderate time separations.

Although we are unable to evaluate the full distribution of
returns across the ϑ ensemble for intermediate time separa-
tions, a quantity that we can evaluate in closed form for all
time separations in the quasistationary regime is its variance
〈(�u)2〉 = 〈〈(�uϑ )2〉〉ϑ , in which the inner average is the
variance of the return distribution for a given member of the ϑ

ensemble, specified in Eq. (44), and the outer average is over
the ϑ distribution. With specifications as before, i.e., keeping σ

-20 -10 0 10 20
10-5

10-2

100

FIG. 4. Return distribution in the quasistationary regime evalu-
ated for κ0|t − t ′| = 20 (red dashed line) compared with the analytic
prediction for its asymptotic behavior Eq. (48) (blue full line) for an
exponential κ distribution with ν = 1.

constant across the ensemble, the only ϑ component to average
over is once more the κ distribution. For �-distributed κ as
specified above we obtain

〈(�u)2〉 = σ 2

κ0(ν − 1)

[
1 − 1

(1 + κ0|t − t ′|)ν−1

]
(49)

for ν 
= 1. In the ν → 1 limit this specializes to

〈(�u)2〉∣∣
ν=1 = σ 2

κ0
ln(1 + κ0|t − t ′|). (50)

In the limit of very short time separations, this reproduces
a diffusive broadening 〈(�u)2〉 ∼ σ 2|t − t ′| of the variance
which is independent of properties of the κ distribution, as
observed earlier.

It is worth pointing out that the return distributions in
the quasistationary regime are independent of the global u0

process, and in fact independent also of other parameters
characterizing the interactions, as the u0-dependent means uϑ ,
which do depend on the interaction parameters, cancel when
taking differences.

2. Intermediate and long timescales

We now turn our attention to the case where the fast process
is in equilibrium at two different values for u0. In particular,
for a single member of the ensemble, evaluation of Eq. (42)
gives

�uϑ = uϑ (t) − uϑ (t ′) +
∫ t

0
e−κ(t−s)η(s)ds

−
∫ t ′

0
e−κ(t ′−s ′)η(s ′)ds ′. (51)

In contrast to the quasistationary regime, the time-
dependent mean values uϑ determined by the values of u0 at
two different times t and t ′ now explicitly appear in the returns.
We also expect that on this timescale, the fast noise processes
have decorrelated with one another. Therefore, the distribution
of returns for a given member of the ensemble and for given
values of u0(t) and u0(t ′) is now normal with a non-zero mean,
and is given by

�uϑ

∣∣
u0(t),u0(t ′) ∼ N

(
�uϑ (t,t ′),σ 2

uϑ
(t) + σ 2

uϑ
(t ′)

)
, (52)
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FIG. 5. Distributions for long time log returns across the en-
semble averaged over all market conditions. Again, power law tails
are observed and we expect that upon suitable normalization the
distributions across timescales should scale very well as is seen in
microscopic simulations.

where

�uϑ (t,t ′) = uϑ (t) − uϑ (t ′)

= 1

κ
[J0(mt − mt ′) + σ0(u0(t) − u0(t ′))

+αJ 2(χtmϑ,t − χt ′mϑ,t ′)]. (53)

Here we denote an order parameter A of interest by At to denote
its value in equilibrium for a given value u0(t) of the slow
process u0 at time t . As before, we are interested in the return
distribution across the whole ensemble, which is obtained by
averaging over the ϑ distribution. In addition to this, we can
either look at return distributions for a range of specific u0

values, or we may choose to average over their distribution.
Since theu0 term mimics the state of global economic behavior,
this average corresponds to return distributions across all
market conditions. As the u0 statistics are Gaussian, the
joint distribution becomes easy to write down, allowing us to
perform this average in a straightforward manner. Finally, the
return distribution across the ensemble of processes, across all
market conditions, is written down as

p(�u) =
∫

dϑdu0(t)du0(t ′)P (ϑ)p(u0(t),u0(t ′))

×p(�uϑ |u0(t),u0(t ′)). (54)

This return distribution is shown in Fig. 5.
Differences between the intermediate and long

timescales arise through differences in the joint distribution
p(u0(t),u0(t ′)) for the slow process. In the first case, the
market conditions are still correlated while in the long time
limit these correlations no longer persist. In both cases, we
find that returns across the portfolio maintain their power law
distributed tails.

C. Collective pricing

Here we explore the phenomenon of collective pricing
mentioned at the beginning of this section. More specifically,
we take a closer look at the role of uϑ as defined in Eq. (21);
we know that this quantity takes the role of the equilibrium
value of the associated asset price under given macroeconomic
conditions as parametrized by the value of the slow u0 process.

In order to identify the collective interaction-mediated
properties of pricing distributions, we begin by looking at the
noninteracting baseline. Without interactions in the system,
the combined effect of mean reversion, drift, volatility, and
the value u0 of the slow process describing macroeconomic
conditions is, according to Eq. (21), to produce a mean log-
price

uϑ = 1

κ
[I + σ0u0] (55)

that depends linearly on I and on the value of the u0 process.
Recall that Ii = μi − 1

2σ 2
i , so I includes effects of drift and

volatility.
Assuming a normal distribution for I as above, I ∼

N (I0,σ
2
I ), we get a normally distributed family of mean prices

at given mean reversion,

uκ ∼ N
(

I0 + σ0u0

κ
,
σ 2

I

κ2

)
, (56)

which, upon averaging over κ which are �-distributed with
ν > −1 according to Eq. (47), gives

p(u) = νκ0√
2πσ 2

I

exp

{
− 1

2σ 2
I

(I0 + σ0u0)2

}

×β−(1+ν)/2 exp

{
γ 2

4β

}
D−(1+ν)

(
γ√
β

)
, (57)

in which Dν(z) is a parabolic cylinder function [53], and

β =
(

κ0u

σI

)2

, γ = 1 − κ0u

σ 2
I

(I0 + σ0u0). (58)

Note that γ 2/β → constant as |u| → ±∞, so the tail behavior
of the u distribution is governed by the β−(1+ν)/2 term in
the above expression, giving p(u) ∼ u−(1+ν) for |u| � 1.
Conversely, the singularities which the three terms in the
second line of Eq. (57) exhibit as u → 0 (hence β → 0) cancel,
so that p(u) remains finite in this limit.

Having analyzed the noninteracting case, we now return
to Eq. (21), and more specifically to its version for normally
distributed I , Eq. (34), to study the effects of interactions on
the uϑ . As indicated at the end of Sec. III D the distribution
of the solution uϑ of Eq. (34) is obtained by transforming the
normal density of z

p(uϑ ) = P (z)

∣∣∣∣ dz

duϑ

∣∣∣∣ (59)

in which P (z) = 1√
2π

e−z2/2, with z = z(uϑ ) obtained by solv-

ing Eq. (34) for z, and the Jacobian dz
duϑ

of the transformation—
for the error-function feedback (32)—given by Eq. (39). This
allows us to obtain the distribution of equilibrium prices as
induced by normal variable z for a fixed κ . The distribution
p(u) of equilibrium log-prices over the ensemble is obtained
by averaging over the ϑ distribution as before; the average once
more reduces to an average over the κ distribution, if σ is kept
constant across the ensemble.
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FIG. 6. Distribution of equilibrium log-prices uϑ for the nonin-
teracting system (first panel), compared to those of the corresponding
interacting system (second panel), for selected values of the mean
reversion κ and the slow process u0; note the different scales.
System parameters are I0 = 0, σ 2

I = 0.1, κ0 = 0.2, and σ = 0.1;
for the interacting system we chose J0 = J = 0.5 and α = 0.5.
For the individual curves the parameters are (κ = 0.5,u0 = 0.1)
(blue narrow pair of distributions), (κ = 0.2,u0 = 0.1) (black, nearly
symmetric, broad pair of distributions), and (κ = 0.2,u0 = 1) (red,
nonsymmetric, broad pair of distributions).

We see in Fig. 6 that interactions lead to a considerable
broadening for the equilibrium distributions when compared
with their noninteracting counterparts. Also the degree of
asymmetry of these distributions is significantly enhanced by
the interactions. A highly nontrivial effect is the systematic
suppression of equilibrium log-prices which would be charac-
terized as typical in the noninteracting system. This effect is
primarily induced by the ferromagnetic bias of the interaction,
which could be induced by herding or imitation effects of
agents acting in the market, or by economic fundamentals sug-
gesting co-movement of asset prices. It can fairly be said that
this mechanism creates an interaction-mediated mechanism of
a market to push prices of assets to more extreme values, i.e.,
both to very high and to very low values. The effect appears
to be stronger for members of the ensemble with small values
of the mean reversion constant κ; it weakens for those with a
larger mean reversion constant.

We may also look at the global characteristics of pricing
distribution across the entire ensemble. This is achieved by
averaging over the κ distribution. For the parameter settings
used, one can see in Fig. 7 that this smooths out the bimodal
nature observed for the subensembles of assets with selected κ

values shown in Fig. 6, but it shows once more a considerable
broadening of the distribution and a significant enhancement
of the degree of asymmetry when compared with the noninter-
acting counterpart.
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FIG. 7. Equilibrium distribution of log-prices across the entire
ensemble for u0 = 1, both for the interacting system (full line) and
for the noninteracting system (dashed line). Parameters are the same
as in Fig 6.

D. Metastable states and volatility clustering

We finally return to one of the central hypotheses underlying
our modeling, namely that the complexity of real market
dynamics [4], including in particular the phenomenon of
volatility clustering, could be rationalized in terms of the
interplay of dynamics within (metastable) market states and
the dynamics of occasional transitions between them, rather
then being produced by phenomenological models [8–13]
specifically designed to produce the volatility fluctuations
observed in real markets.

In this respect we note that distinct market states have indeed
been identified empirically, e.g., in [54], who analyzed stock
market return time series using Markov switching techniques,
in [55], who look at distributions of traded volumes conditioned
on noise, or in [56–59], who analyzed correlations of asset
returns in historical data. While [54] and [55] give rise to binary
classifications of market behavior in terms of switching means
or variances in return time series [54] or in terms of classifying a
market as either in an equilibrium phase or in a nonequilibrium
phase, the studies based on clustering correlation matrices
[56–59] identify a richer spectrum of possibilities.

The assumption behind our modeling is that market states
would indeed emerge naturally as attractors of the collective
(nonlinear) dynamics of interacting prices. For the Gaussian
couplings that we have been using in the present study,
analogies with the SK spin-glass model suggest that we do
in fact expect a very large number of such attractors to exist
in a large region of parameter space, not too dissimilar in fact
from the findings of [56,57]. However, while we have no way
of a priori knowing the structure of these states, clustering
correlation matrices of asset returns in the spirit of [56,57]
could well be used as a way to reveal their existence in our
model.

Here we take an alternative route, trying to make progress in
elucidating the relation between metastable states and volatility
clustering in a more direct manner. We propose to look at a
version of the market in which we embed a small number of
known random attractors in the system, in order to analyze
whether there is a relation between system state—measured
in terms of similarity with these known attractors—and the
observed volatility of the dynamics. For simplicity we take the
system to be fully connected, and introduce couplings with a
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FIG. 8. Simulation of a market with of N = 50 traded assets, ex-
hibiting the relation between volatility and metastable state structures.
The upper panel shows overlaps of the system state with three random
attractors embedded in the coupling matrix in a Hebbian form as
explained in the main text, while the lower panel shows returns on the
index as a function of time. The other system parameters are κ0 = 0.2,
I0 = 0, σ 2

I = 0.5, σ = 0.1, J0 = J = 0.5, α = 0.5, and γ = 10−4.

Gaussian and a Hebbian coupling component as follows,

Jij = J
(G)
ij + J

(H)
ij , (60)

with

J
(G)
ij = J0

N
+ J√

N
xij (61)

and

J
(H)
ij = 1

N

p∑
μ=1

ξ
μ

i ξ
μ

j , (62)

in which the ξ
μ

i are i.i.d. random variables taking values ξ
μ

i =
±1 with equal probability, and the xij are normally distributed
xij ∼ N (0,1) and independent in pairs with xij xji = α as in
the original setup.

Figure 8 presents results of a simulation of such a system
of size N = 50, with p = 3 “patterns” embedded in the
couplings, in which we simultaneously record the changes of
the index, and the values of the overlaps

mμ(t) = 1

N

∑
i

ξ
μ

i g(uit ) (63)

with the three random patterns {ξμ

i }, for μ = 1,2, and 3 embed-
ded in the system. There is indeed a pronounced correlation
between the volatility of the index changes and the system
state as measured by the three overlaps in the system, and
we believe that we can take this as a clear qualitative, and
indeed semiquantitative, indication that our hypothesis of a link

between metastable states and volatility clustering is correct for
the model class under consideration.

V. SUMMARY AND DISCUSSION

In this paper, we have provided a comprehensive analysis
of the iGBM introduced in [36]. The line of reasoning leading
to a model of interacting prices of this type is described in
detail in that paper. Suffice it to mention here that the structure
of the model follows from very general arguments concerning
the description of market mechanisms and of agents acting in a
market within reduced models based on the evolution of prices
alone. This is not to suggest that choices were not made. They
include the choice of Gaussian-distributed pair interactions
and sigmoid-saturating nonlinear transfer functions. However,
key properties underlying the intermittent nature of market
dynamics observed in the present model are expected to be
largely independent of these choices and will not require
fine-tuning of parameters, as long as interactions were chosen
in such a way as to exhibit a sufficient degree of both disorder
and frustration, and as long as transfer functions were chosen
which for large values of their argument grow slower than
linearly with their argument (which is a prerequisite for the
long-term stability of the system that was exploited in the
analysis of quasistationary states in Sec. III).

In the present investigation we couple the dynamics of
the system to a slow Ornstein-Uhlenbeck process, which we
introduce to mimic the effect of slowly evolving macroeco-
nomic conditions. The precise nature of this slow process
is not crucial for the majority of our results, including in
particular those related to statistics of return distributions in the
quasistationary regime. At intermediate and long timescales,
the time dependence of the correlation of the slow process
will affect details of return distributions, though the fact that
they are fat-tailed is independent of our choice, as are the
properties of equilibrium log-price distributions discussed in
Sec. IV C, where specific values of the slow process are only
used parametrically.

We have performed a generating functional analysis of the
dynamics, which maps the dynamics of the interacting system
onto an ensemble of systems exhibiting a non-Markovian
dynamics which is self-consistently coupled through a set of
dynamic order parameters. Using a separation of timescales
argument, which assumes that the fast internal dynamics of
the interacting system equilibrates at given values of the
slow Ornstein-Uhlenbeck process, we are able to analyze the
stationary dynamics of the system. This then allows us to
identify regions in parameter space where the system exhibits
ferromagnetic or spin-glass like phases.

Our analysis of the stationary dynamics (at given values
of the slow driving) allows us to evaluate the distribution
of log-returns for the ensemble for various timescales, both
in the quasistationary regime and at larger time separations.
For a broad class of distributions of the mean reversion terms
in the model, we find that distributions of log-returns across
the ensemble are fat-tailed, exhibiting asymptotic power law
behavior broadly in line with empirical facts [5]. We note,
however, that our model, as it is currently set up, does not
reproduce the fat tails at the single-asset level that were
found empirically in [6]. We will discuss the origin of that
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shortcoming, and thus possible ways to improve the model
in this respect, below. We are also able to evaluate the time-
dependent variance of the distribution of log-returns in the
quasistationary regime, and find diffusive broadening in the
limit of small time separations, with the broadening becoming
subdiffusive at later times. These findings are broadly in line
with empirical observations.

Interestingly, our model predicts the existence of equilib-
rium prices for assets, and we are able to explicitly trace the
influence of interactions on the distribution of equilibrium
prices across the ensemble. The two main effects of collec-
tive pricing, as predicted by the iGBM, are to considerably
broaden the distribution of equilibrium prices in comparison
with their noninteracting counterparts, as well as a significant
enhancement of asymmetries characterizing such distributions
for given (favorable or unfavorable) economic conditions as
quantified by the value u0 of the slow noise process. More
specifically, we also observe a pronounced interaction-induced
preference for very high or very low asset prices, which we
think, deserves further study.

Note that distributions of log-returns and pricing distri-
butions across the market are of collective origin, and so
they can be expected to be to a certain extent independent
of details of the model specifications. In particular, collective
properties of the system will not depend on specific realizations
of interasset couplings, though they may, and in general will,
depend of properties of coupling distributions. This aspect
could indeed provide an avenue to analyzing market data within
the present modeling framework which does not require getting
individual couplings correct. It is also the main aspect from
which the current modeling approach may eventually derive
some predictive power, and might, for instance, be used to
provide tools to assess market risk at a systemic level. It goes
without saying that further investigations using real data will
be required to get there.

One of the principal motivations for constructing the iGBM
was to explore whether some of the stylized facts of finan-
cial time series could be understood in terms of effective
interactions between prices of assets traded in a market,
given that effective interactions between asset prices are a
necessary feature of any model that attempts to describe
market dynamics in a reduced form as a dynamics of prices
alone. We have gone some way to demonstrate that this is
true at the level of return distributions. Another important
phenomenon is that of volatility clustering which in fact finds
a quite natural explanation in terms of interacting prices.
Due to the interactions, the system is expected to exhibit a
large number of (dynamic and static) attractors if there is a
sufficient degree of disorder and frustration. In the presence
of noise, many of these attractors will survive as long-lived
states, and volatility clustering is expected to arise naturally
through the interplay of the dynamics within long-lived states
and the dynamics of occasional transitions between them. Such
transitions can occur spontaneously or be triggered by news or
slowly changing macroeconomic conditions. Different long-
lived states will be characterized by different values of their
susceptibilities and so the presence of noise in the dynamics
is expected to induce fluctuations with different degrees of
volatility. Using simulations of a system with a partially known
attractor structure, we have demonstrated in Sec. IV D above

that our hypothesis about a relation between metastable states
and volatility clustering is correct at least for models of the
type considered here.

In [36] the authors simulated the model using an external
perturbation which they argued could represent the effect
of the arrival of unexpected news (e.g., in the context of
quarterly reporting). The process used in that paper is difficult
to implement in analytically closed form, which was one of
our reasons for adopting the slow Ornstein-Uhlenbeck process,
which uniformly affects all prices in a market, as a mechanism
to induce transitions between metastable states. We believe
that it is the absence of a jump-process component of the noise
in the version of the model investigated in the present paper
which is ultimately responsible for the fact that the model does
not exhibit fat-tailed return distributions at the level of single
assets. This could easily be rectified in the model formulation,
by adding, e.g., a Poisson jump process component to the noise,
but it is likely to considerably complicate attempts at solving
the model analytically. We believe it would be important
to explore to what extent a model with a combination of
continuous and discrete noise sources is amenable to analysis.

Our last remark refers to the presence of mean reverting
forces in the iGBM, given that the existence of such forces
is debated in economic circles. Within our modeling, the
existence of mean reverting forces is responsible for ensuring
long-term stability of the market. It would be easier to motivate
the existence such forces if the ui(t) were introduced as log-
prices on a co-moving frame as ui(t) = ln[Si(t)/Si0e

(μi− 1
2 σ 2

i )t ].
This modification would in the first instance eliminate the
drift Ii from the transformed equation (2), and it would
suggest introducing an iGBM formally in the same manner
as was done originally, albeit with the drift term Ii missing
from the interacting version Eq. (3) as well. Within this
modified interpretation of the ui(t), the mean reversion and the
interactions would have to be interpreted as mean reversion and
interactions relative to an expected trend rather than relative
to some fixed log-price, which might be easier to justify in
economic terms. Long-term stability of the model would be
saved, albeit on a co-moving frame. As an additional benefit
the random symmetry breaking field Ii would also disappear
from the equations, which could simplify the ensuing analysis.
As a downside though, such a model would likely be harder
to calibrate against real market data, which should indeed be
one of the next natural steps to undertake within the present
project.
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APPENDIX: GENERATING FUNCTIONAL ANALYSIS

In this Appendix we use generating functional analysis
(GFA) [47] to formally solve the model dynamics. We begin
by introducing the generating functional in terms of source
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fields, �,

Z[�|u0] =
〈

exp

{
−i

∫
dt
∑

i

�i(t)ni(t)

}〉
, (A1)

in which the ni(t) = g(ui(t)) are the variables in terms of
which the interaction between log-prices is defined, and we
condition on a realization u0 of the path of the slow process
representing the evolution of macroeconomic conditions. The
angled brackets refer to the average over all paths, which are
trajectories of microscopic states. Explicitly,

Z[�|u0] =
∫

DuP [u] exp

{
−i

∫
dt

N∑
i=1

�i(t)ni(t)

}
, (A2)

where Du is the flat measure over a set of paths u = {ui(t)},
i = 1, . . . ,N over some finite risk horizon 0 � t � T , and
P [u] denotes the probability of these paths. The generating
functional can be used to compute expectation values and
correlation functions as

〈ni(t)〉 = i
δZ[�|u0]

δ�i(t)

∣∣∣∣
�≡0

, (A3)

〈nj (s)ni(t)〉 = i2 δZ[�|u0]

δ�j (s)δ�i(t)

∣∣∣∣
�≡0

. (A4)

The evaluation of the generating functional follows stan-
dard reasoning; see, e.g., [47–50]. For stochastic processes
described by a Langevin equation driven by Gaussian white
noise, one uses δ functionals and their Fourier representations
to enforce the equations of motion, which allows us to trans-
form probabilities of noise trajectories into path probabilities.
Assuming Ito discretization for the Langevin equation one can
thus express the generating functional as

Z[�|u0] =
∫

D{u,û} exp

{
−
∫

dt
∑

i

[
σ 2

i

2
ûi(t)

2

+iûi(t)

(
u̇i(t) + κiui(t) − Ii −

∑
j

Jijnj (t)

−σ0u0(t)

)
− i�i(t)ni(t)

]}
. (A5)

We are interested in evaluating the generating functional for a
typical realization of disorder. This is achieved by averaging
Eq. (A5) over the bond disorder, i.e., over cij and xij in terms
of which Jij are expressed. This disorder average factors in
pairs (i,j ),

D =
∏
i<j

exp

{
i

∫
dt[ûi(t)Jijnj (t) + ûj (t)Jjini(t)]

}c,x

. (A6)

Here, we use the overbar notation to represent an average over
the disorder c and x.

Writing Jij explicitly in terms of cij and xij according to
Eqs. (5), (6), and performing the cij average in the the limit of

large N and finite mean connectivity c, we obtain

D =
∏
i<j

{
1 + c

N

[
exp

{(
J0

c
+ J√

c
xij

)∫
dtiûi(t)nj (t)

+
(

J0

c
+ J√

c
xji

)∫
dtiûj (t)ni(t)

}
− 1

]x}
. (A7)

Using the fact that c � 1, we follow, e.g., [60], expanding the
exponential to perform the x average, keeping only dominant
terms in the expansion in terms of inverse powers of c, and
then re-exponentiate to write

D � exp

{
N

[
J0

∫
dtk(t)m(t) + J 2

2

∫
dsdt[Q(s,t)q(s,t)

+αG(s,t)G(t,s)]

]}
, (A8)

where we have introduced the set of one-time and two-time
order parameters

m(t) = 1

N

N∑
i=1

ni(t),

k(t) = 1

N

N∑
i=1

iûi(t),

q(s,t) = 1

N

N∑
i=1

ni(s)ni(t),

Q(s,t) = 1

N

N∑
i=1

iûi(s)iûi(t),

G(t,s) = 1

N

N∑
i=1

iûi(s)ni(t).

One then enforces these definitions using Dirac δ-function
identities and their Fourier representations, to transform the
disorder-averaged generating functional into a functional in-
tegral, which to leading order in the system size N can be
expressed in the following compact form,

Z[�|u0] =
∫

D{. . . } exp {N [�1 + �2 + �3]}. (A9)

Here, D{. . . } represents the functional measure over the set of
macroscopic order parameter functions and their conjugates.
The functionals �1, �2, and �3, appearing in the exponential
of Eq. (A9), are defined as

�1 = J0

∫
dtk(t)m(t) + J 2

2

∫
dsdt[Q(s,t)q(s,t)

+αG(s,t)G(t,s)], (A10)

�2 = i

∫
dt[m(t)m̂(t) + k(t)k̂(t)] + i

∫
dsdt[q(s,t)q̂(s,t)

+Q(s,t)Q̂(s,t) + G(t,s)Ĝ(t,s)], (A11)
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�3 = 1

N

∑
i

ln
∫

D{u,û} exp

[
−Si − i

∫
dt�i(t)n(t)

]
.

(A12)

Here Si denotes the effective local dynamic action of process
i,

Si =
∫

dt

{
− σ 2

i

2
[iû(t)]2 + iû(t)

[
u̇(t) + κiu(t) − Ii

−σ0u0(t)

]
+ im̂(t)n(t) + ik̂(t)iû(t)

}

+i

∫
dsdt[q̂(s,t)n(s)n(t) + Q̂(s,t)iû(s)iû(t)

+Ĝ(t,s)n(t)iû(s)]. (A13)

It depends on i only through the locally varying parameters
(Ii,κi,σi) ≡ ϑi .

One now evaluates Eq. (A9) using the saddle point tech-
nique, which requires the macroscopic order parameters of
interest to satisfy the following fixed point equations:

m(t) = 1

N

∑
i

〈n(t)〉(i),

q(s,t) = 1

N

∑
i

〈n(s)n(t)〉(i), (A14)

G(t,s) = 1

N

∑
i

〈n(t)iû(s)〉(i), t > s.

All other order parameters are self-consistently zero due to
causality. In Eq. (A14), we use 〈. . .〉(i) to represent an average
over the dynamics of effective single-site processes i which
takes the form

〈. . . 〉(i) =
∫
D{u,û}(. . . ) exp(−Si)∫
D{u,û} exp(−Si)

. (A15)

We note that due to causality the effective single-site action
simplifies to

Si =
∫

dt

{
− σ 2

i

2
[iû(t)]2 + iû(t)

[
u̇(t) + κiu(t) − Ii

−J0m(t) − αJ 2
∫ t

dsG(t,s)n(s) − σ0u0(t)

]}

−J 2

2

∫
dsdtq(s,t)iû(s)iû(t). (A16)

By the law of large numbers the saddle point equations
(A14) for the order parameters can be written as averages over

the distribution of the locally varying parameters ϑ ≡ (I,κ,σ ),

1

N

∑
i

〈. . . 〉(i) → 〈〈. . . 〉〉ϑ ,

as the large system limit N → ∞ is taken. Here inner averages
correspond to those over the dynamics of a single process with
a particular parameter combination, while the outer average
stands for an average over the ϑ distribution, i.e., 〈. . . 〉ϑ ≡∫

dIdκdσp(I,κ,σ )(. . .).
One finally notes that the appearance of a contribution in

the effective single-site action (A16) which is nonlocal in time
and quadratic in the conjugate dynamical variables û(t) is a
manifestation of the fact that the effective single-site processes
are governed by colored noise, while the nonlocal contribution
involving the response function G(t,s) expresses the effect that
effective single-site dynamics is non-Markovian. The equation
of motion for the effective single-site dynamics can be inferred
from the effective single-site action (A16), giving

u̇ϑ (t) = −κuϑ (t) + I + J0m(t) + σ0u0(t)

+αJ 2
∫ t

0
dsG(t,s)nϑ (s) + φ(t), (A17)

where we write u(t) = uϑ (t) when referring to the single-
site process with local parameters ϑ = (I,κ,σ ), so nϑ (t) =
g(uϑ (t)), and where the colored noise φ(t) and the dynamical
order parameters appearing in Eq. (A17) must satisfy the
self-consistency equations

〈φ(t)〉 = 0, (A18)

〈φ(t)φ(s)〉 = σ 2δ(t − s) + J 2q(t,s), (A19)

and

m(t) = 〈〈nϑ (t)〉〉ϑ , (A20)

q(t,s) = 〈〈nϑ (t)nϑ (s)〉〉ϑ , (A21)

G(t,s) =
〈
δ〈nϑ (t)〉
δh(s)

〉
ϑ

, t > s. (A22)

We have thus reduced the original system to one comprising
an ensemble of effective single-site processes characterized
by the ϑ distribution with colored noise and memory which
are self-consistently determined in terms of dynamical order
parameters.
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