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Complex networks are often used to represent systems that are not static but grow with time: People
make new friendships, new papers are published and refer to the existing ones, and so forth. To assess the
statistical significance of measurements made on such networks, we propose a randomization methodology—a
time-respecting null model—that preserves both the network’s degree sequence and the time evolution of
individual nodes’ degree values. By preserving the temporal linking patterns of the analyzed system, the proposed
model is able to factor out the effect of the system’s temporal patterns on its structure. We apply the model to the
citation network of Physical Review scholarly papers and the citation network of US movies. The model reveals
that the two data sets are strikingly different with respect to their degree-degree correlations, and we discuss the
important implications of this finding on the information provided by paradigmatic node centrality metrics such
as indegree and Google’s PageRank. The randomization methodology proposed here can be used to assess the
significance of any structural property in growing networks, which could bring new insights into the problems
where null models play a critical role, such as the detection of communities and network motifs.
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I. INTRODUCTION

Complex networks [1,2] have emerged as one of the lead-
ing frameworks to describe complex social, economic, and
information systems. In the past two decades, the network
approach to complex systems has provided novel insights into
various real-world problems, such as understanding the growth
of information systems [3-5], identifying influential spreaders
[6-8], and predicting the hitting time of an infectious disease
[9,10]. One of the central problems in network analysis is to
assess whether an observed network property is a manifestation
of anontrivial phenomenon induced by the network’s structure,
a statistical consequence of the network’s basic properties, or
even a random fluctuation. For example, various community
detection techniques [11]—such as the popular modularity
optimization [12,13]—rely on quantifying how much the
observed number of edges within a given set of nodes deviates
from its expected value under a certain null model. Network
null models [14-20] serve this purpose by fixing one or more
network properties while randomizing the rest. These null
models turn out to be essential for the detection of network
organizational patterns such as communities [12,21], rich clubs
[22], motifs [23], and nestedness [24].

Despite the growing interest in the temporal evolution of
complex networks [5,25-29], commonly used null models
only focus on preserving structural network properties [16,19]
and neglect the temporal patterns entirely. For example, static
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network null models have been often applied to growing
citation networks for the popular problems of detecting com-
munities [30-32] and classifying scientific papers into research
fields [33].

We show that omitting temporal information results in
randomized networks that exhibit highly unrealistic features,
which in turn impairs their reliability as baselines to assess the
significance of observed network properties. To overcome this
shortcoming, we introduce a time-aware methodology, which
we jointly refer to as the dynamic configuration model (DCM),
which preserves not only each node’s number of links (i.e.,
its degree) but also the temporal linking patterns. This model
allows us to randomize the system at an arbitrary temporal
resolution, choose an appropriate resolution, and construct
networks where each node’s degree trajectory k(¢) is similar
to that in the real network. We use two data sets—the citation
network among the papers published by American Physical
Society journals and the inspiration network of US movies
(hereafter referred to as Papers and Movies, respectively)—to
show that differently from the static configuration model, the
dynamic configuration model accurately reproduces temporal
linking patterns of the real networks.

Differently from existing null models, by preserving the
temporal linking patterns of the original network, the proposed
model allows us to assess the significance of network structural
properties also in settings where temporal patterns significantly
affect structural measurements, which is the case for a wide
range of real systems [26,27,29,34-37]. We apply the dynamic
configuration model to three classes of network properties:
(1) degree-degree correlations, (2) correlations between cen-
trality metrics, and (3) centrality metrics’ ability to uncover
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significant nodes in the network. We find that for the movie-
movie citation network, the observed real properties can be
largely explained by the dynamic configuration model. This
indicates that the movie citation network can be viewed as
structurally random. By contrast, the paper citation network
is found to exhibit patterns that disappear when the network
is randomized by the dynamic configuration model. These
patterns cannot be explained by existing network models,
which calls for new mechanistic models of the citation network
growth. The provided results are examples; the proposed
dynamic configuration model can be applied to assess the
significance of any structural network property in growing
networks.

II. NETWORK NULL MODELS

A null model specifies the set of network properties to be
kept fixed while randomizing the rest. The classical configu-
ration model (CM) preserves the degree sequence {k}“,kf”‘},
where k" and k% are the in-degree and out-degree of node
i. Since the CM ignores the time structure of the network,
the networks it produces exhibit unrealistic features, such as a
substantial fraction of links pointing forward in time, whereas
in the two real networks studied here, all links point back in
time. By contrast, the dynamic configuration model (DCM)
preserves not only the degree sequence but also the nodes’
degree trajectories. The networks produced with the DCM thus
accurately reproduce the network’s temporal linking patterns.

A. Configuration model

For a directed network, the (static)y CM [1,14,38] gen-
erates directed random networks with given out- and in-
degree sequences {k"'} and {k}“}, whose values are preserved
either exactly or on average [17]. The network generation
can be implemented in different ways, each of them with
a given computational complexity [14,17,39,40]. Here, we
adopt Newman et al.’s generation procedure [14]. According
to such procedure, each node i is endowed with k" outgoing-
edge stubs and k}“ incoming-edge stubs. A realization of the
CM is formed by consecutively forming pairs of nodes with
remaining stubs (always an out-stub with an in-stub) until there
is no node with out- or in-going stubs left [14]. The random
matching can generate self-loops and multiple edges. However,
for large networks they constitute only a small fraction of
the total number of edges and therefore they can be safely
discarded [1,41]. In this way, given a real directed network
G and its degree sequences {k"} and {k°"'}, one uses the CM
to generate maximally randomized networks with the same
in- and out-degree sequences as G; the resulting randomized
networks serve as a null model for patterns observed in the
real network. The randomized networks obtained with the CM
from G are referred to as G’s CM-randomized networks.

By only preserving the individual nodes’ degree values,
the CM neglects the network’s temporal patterns and, for
this reason, can generate networks that exhibits highly un-
physical temporal patterns. An illustration of this is provided
in Fig. 1(a): While only backward-directed edges (i.e., from
more recent to older nodes) are allowed in a growing citation
network, the CM-randomized networks can exhibit edges that
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FIG. 1. Anillustration of how the configuration model (CM) and
the dynamic configuration model (DCM) operate on a toy growing
network. Panel (a) shows the four temporal layers n = 1,2,3,4 of the
original growing network: nodes are colored according to their age
from older (lighter) to more recent (darker). In each layer, the new
nodes (bottom line) can only point to previously introduced nodes
(upper line): All links are thus directed backwards in time. Panel
(b) shows the CM-randomized network obtained from the original
network which violates the temporal linking patterns of the original
network: Some links (marked in red) connect the nodes with not-
yet created nodes, which is impossible in a growing network. Panel
(c) shows the DCM-randomized network obtained from the original
network. While the DCM-randomized network is different from the

original one, it respects its temporal linking patterns—each node only
points to older nodes.

CM-randomized

DCM-randomized

point forward in time. This shortcoming of the CM is further
discussed in Sec. II C and motivates to introduce the DCM in
the next section.

B. Dynamic configuration model

Our main goal is to formulate a null model for growing
networks which we refer to as DCM. Our formulation applies
to directed networks; adapting it to undirected networks is
straightforward. The DCM generates networks with fixed in-
and out-degree time series (by keeping fixed the nodes’ in-
and out-degree time series, we also automatically fix the nodes’
final in- and out-degree values). To this end, for a given network
with the time span 7', we choose the number of temporal layers
L and divide the network’s links into L temporal layers of equal
duration AT = T/L. Each link is assigned to one layer by the
link creation time. The number of incoming and outgoing links
of node i established in layer  are labeled as Ak and Ak}f‘n,
respectively (where Y_, Ak?Y = k™ and )", Ak = k"). To
produce a realization of the DCM model, we randomize the
links in each individual layer with the CM: We assign Ak}fln
incoming and Ak?j‘ outgoing stubs to each node i and match
the in- and out-stubs at random. We discard multiple edges and
self-loops [42]. The number of temporal layers, L, is the sole
parameter of the DCM model. If one sets L = 1, then the DCM
is equivalent to the CM.

Given a real directed network and its degree time series
{AKk™ } and {AK™'}, one can use the DCM to generate a
statistical ensemble of random networks with the same in- and
out-degree time series as the real network under consideration.
These networks then serve as a null model for both static
and temporal patterns observed in the real network. The

052311-2



RANDOMIZING GROWING NETWORKS WITH A TIME- ...

PHYSICAL REVIEW E 97, 052311 (2018)

f (a) Papers
107} )
r l‘
’I
-4 -~
w 107°F K
)] ’
o 3 S
10°F
]
Py \
108 . . . '
-120 -60 0 60 120
At

PDF

f (b) Movies
107
: e
0
L
105 — t
-120 -60

FIG. 2. Distribution of the edge temporal lag At, where At;; =t; — t; for a directed edge i — j, for (a) Papers and (b) Movies. Results
are shown for the real data, the CM, and the dynamic configuration model with various layer counts L.

randomized networks obtained from G with the DCM are
referred to as G’s DCM-randomized networks.

Figure 1 illustrates how the DCM operates on a toy growing
citation network where the newly introduced nodes can only
point to the already existing nodes and create no new links later.
By dividing the network’s temporal evolution into sufficiently
many layers and only performing within-layer randomizations
of the links, the DCM-randomized networks [Fig. 1(c)] match
the temporal linking patterns of the original networks closer
than the CM-randomized networks [Fig. 1(b)] where, for
example, “unphysical” links from old to recent nodes exist.

The expected number of edges E(i — j,n) from node i to
Jj in the temporal layer n is
Ak AR,

E(i — j.n)= NG

; (D

where AE, is the number of edges introduced within the
temporal layer n. Note that similarly to the CM [15,17], Eq. (1)
cannot be used to estimate the probability p(i — j,n) that two
nodes are connected as E(i — j,n) can be larger than one.
While in this paper we compute the expected properties of
the DCM-generated networks numerically, it remains open to
extend the analytic maximum-entropy framework by Squartini
and Garlaschelli [17] to correctly estimate the probability
that two nodes are connected with the DCM and calculate
analytically the topological properties of DCM-randomized
randomized networks.

The DCM is similar in spirit to the null model used in
Ref. [21] for a complicated setting (a multilayer network
with community structure). We focus here on the simplest
possible setting of a growing directed network which is thus
applicable to a broad range of systems. Generalizations to other
settings (an undirected network, for example) are nevertheless
possible. The idea behind the DCM for growing networks is
also reminiscent of the procedure used in Ref. [43] to analyze
the temporal evolution of the country-country International
Trade Network (ITN), with important differences related to
the different nature of the data sets. While Squartini et al.
[43] applied the CM to individual years of the ITN in order
to study how network properties change with time, we applied
the DCM to citation networks to assess whether the final
structural properties of the network are explained by the
temporal evolution of each node’s degree alone. We emphasize

that the partition of the nodes into temporal layers is itself a
key novel ingredient of the DCM which allows us to tune the
temporal resolution of the analysis; how the chosen number
of layers impact the properties of the randomized networks is
discussed in the next subsection.

C. The DCM preserves real-data temporal linking patterns

Figures 2(a) and 2(b) compare the distribution of the edges’
time lag in randomized networks obtained with the CM and
the DCM with that found in the real data (see the data sets’
descriptions in Sec. IIA). The time lag of a directed edgei — j
is defined simply as t; — ¢;, where #; denotes the time at which
node i enters the system (the paper publication time and the
movie release time for Papers and Movies, respectively). In
both real data sets, links always point back time; the time lag
values are thus constrained to be positive. The CM networks
show a much different pattern with a substantial fraction of
links violating the original time ordering (In the CM, the
fraction of forward links is 32% and 18% for Papers and
Movies, respectively). This is a direct consequence of the CM’s
ignorance of the temporal dimension which is shared by a
number of existing null models. Some links with negative time
lag are produced also by the DCM but their fraction quickly
diminishes as L grows and the time lag distribution approaches
to that of the real network.

To quantify the difference between the edge time lag
distribution in real data, P, (At), and in DCM-randomized
networks, Ppcm(At), we calculate the 1L -distance

d(Preat, Pocm) = Y | Prear(t) — Pocu(t)], )

where we uniformly divide the time-lag axis into bins of
one-year duration and sum over all of them. As shown in
Figs. 3(a) and 3(b), the distance d( Prear, Pocm) monotonously
decreases with L. This is an expected result because the edge
time lag error introduced by the DCM, which is at most
2 AT, decreases with the number of layers. While this result
might suggest that one should choose L values as large as
possible, large L corresponds to short duration of individual
layers which consequently leaves little space for randomness
and limits the statistical significance of thus-obtained results.
In the extreme case of temporal layers containing only one
edge each, randomness has no place and the only possible
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FIG. 3. Distance d(Pyea, Pocm) between the time-lag distribution in the real and DCM-generated data for (a) Papers and (b) Movies. Entropy
S[Epcm] of the dynamic configuration model as a function of the number of temporal layers L (L = 1 corresponds to the configuration model)

for (c) Papers and (d) Movies.

DCM-randomized network is by definition identical with the
input real network. To quantify the level of randomness in
the model-generated networks, we measure the entropy of the
dynamic configuration model, defined as

L . . : .
Epcm( — j,n) Epcm( — j,n)
S[Epcm] = — E Z E log 7 ,

n=1 i,j

3)
which generally decreases with L [Figs. 2(c) and 2(d)].

We set L = 100 for both Papers and Movies, which avoids
two extremes: unrealistic temporal patterns for too small L and
too small randomness for too large L. At the chosen value of
L, Ppcm matches well the real time-lag distribution and yields
substantial model entropy. It remains open whether one can
devise a general statistically grounded criterion to choose the
value of L. Nevertheless, the presented results obtained with
the DCM do not alter qualitatively when L changes, which
suggests that the problem of finding an optimal value of L
is not essential for practical purposes. Our results are based
on 10 independent realizations of the DCM. An alternative
time-respecting model based on layers composed of an equal
number of nodes instead of layers of equal temporal duration
is studied and compared with the DCM in Appendix B.

II1. USING THE DCM TO ASSESS THE SIGNIFICANCE
OF OBSERVED NETWORK PROPERTIES

In this section, we apply the DCM to assess the signifi-
cance of three distinct network properties: (1) degree-degree
correlations, (2) correlations between node centrality metrics,

and (3) performance of node centrality metrics in identifying
significant nodes.

A. Degree-degree correlations

The degree-degree correlation is usually visualized by the
assortativity plot [44] which displays the average degree of
a node’s neighbors as a function of the node degree. Of
the various possible options for degree-degree correlation in
directed networks [45], we focus here on two distinct cases: the
indegree-indegree dependence between a node and the nodes
it points to (cited nodes), as well as the nodes it is pointed by
(citing nodes).

The Papers network exhibits a clear assortative pattern in
both cases and this pattern cannot be explained by the DCM
[see Figs. 4(a) and 4(c)]. Note that the possible interpretations
of these two cases are different: While Fig. 4(a) suggests that
little-cited papers are cited by other little-cited papers, Fig. 4(c)
suggests that the authors of highly cited papers choose and cite
other highly cited papers. By contrast, no significant indegree-
indegree correlation are found in the Movies network and the
same is true for its DCM-randomized networks.

Degree-degree correlations impact, among others, the
correlations between different node centrality metrics. For
uncorrelated networks, for example, PageRank score is on
average expected to be proportional to indegree (in other words,
PageRank score carries no more information than node inde-
gree). A similar result holds for the node H -index introduced in
Ref. [46]: The H-index of anode is highly correlated with node
indegree for uncorrelated networks [47]. We shall discuss the
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implications of the DCM on the indegree-PageRank relation
in the following sections.

B. Relations between node centrality metrics

While prior studies [35,48-51] have reported the values
of indegree-PageRank correlations measured in real data,
whether the observed correlations are large or small is often
discussed without any reference to a suitable null model.
We use here DCM-randomized networks to assess whether
correlations between network metrics of structural importance
can be explained by degree dynamics or not.

Consider the vectors s; and s; of scores produced by two
different metrics and suppose that we are interested in the linear
Pearson correlation r(s1,S,) between the two score vectors. We
estimate the significance of r(sy,s;) in a given network G by
computing its z score with respect to its distribution in G’s
DCM-randomized networks as follows:

2 (s1.80)] = r(s1,82) — plr(si.2)1 @
olr(s1,82)]
Here u[r(si,s2)] and o[r(s;,s;)] represent the mean and the
standard deviation, respectively, of 7(s;,S;) over the ensemble
of DCM-randomized networks [52]. An analogous definition
is used to estimate the significance of Kendall’s tau correlation
7(81,82). .

In addition to node indegree k™ and PageRank score p,
we study here also age-rescaled variants of these two metrics,
rescaled indegree R(k™) and rescaled PageRank R(p), which
were proposed in Ref. [53] (see Sec. IID for the definition
of the four metrics and computation details). The main idea
behind the rescaled metrics is that the rescaling to a large
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) of citing nodes for (a) Papers and (b) Movies. Relation between
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) of cited nodes for (c) Papers and (d) Movies. Square and circle symbols represent the real

extent removes the strong age bias of the original metrics and
thus makes it possible to compare the nodes regardless of their
age. The procedure described here can be applied to assess
the significance of the relation between any other pair of node
centrality metrics.

The Pearson and Kendall correlation between the centrality
metrics are high in both the Movies and Papers networks [see
Figs. 5(a) and 5(c)]. The z-score values in Figs. 5(b) and 5(d)
imply that the interpretation of these similar correlation values
is actually different between the two studied systems. In the
Movies network, the correlation observed in real data sets
matches well (the z score is close to zero) the correlation ob-
served in DCM-randomized networks. This indicates that the
information conveyed by indegree is the same as that conveyed
by PageRank and the existing discrepancies (manifested by
the correlation lower than one) can be explained by random
fluctuations. In the Papers network, the correlation observed
in real data sets is significantly lower (the z score is strongly
negative) than in DCM-randomized networks, which indicates
that PageRank scores carry additional information that is
not captured by node indegree. We illustrate an interesting
consequence of this result in the following section. In summary,
we find that similar correlation values can yield vastly different
z scores when compared with DCM-randomized networks.
This indicates that null models are essential for a proper
interpretation of measurements in complex networks.

C. The performance of centrality metrics in identifying
significant nodes

This section discusses the implications of the previous
findings on the ability of indegree and PageRank to identify

052311-5



REN, MARIANI, ZHANG, AND MEDO

PHYSICAL REVIEW E 97, 052311 (2018)

1.0
0.8F
0.6F
M o4}
0.2
0.0 -
(p.K") N(R(p
Mowes Papers Mowes Paper
1.0
(c)
0.8F
0.6F
T 04}
0.2
0.0 o
(p.K") (p.K") N(R(p
Mowes Papers Mowes Paper

Z_score

K")

Z_score

k")

-200r (b)
-150+
-100+
50k
0 in in in in
Pk (pk")  (R(P).RK))R(p).R(KY))
Movies Papers Movies Paper
-100
(d)
-80}
60}
40k
-20 - .
(PK")  (PKY)  (RE)R(K")
Movies Papers Mowes Paper
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(c) Kendall 7 values between the studied metrics for Papers and Movies, and (d) associated z scores obtained with the DCM.

significant nodes. In a recent work [53], some of the authors
of this manuscript used the Papers network to evaluate the
ranking of nodes produced by various node centrality metrics
with a particular emphasis on the ranking positions of a
set of fundamental papers, called Milestone Letters. These
were chosen by the Physical Review Letters editors for their
“long-lived contributions to physics, either by announcing
significant discoveries, or by initiating new areas of research.”
Differently from the common static evaluation of bibliometric
indicators [34,54-56], the analysis presented in Ref. [53] takes
the temporal dimension into account and concerns the ability of
different metrics to single out the milestone papers as a function
of their age (the logic behind this is that a good ranking method
should be able to rank a milestone paper high short after it has
been published).

Here, we use the DCM to deepen that result and show
that the observed performance gap between network-based
indicators [PageRank p and time-rescaled PageRank R(p)]
and indicators based on citation count [citation count k™™ and
rescaled citation count R(k™)] disappears when we randomize
the network and thereby destroy the real network’s topological
patterns.

1. Identification of milestone papers in the Papers network

The ranking performance of a metric is measured by the
fraction of milestone papers that appear in the top 1% of
the ranking ¢ years after their publication (see Ref. [53] for
details); this quantity is referred to as the identification rate.
The identification rate achieved by the four considered metrics
in the Papers network is shown in Fig. 6(a) (this panel is iden-
tical with the result shown in Ref. [53]). The network-based
indicators [ p and R(p)] significantly outperform local metrics

[k™ and R(k'™)] in identifying the milestone papers. Thanks to
the suppression of PageRank’s time bias that generally favors
old papers, rescaled PageRank is superior to PageRank until
approximately 15 years after publication; from then on, the
two metrics perform similarly.

We now use the DCM to assess whether the same holds
in DCM-randomized networks. To this end, Fig. 6(b) shows
the identification rate difference between the real and DCM-
randomized networks. We see that the observed differences are
small for both R(k™™) and k™. This is a directed consequence of
the fact that the DCM preserves the citation time series of all the
papers. By contrast, p and R(p) perform substantially better
in the real network than in the DCM-randomized networks.
This implies that the dynamics of the paper citation count
alone cannot explain the superior performance of R(p) and
p in identifying the milestone papers [53].

2. Identification of awarded movies in the Movies network

Data on expert-based assessment of movie significance are
available as well and have been used, for instance, to assess
whether classification algorithms based on centrality metrics
can identify expert-selected movies of lasting importance [57].
We carry out the same identification rate analysis as before with
the movies that received at least five Oscar awards playing
the same “ground truth” role as we previously assigned to
the Milestone Letters. Figure 6(c) shows that the rescaled
metrics are again superior to the unrescaled ones short after the
movie release. However, the performance differences shown in
Fig. 6(c) are close to zero, which indicates that the four metrics
behave in the real network in almost the same way as they do
in the DCM-randomized networks. This suggests that in the
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Movies network, there is no gain in using the whole network
to compute node centrality.

To summarize, whether PageRank-related metrics outper-
form indegree-related metrics depends on topological prop-
erties of the network under consideration. In particular, if
the given network is uncorrelated, PageRank-related and
indegree-related metrics yield similar information and there
is thus no gain in assessing node importance using PageRank
which is furthermore computationally more demanding than
indegree. If instead the network exhibits nontrivial degree-
degree correlations, then indegree-PageRank correlation is
smaller than the expected value in an uncorrelated network,
and PageRank-related methods have the potential to produce
node rankings that are superior to those obtained with indegree-
related metrics.

IV. DISCUSSION

We have introduced here a network null model, called
dynamic configuration model, which preserves not only the
network’s degree sequence but also the degree time series of
individual nodes. In the same way as the configuration model
generates random networks with arbitrary degree sequence
[14], the dynamic configuration model produces random net-
works with arbitrary degree dynamics. The failure of the
configuration model in matching the real networks’ temporal
patterns undermines the effectiveness of its use as a model to
estimate the expected values of structural quantities in growing
networks. This has deep implications [58] for the problem of
community detection [11], for example, where the classical
modularity-optimization algorithm [12] uses the configuration
model to estimate the expected number of edges between pairs

of nodes [59]. Differently from the static configuration model,
the new model is able to accurately reproduce the original
network’s temporal patterns, thus providing an improved
baseline to assess the significance of observed properties of
growing networks. While we have focused on growing citation
networks here, an open challenge for future research is to
determine how best to randomize different kinds of networks
that exhibit temporal patterns (e.g., networks where nodes can
create outgoing edges at multiple times [35,60] and temporal
networks [25,28]).

We stress that in this work we used the dynamic configu-
ration model to numerically estimate the expected properties
of model networks based on the randomization procedure
introduced in Ref. [14]. By contrast, a stream of literature
[16,17,61] has focused on analytically computing the expected
properties of model networks. In particular, the maximum-
entropy approach by Squartini and Garlaschelli [17] allows one
to correctly estimate the connection probability between pairs
of nodes in the configuration model, which can be used in turn
to analytically compute expected network structural properties.
Extending analytical methods to the dynamic configuration
model is an important open direction for future research.

Among others, three additional extensions of our work are
possible. First, in a similar spirit as the dk-series introduced
in Ref. [19] generalizes the original configuration model, one
could try to construct time-respecting null models that preserve
not only the individual nodes’ time series but also the dynamics
of higher-order structural properties, such as degree-degree
correlations. Second, the proposed null model can be extended
to include deletion of edges in a similar spirit as the random
graph for temporal networks recently proposed in Ref. [62].
Third, a null model that reflects the network evolution better
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than existing null models can be used to improve community
detection in evolving networks. This will be addressed in a
forthcoming work [58].

Our results on the citation network of scientific papers can
be also viewed from another perspective. From its definition,
it follows that the DCM applied on citation data can be
interpreted as a model where scientists mindlessly follow the
current trends when choosing which paper to cite. The fact that
the real data exhibit structural properties substantially different
with respect to those found in the DCM-randomized networks
can be interpreted as an encouraging sign that the citing behav-
ior of scientists is to a considerable extent different from simply
picking the currently trending papers. This directly challenges
the existing growth models for academic citation networks that
assume simpler mechanisms of how to choose which papers
to cite [5,63]. Our findings call for more complex models
where more complicated and possibly also diversified citation
strategies exist in the system. It remains open whether to the
observed nontrivial patterns can be reproduced by a unipartite
network model—possibly an extension of the existing models
[5,63]—or if additional layers of complexity (such as the
behavior of authors, research groups, and institutions) will need
to be introduced in the modeling framework.
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APPENDIX A: THE DATA SETS

a. Papers. We denote as Papers the citation network com-
posed of E =4672812 directed edges between the N =
449,935 papers published in American Physical Society

10"k = NDCM
10°
10
107}
10°
10}
10°

d(preal’ pmodel)

journals between 1893 and 2009 [64]. Edges are time stamped
with the temporal resolution of one day.

b. Movies. We denote as Movies the citation network
composed of E = 42794 directed edges between N = 15425
that compose the giant component of the network of US movies
released between 1894 and 2011 [65]. Edges are time stamped
with the temporal resolution of one year.

APPENDIX B: NODE-BASED DYNAMIC
CONFIGURATION MODEL

We tested an alternative time-respecting null model, which
we refer here as node-based dynamic configuration model
(NDCM), based on the number of nodes instead of real time.
This means that we sorted the N nodes according to their
age, and we divided them into L layers composed of the same
number AN = N/L of nodes. The temporal duration of each
layer is therefore not constant as in the DCM, but it is given by
the difference between the publication times of the most recent
and the oldest nodes that belong to the layer. Similarly to the
DCM, within each layer n, each node i is endowed with Aklf’;‘

and Akli.?n out-going and in-coming stubs, respectively, where

Ak and Ak represent node variation of outdegree and
indégree, respeétively, within the time frame that corresponds
to layer n.

The results for the NDCM are qualitatively in agreement
with those obtained for the DCM. In particular,

(1) The accuracy of the model in matching the real net-
works’ temporal patterns improves with the number of layers
(see Fig. 7, left).

(2) The entropy of the model decreases with the number of
layers (see Fig. 7, right).

However, with respect to the DCM, the NDCM requires a
larger number of layers to achieve the same accuracy as the
DCM (Fig. 8). For example, to achieve the same accuracy
achieved by the DCM with Lpcy = 100 [d(Ppems Preal) =
0.0335 for Papers], we need a NDCM model with many
more layers (Lnpem = 8000) and much smaller entropy
[S(Pnpem) = 12.09 as opposed to S(Ppem) = 646.03].

The larger entropy of the DCM implies that with respect to
the NDCM, the DCM is able to explore a larger ensemble of
networks compatible with the given temporal constraints. For

1 04 F ——NDCM

FIG. 7. (a) Distance d(Prear, Pmodel) between the time-lag distribution in the real and model-generated data for Papers for both the DCM
and the NDCM. (b) Entropy S[Eode1] of the model as a function of the number of temporal layers L (L = 1 corresponds to the configuration

model) for Papers for both the DCM and the NDCM.
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FIG. 8. Relation between distance and entropy for the DCM and the NDCM for (a) Papers and (b) Movies.

this reason, we prefer to randomize the networks with he DCM
in the main text.

APPENDIX C: RESULTS AS A FUNCTION
OF THE NUMBER OF LAYERS

In the main text, we have studied how changing the number
L of layers affects the properties of the DCM-generated
networks. In particular, increasing L improves the DCM’s
accuracy in reproducing real networks’ temporal patterns but,
at the same time, increases the number of constraints on
the randomized networks and, as a result, leads to a smaller
ensemble of random networks and to a lower model entropy.

In the main text, we set L = 100 which produces random
networks that exhibit temporal patterns in good agreement with
the real patterns (Fig. 2) and, at the same time, has entropy
significantly larger than zero (Fig. 3). In this Appendix, we
show that the conclusions drawn with the DCM with L = 100
are robust with respect to other choices of L.

Figure 9 shows the assortativity plots for Papers for different
values of L. We only consider values of L larger than 100,
i.e., values for which the randomized networks’ temporal
patterns match the real pattern better than with L = 100. The
figure shows that the assortativity plots are little sensitive to

the choice of L. Figure 10 shows the z-score values for the
metrics’ correlations for different L values. With respect to the
values chosen in the main text, the z-score values are different
yet much larger than one in modulus. This confirms that the
significance of the observed correlations are also detected by
the DCM with different choices of L (L = 1000,10 000).

APPENDIX D: NETWORK CENTRALITY METRICS

a. Indegree. The indegree of a given node is defined as the
number of incoming edges received by that node. In terms
of the network’s adjacency matrix A (in a directed network,
Ay =1if ‘node J points to node i, A;; =0 otherwise),‘ the
indegree k;" of a node can be simply expressed as k"
Z j A,’ -

b. PageRank. The PageRank vector of scores p is defined
by the following equation:

p=cPp+{1—oa)yv, (D1
where P;; = A;;/ k" and v is a uniform teleportation vector
(v; = 1/N for all nodes i). We set here @« = 0.5 which is the
usual choice in citation networks [66]. Equation (D1) can be
interpreted as the stationary equation of a stochastic process
on the network where a random walker either follows the

600
(b)
500 On
400 8 oo o
L=1000

A.E’ Ag 300 O L=10000 a

.;x% Ex%

Vv Vv

10° 10" 10° 10° 10*
kin

FIG. 9. Relation between node indegree k™ and the average indegree (k"

and the average indegree (ki'i’led

data (with different values of L), respectively.

citing) Of citing nodes (left) and relation between node indegree kin

) of cited nodes (right) for Papers. Square and circle symbols represent the real data and the DCM-generated
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-200 [(a) Pearson

-150

-100

Z_score

-50

100 1000
L

10000

-200 - [

(b) Kendall's Tau .
B< (R(p) RK"))

100 1000

10000

FIG. 10. Results for Papers obtained with the DCM with different values of L. (a) z scores for the Pearson’s correlations r between the
various metrics and (b) z scores for the Kendall T values between the various metrics.

network’s edges with probability « or he jumps to a randomly
chosen node with probability 1 — «.

c. Rescaled indegree and rescaled PageRank. Rescaled
indegree R(k'") and rescaled PageRank R(p) aim to suppress
the temporal bias of indegree and PageRank, respectively
[53,67]. For both metrics, each node’s structural centrality
score is only compared with the scores of nodes of similar age.
Node i’s rescaled indegree score R; (k™) quantifies the number
of standard deviations node i outperforms with respect to nodes
of similar age with respect to k™. In formulas,

K — (k)

Ri(km) = O_,(kin)

; (D2)
where 1;(k™) and o;(k™) represent mean value and standard

deviation, respectively, of the indegree of the nodes j € [i —
Ar/2,i + Ar/2]. Analogously, the rescaled PageRank score

R;(p) of node i is defined as [53]

Ri(p) = D), (D3)
oi(p)
where w;(p) and o;(p) represent mean value and standard
deviation, respectively, of the indegree of the nodes j € [i —
Ap/2i + A, /21
For Papers, we set A, = A, = 1000 [53]. For Movies, we
set A, = A, = 500. A potential issue for Movies is that we
do not know the exact order of movies released in the same
year due to the time resolution of the data. For this reason, we
randomize the order of movies published in the same year
in order to assign the temporal window. We observed that
our findings do not depend on the particular order of movies
released in the same year; for simplicity, the results presented
in this article refer to one particular realization of the order of
movies released in the same year.
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