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Mean-field approach for frequency synchronization in complex networks of two oscillator types
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Oscillator networks with an asymmetric bipolar distribution of natural frequencies are useful representations
of power grids. We propose a mean-field model that captures the onset, form, and linear stability of frequency
synchronization in such oscillator networks. The model takes into account a broad class of heterogeneous
connection structures and identifies a functional form as well as basic properties that synchronized regimes possess
classwide. The framework also captures synchronized regimes with large phase differences that commonly appear
just above the critical threshold. Additionally, the accuracy of mean-field assumptions can be gauged internally
through two model quantities. With our framework, the impact of local grid structure on frequency synchronization
can be systematically explored.
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I. INTRODUCTION

Synchronization is a frequent phenomenon in nature, ap-
pearing in biological, ecological, sociological, and engineering
contexts (see [1–5] for surveys). These systems can be consid-
ered networks of coupled phase oscillators and are described
by the paradigmatic Kuramoto model [6] or its extensions.
In this setting, the phase θj of oscillator j is driven both by
its natural frequency ωj and by the phase difference with
connected oscillators that couple with uniform strength λ.
The connection structure is encoded in the adjacency matrix
with entries Ajn = 1 if oscillators j and n are connected and
Ajn = 0 otherwise. The actual frequency of oscillator j in a
network of N oscillators is then given by

θ̇j = ωj + λ

N∑
n=1

Ajn sin (θn − θj ). (1)

Due to the symmetric coupling, the system frequency∑N
j=1 θ̇j /N = ∑N

j=1 ωj/N is constant. In literature, natural

frequencies are commonly shifted to fulfill
∑N

j=1 ωj = 0
without loss of generality, entering a reference frame that
co-rotates with the system frequency. Moreover, one usually
assumes that the network is connected, i.e., that along network
links each oscillator can be reached from any other.

If all natural frequencies are finite and the coupling strength
surpasses a critical threshold λ∗, all oscillator frequencies
eventually attain the same value—this ordered regime is called
frequency synchronization [3,7,8]. In the co-rotating reference
frame, it is described by stable steady states of Eq. (1) where all
oscillator phases are “locked” but in general of different value.
Each steady state belongs to a continuum of fixed points that
differ only by an arbitrary uniform rotation of all oscillator
phases. The onset and form of frequency synchronization is
characterized by the critical threshold and the values of locked
phases, respectively, both of which depend on Ajn (the network
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topology) and the set {ωj } of natural frequencies. There are
other synchronization regimes that have been extensively ex-
plored, most notably a partial synchronization stage at weaker
coupling strengths where oscillator frequencies are not con-
stant and equal, but fluctuating and only positively correlated
(see, for instance, [7–9]). Yet frequency synchronization is the
regime of interest in many realistic settings where sparsely
coupled oscillators have nonidentical natural frequencies [3].

As an example, frequency synchronization is paramount to
stable operations of power grids, i.e., networks that transmit
and distribute electrical power [10]. These grids predominantly
operate on alternating currents and can be considered networks
of coupled rotating machines, with phase angle differences
between connected machines determining the power flow
between them [3,11,12]. Practically, grid operators only allow
for very small deviations of machine frequencies from the
prescribed grid frequency (which is typically either 50 or 60
Hz), as well as for only minor phase differences of connected
oscillators in synchronized regimes. This guarantees efficient
machine operations and a stable power flow as, otherwise,
rotating machines can be damaged, transmission lines can
trip, and cascading failures can be triggered [10]. Knowing a
grid’s phase-locked solutions yields its stationary power flow;
this helps identify vulnerable transmission lines along which
the power flow may exceed critical limits (see also [13]),
preventing line tripping and mitigating the risk of cascading
failures [10]. This enables a robust grid design and a cost-
effective modification of power grids [14]. While voltage
instabilities have been taken into account by some models
[15], one can assume constant voltages in high-voltage grids
[11,12]. In the vicinity of the synchronized regime, the ac
power flow can then be modeled with second-order Kuramoto-
type equations [11,12], with steady states and their linear
stability still captured by the original Eq. (1) [16,17]. Here, we
want to investigate the impact of grid topology on frequency
synchronization in Eq. (1), in particular on the form of locked
oscillator phases. To this end, it is legitimate to simplify
machine dynamics and assume that, in the grid, all generators
inject the same power and all consumers draw the same
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power, respectively. This is reflected by a bipolar distribution
of natural frequencies, partitioning the oscillator ensemble
into generators with a single positive natural frequency and
consumers with a single negative natural frequency [13,18,19].

For many collective processes, the influence of their topo-
logical background on system dynamics has been thoroughly
investigated [20], including the aforementioned partial syn-
chronization regime for coupled oscillators [1–3,5]. Yet in
the case of frequency synchronization in oscillator networks,
results on the effect of network structure are few and mostly
concern the critical threshold [16,18,19,21,22]. Concerning
another crucial characteristic of synchronized regimes—an
analytic expression for locked phases—we find two recent
contributions to be the most relevant. In [23], locked phases
are approximately calculated for a fully connected network
with arbitrary distributions of natural frequencies. However,
synchronized regimes just above critical thresholds are not
captured for which locked phase differences exceed π/2. In
the collective-coordinate approach of [24], a functional form of
locked phases is imposed through an educated guess, reducing
the complexity of Eq. (1). This allows for analytically tractable
approximate evolution equations for the system whose steady
state fully determines locked phases (see [14] for further appli-
cations). This approach can accommodate different coupling
structures, yet requires the functional form of locked phases
to be known a priori. To the best of our knowledge, there
exists no analytic approach to date that, for power-grid-like
oscillator networks, yields locked phases other than for quite
restrictive assumptions on graph topology, correlations in
natural frequencies, or the form of locked phases.

Here, we want to fill this gap with an analytic framework that
allows one to systematically explore the influence of topology
on frequency synchronization in power-grid-like oscillator
networks. To characterize connection structures, we consider
two simple local measures: an oscillator’s neighborhood size
(its degree) and its neighborhood composition with respect to
natural frequencies. This enables us to describe locked phases
for the broad class of configuration models: these are networks
with an arbitrary imposed degree distribution, i.e., a probability
distribution of oscillator degrees, while otherwise featuring
random connections. We focus on the configuration model as it
is usually taken as the starting point for investigating the effect
of network heterogeneity on collective dynamics [9,20,25].
For the locked phases in this broad class of grid topologies,
we determine the linear stability as well as identify a shared
functional form and universal monotonic behavior. Note that
a degree distribution does not uniquely define a network, but
rather a network ensemble comprised of all adjacency matrices
whose row sums obey the given distribution. Consequently, our
approach makes statements about network ensembles, predict-
ing that all members of a given ensemble behave similarly.
This contrasts with the focus on single network realizations
taken in previous literature on frequency synchronization. In
addition to departing from the regular-lattice assumption in
[18] and the fully connected setup in [23], we also differ
from these contributions by allowing for phase differences to
exceed π/2 at weakly supercritical coupling. Furthermore, we
generalize [18] through allowing for an asymmetric bipolar
distribution of randomly assigned natural frequencies. This
is a more realistic setting to investigate stable operations of

power grids and can be easily extended to include correlations
in natural frequencies.

Our working hypothesis is that, in correlation-free networks
described by the configuration model, an oscillator’s locked
phase is shaped by its neighborhood (along with its own
natural frequency). This hypothesis is formalized in Sec. II
through a mean-field ansatz inspired by [9] and resembling the
active-neighborhood approach previously used in the context
of disease spreading [25]. In the central Sec. III, we use the
ansatz to obtain a parametrized description of the effect of
connection structure on frequency synchronization in oscillator
networks. In Sec. IV, we present a simple self-consistent
calculation of the respective parameter. We assess results in
Sec. V for regular random graphs where links are randomly
distributed under the constraint that all oscillators have the
same degree, and for random graphs without aforementioned
constraint. We summarize and give an outlook in Sec. VI, while
technical details can be found in the Appendixes.

II. MEAN-FIELD EQUATIONS

In this section, we lay out the principal assumptions and
practices used in the rest of this work. To model synchroniza-
tion in power grids, we assume, for g ∈ (0,1/2], an integer
number gN of generators with ωj = 1 and j ∈ [1,gN ], as
well as an integer number (1 − g)N of consumers with ωj =
−g/(1 − g) and j ∈ [gN + 1,N ]. It follows that the system
frequency in Eq. (1) is zero, and steady states are identified
with frequency synchronization in the system. Moreover, we
account for the observation that real-world power grids usually
contain more consumers than generators. It is easy to check that
the chosen natural frequencies and range of g capture all steady
states of Eq. (1) and their linear stability. In the following, we
mainly choose g = 0.3 in numerical investigations, as this is
a realistic choice for the fraction of generators in power grids
[12]; yet theoretical considerations hold for all g. Furthermore,
all oscillator phases are confined to [0,2π ), and all quantities
pertaining to generators and consumers have subscripts “G”
and “C,” respectively. In the spirit of [9], Eq. (1) can then be
rewritten as

θ̇j = ωj + λ[rjG sin (�jG − θj ) + rjC sin (�jC − θj )] (2)

with rjGei�jG ≡ ∑gN

n=1 Ajne
iθn and rjCei�jC ≡∑N

n=gN+1 Ajne
iθn , multiplying both sides with e−iθj in

each case before equating the imaginary parts [6]. Hence the
sum in Eq. (1) is split into two simple terms quantifying the
coupling of oscillator j to the group of adjacent generators and
consumers, respectively. This comes at the cost of introducing
four new variables per oscillator: one coupling amplitude rjY

and one neighborhood phase �jY for each neighborhood type
Y ∈ {G,C}. Thus, in order to proceed analytically, we make
the following four simplifying assumptions:

Assumption (a1). We assume that the neighborhood phases
�jG and �jC of any oscillator j only depend on j ’s natural
frequency. This presupposes that the pull of j ’s phase on
neighboring oscillators’ phases is either (1) negligible, i.e.,
for sufficiently large neighborhoods, or (2) dominated by ωj ,
implying that θj is largely determined by ωj . Hence, for
generators, we introduce �G, the mean phase of neighboring
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FIG. 1. Accuracy of mean-field assumptions for numerical in-
tegration of Eq. (1) on regular random graphs just above and well
above critical threshold. Phase-locked generator neighborhoods xj

with degree (a, c) k = 4 and (b, d) k = 10. (a, b) For λ � λ∗[λ �
λ∗], red squares [orange right triangles] depict averaged �∗

jG(xj ) ≡
�∗

jG(k,xj ), blue diamonds [green left triangles] represent averaged
�∗

jC(xj ) ≡ �∗
jC(k,xj ), red (upper) [orange (middle)] dashed lines

yield the mean �∗
G, and blue (lower) [green (lower)] dashed lines

indicate the mean �∗
C ≡ 0. (c, d) For λ � λ∗[λ � λ∗], red squares

[orange right triangles] depict averaged r∗
G(xj ) ≡ r∗

G(k,xj ) ≡ r∗
jG/xj ,

blue diamonds [green left triangles] represent averaged r∗
C(xj ) ≡

r∗
C(k,xj ) ≡ r∗

jC/(k − xj ), and the dashed black line corresponds to
perfect neighborhood phase coherence of 1. Averages from one net-
work realization with N = 106, g = 0.3, and all oscillators sampled.
Error bars give data-point range between 16th and 84th percentile of
respective distribution. (a) λ = 0.75 and (c) λ = 2 (λ∗ ≈ 0.69). (b)
λ = 0.2 and (d) λ = 1 (λ∗ ≈ 0.17). All phases given in radians.

generators, and �C , the mean phase of neighboring consumers
[Figs. 1(a) and 1(b)]. In the same spirit, for consumers, we
introduce �̂G as the mean phase of their neighborhood of
generators and �̂C as the mean phase of their neighborhood of
consumers.

Assumption (a2). For generator j , we approximate the
coupling amplitudes rjG and rjC as rjG = rGxj and rjC =
rC(kj − xj ), where xj and kj are the number of generators
and the total number of neighbors of j , respectively. This
approximation supposes that there is a global mean field that
faithfully reflects oscillator dynamics, and that an oscillator’s
coupling to it is proportional to the oscillator’s local connec-
tivity [9]. For well-connected, homogeneous graphs, this is the
case [5,9] [Figs. 1(c) and 1(d)]. The proportionality factors rG

and rC can be understood as the mean phase coherences of the
generator and consumer portion of generator neighborhoods,
respectively. Analogously, r̂G and r̂C can be defined, describing
mean phase coherences in the two neighborhood types of
consumers.

To compute, for instance, rG and �G, first con-
sider that with assumptions (a1) and (a2), rGei�G =∑gN

j=1 rjGei�jG/
∑gN

j=1 xj . Hence, rG not only estimates the
phase coherence of generator neighbors of a single given
generator but also measures the coherence of generator neigh-

borhood phases �jG across the whole generator ensemble. It
therefore assesses the validity of assumption (a1), and does so
the more accurately the better assumptions (a1) and (a2) are
fulfilled. With

∑gN

j=1 Ajne
iθn = xne

iθn , it follows that rGei�G =∑gN

j=1 xj e
iθj /

∑gN

j=1 xj . Evidently rG ∈ [0,1] without loss of
generality, so that a value of rG close to 1 indicates the goodness
of assumptions (a1) and (a2), as exploited further below in
assumption (a3). Similar expressions hold for rCei�C , r̂Gei�̂G ,
and r̂Cei�̂C , so that the coupling in Eq. (2) of an oscillator j to
the mean field just depends on kj , xj , and ωj . Consequently,
all oscillators with the same natural frequency and neighbor-
hood can be considered equivalent and described by a phase
θY (kj ,xj ) with Y ∈ {G,C} [cf. Figs. 3(c)–3(f) and Figs. 4(c)
and 4(d)]. This is reminiscent of the active-neighborhood
approach presented in [25] in the context of disease spreading,
which captures configuration-model topologies characterized
by the degree distribution P (k) and its first moment 〈k〉.
As frequency synchronization in a network presupposes the
network to be connected, we set P (0) = 0 in the following.
Assuming random mixing of natural frequencies, generators
and consumers follow the same binomial distribution in x

and the same distribution P (k) in k. Hence, with wg(k,x) ≡
P (k)x

(
k

x

)
gx(1 − g)k−x and Y ∈ {G,C}, one obtains

rY ei�Y =
∞∑

k=1

k∑
x=0

wg(k,x)

g〈k〉 eiθY (k,x), (3)

r̂Y ei�̂Y =
∞∑

k=1

k∑
x=0

w1−g(k,k − x)

(1 − g)〈k〉 eiθY (k,x). (4)

In Eqs. (3) and (4), the time-dependent mean-field—initially
defined through averaging over rjY ei�jY , i.e., over oscillator
neighborhoods—is expressed through weighted averages over
eiθY (k,x), i.e., over oscillators. Note that, in these weighted
averages, oscillator classes contribute proportionally to their
abundance and to the size of their relevant neighborhood
type. This is in contrast to the classical definition of phase
coherences that does not include neighborhood sizes in the
weighting [6]. In the following, one can fix the value of
each mean neighborhood phase coherence through a third
assumption:

Assumption (a3). We set rY = 1 and r̂Y = 1, Y ∈ {G,C}.
As laid out above, this is consequential if one is convinced of
the goodness of assumptions (a1) and (a2). More support for
this assumption is given by the fact that the phase coherence
of oscillators in a shared neighborhood is generally larger than
that of oscillators of the same type, but randomly picked in
the network, since common neighbors are at most two links
apart. As an increased intra-neighborhood phase coherence
yields an increased inter-neighborhood phase coherence as
quantified by rY and r̂Y , assumption (a3) follows [Figs. 1(c)
and 1(d)].

With assumptions (a1)–(a3), Eq. (2) can be written as

θ̇G(k,x) = 1 + λx sin [�G − θG(k,x)]

+ λ(k − x) sin [�C − θG(k,x)], (5)
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θ̇C(k,x) = −g(1 − g)−1 + λx sin [�̂G − θC(k,x)]

+ λ(k − x) sin [�̂C − θC(k,x)]. (6)

Note that all information about network topology and fre-
quency mixing is contained in Eqs. (3) and (4) that define the
mean field, while the evolution Eqs. (5) and (6) for oscillator
phases are unaffected otherwise. The latter’s synchronized
solutions rotate with frequency

ωS = −λ〈k〉g(1 − g)(r̂G − rC) sin (�̂G − �C), (7)

whose absolute value is a model-intrinsic measure of the
quality of approximation (a3) (Appendix A). The rotation can
be neglected through the follow-up assumption:

Assumption (a4). The form and linear stability of synchro-
nized solutions of Eqs. (3)–(6) is similar to the form and linear
stability of the steady states of Eqs. (3)–(6) with an arbitrarily
chosen fixed phase.

In the following sections, these steady-state solutions of
Eqs. (3)–(6) [with assumption (a4)] will be investigated and
compared to the full system in Eq. (1), with stationary variables
marked with a “*”-superscript. In all cases, numerical integra-
tion of Eq. (1) towards the phase-locked state is performed
with the Heun scheme and step size 10−2 until time t =
103 on connected networks, where sufficiently large network
sizes are used to minimize correlations present in finite-size
realizations of configuration models. To accurately model
finite-size networks of size N , all oscillator classes (k,x)
with an expected oscillator number smaller than 1 should
be disregarded in Eqs. (3) and (4), i.e., all classes (k,x) for
which gNP (k)wg(k,x)/x < 1 in generator dynamics and for
which (1 − g)NP (k)wg(k,x)/x < 1 in consumer dynamics.
As g � 1/2, this necessitates a lower cutoff degree km � 1
and an upper cutoff degree kM at which gNP (k) < 1 for all
k < km and k > kM , respectively. Thus, in the following, all
sums over k remain finite for finite network sizes, and P (k) is
rescaled to fulfill

∑kM

k=km
P (k) = 1.

The validity of assumptions (a1)–(a3) for Eq. (1) is then
illustrated in Figs. 1(a)–1(d). There, we show generator neigh-
borhoods in phase-locked states of regular random graphs.
This is to specifically analyze how the mean field copes with
heterogeneity in the neighborhood composition of oscillators.
As expected, assumptions (a1)–(a3) become more accurate for
larger degrees and coupling strengths. This is corroborated
both by increasingly accurate averages and by decreasing
variances for each oscillator class. Note that assumptions
(a1)–(a3) already hold slightly above the respective critical
threshold (red squares and blue diamonds), but also in Figs. 1(a)
and 1(b) there is the slight dependence of mean neighborhood
phases on the neighborhood composition. The latter implies a
dependence of an oscillator’s phase on its neighborhood type
x that is investigated further below [cf. Figs. 3(c)–3(f) and
Figs. 4(a) and 4(b)]. Similar observations hold for consumer
neighborhoods, thus additionally confirming assumption (a4)
via Eq. (7) (not shown). Furthermore, numerical integration

confirms very similar critical thresholds and values of locked
phase differences for Eqs. (3)–(6) with and without assumption
(a4) (not shown). Thus with assumption (a4), one can ap-
proximate synchronized solutions of the mean-field Eqs. (3)–
(6) with its steady-state solutions for slightly altered natural
frequencies. This makes the system amenable to analytic
treatment, as laid out in the following section.

III. PARAMETRIZED LOCKED GENERATOR PHASES

In the following, we analytically identify characteristics
that hold for synchronized regimes on all configuration-model
topologies. As a consequence of assumptions (a1)–(a3), the
Kuramoto model in Eq. (1) is well approximated by two sets
of neighborhood-class Eqs. (3)–(6)—one set for each oscillator
type. These two sets can be disentangled through assumption
(a4) and an appropriate choice of coordinates: with �C ≡ 0,
� ≡ �G, and θ�(k,x) ≡ θG(k,x), Eqs. (3) and (5) become

θ̇�(k,x) = 1 − λ{x sin [θ�(k,x) − �]

+ (k − x) sin [θ�(k,x)]}, (8)

� = arg

⎡
⎣ kM∑

k=km

k∑
x=0

wg(k,x)eiθ� (k,x)

⎤
⎦. (9)

Consequently, generator phases are just coupled to a sin-
gle mean-field variable �. This system coevolves self-
containedly and is analyzed in the following; consumer dynam-
ics can be decoupled and dealt with analogously (see further
below).

A necessary condition for global phase locking is that all
generator classes (k,x) phase-lock, which is surely the case if
fixed points of Eqs. (8) and (9) are linearly stable for all (k,x).
The complexity of this task can be reduced by first considering
� a constant parameter in Eq. (8) that is self-consistently
computed via Eq. (9). This decouples the dynamics of each
generator class not just from consumers, but also from other
generator classes. The above phase-locking condition then
translates into searching for values of � which (1) yield a
linearly stable fixed point in Eq. (8) for all (k,x), (2) fulfill
Eq. (9), and (3) yield a linearly stable fixed point in coevolving
Eqs. (8) and (9). The solution to the generator phase-locking
problem can thus be divided into three parts: describing the
steady state of Eq. (8) parametrized by a fixed � (Appendix B)
while characterizing some of its general properties (Appendix
D), self-consistently computing � with Eq. (9) (Appendix C),
with discarding unstable solutions (Appendixes B and C) along
the way.

Setting � constant without specifying its value, vital prop-
erties of locked generator phases can already be analytically
derived. Appendix B identifies and discards linearly unstable
phase-locked states in Eq. (8), and calculates the closed-form
expressions for linearly stable locked generator phases as

sin
[
θ∗
�(k,x)

] = λ−1[k − (1 − cos �)x] + x sin �
√

k2 − 2x(k − x)(1 − cos �) − λ−2

k2 − 2x(k − x)(1 − cos �)
, (10)
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cos [θ∗
�(k,x)] = sin [θ∗

�(k,x)][k − x(1 − cos �)] − λ−1

x sin �
, (11)

with cos [θ∗
�(k,0)] =

√
1 − (λk)−2. Appendix C simplifies the self-consistent computation of � in Eq. (9) to

0 =
kM∑

k=km

k∑
x=0

wg(k,x) sin [θ∗
−�(k,k − x)] ≡ FG(�) (12)

with

� ∈
⎧⎨
⎩

[
0, arccos

(
2[λkm]−2−1

)]
[
0, arccos

(
max

{
−1,2(λkm)−2−1−2 1−(λkm)−2

k2
m−1

})]
,

(13)

in case the smallest realized generator degree km in the network
is even or odd valued, respectively, and � ∈ (0,π ) for odd-
valued km being reasonably asserted. Appendix D identifies
universal monotonic behavior of locked phases; it shows that,
on the above interval,

θ∗
�(k,x + 1) � θ∗

�(k,x) (14)

and

θ∗
�(k′,k′x/k) � θ∗

�(k,x) (15)

for integer k′ > k and k′x/k as well as

θ∗
�(k,x) ∈ [arcsin (λk)−1,� + arcsin (λk)−1] (16)

for stable locked generator phases, regardless of chosen de-
gree distribution P (k). Last, the ensemble phase spread—the
maximum difference between two locked generator phases—is
shown to be exactly �, so that its upper bound is trivially given
by Eq. (13). This upper bound becomes the tighter the closer
the coupling strength is to the critical threshold. This is because
computed self-consistent stable steady-state � in Eq. (12) are
the closer to the upper bound of the search interval in Eq. (13)
the smaller the coupling strength [Figs. 2(b)–2(d)]. Equations
(10) and (11) and Eqs. (14) and (15) are the central result of
this work and are predicted to hold on any configuration-model
topology, provided that assumptions (a1)–(a4) are met.

IV. DETERMINING PARAMETER AND LOCKED
CONSUMER PHASES

Here we self-consistently determine the stable steady-state
� that parametrize derived expressions, and show how locked
consumer phases are obtained from the synchronized generator
ensemble. To this end, decoupled generator dynamics with a
coevolving mean-field � are captured in two steps: First, the
parameter � is self-consistently computed through Eq. (12) on
the interval given by Eq. (13). Second, a linear stability analysis
of coevolving Eqs. (8) and (9) is performed at the fixed points
given by self-consistent � and the locked generator phases
they parametrize in Eqs. (10) and (11) (cf. Appendix C).

To illustrate the procedure, we choose in Figs. 2(a)–2(d)
a regular random graph as the network topology. There,
self-consistent values of �—the roots of FG(�) (thick solid

red line)—are computed. For sufficiently small λ, no self-
consistent solution for � exists [Fig. 2(a)]; there are no phase-
locked generators. At λ ≡ λ∗

G, two solutions arise [Figs. 2(b)
and 2(c)]. The larger-valued solution is computed to be linearly
unstable and discarded. It disappears for sufficiently large λ

to leave only one (small-angle) solution for � that is always
linearly stable [Fig. 2(d)]. Consequently, λ∗

G is the critical
coupling strength in the decoupled generator ensemble, and
generator phases can be stably locked in only one configura-
tion. With �∗

G ≡ � in the unique stable locked regime at hand,
�̂∗

G—the steady-state mean phase of generator neighbors of a
consumer—is obtained by inserting Eqs. (10) and (11) into
Eq. (4) [thin solid red line in Figs. 2(b)–2(d)]. Consequently,
analyzing the decoupled generator dynamics in coevolving
Eqs. (8) and (9) delivers three things: first, the generators’ criti-
cal threshold λ∗

G; second, the generators’ linearly stable locked
phases θ∗

G(k,x); and third, the steady-state mean neighborhood
phases �∗

G and �̂∗
G. All phases are given in coordinates in

which generator natural frequencies are positive and �C ≡ 0,
the latter as imposed in Eqs. (3)–(6) to decouple the two
oscillator ensembles and obtain generator Eqs. (8) and (9).
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FIG. 2. Self-consistent computation of � in regular random graph
with k = 10 and g = 0.3. FG(�) [Eq. (12), thick solid red line]
and FC(�) [Eq. (17), thick dashed blue line] for different coupling
strengths. Intersections with solid black line yield self-consistent �∗

G

and ψ̂∗
C , respectively. Thin solid red (thin dashed blue) lines give

values for steady-state �̂∗
G (ψ∗

C) at linearly stable solution for �∗
G

(ψ̂∗
C). Note that usually �∗

G �= �̂∗
G and ψ∗

C �= ψ̂∗
C , and that FG(�) as

well as FC(�) are restricted to intervals in Eq. (13) and consumer
counterparts. (a) λ = 0.12, (b) λ = λ∗

G ≈ 0.156, (c) λ = 0.16, and
(d) λ = 0.2. All phases given in radians.
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Consumer dynamics can be described in the same self-
contained manner by setting �̂G ≡ 0 and �̂C ≡ −� in Eqs. (4)
and (6). This is possible because the asymmetry of the
two oscillator ensembles only lies in g < 1/2 and in the
resulting differing absolute value of their natural frequencies.
Thus substituting λ → λ(1 − g)/g in Eqs. (10) and (11) and
Eqs. (13)–(16) yields the respective quantities for the consumer
ensemble if x is now considered the number of consumer
neighbors. With this change of parameters and indices, all
considerations in Appendixes B–D also apply to the decoupled
consumer ensemble. The change in neighborhood indexing
moreover leads to

FC(�) ≡
kM∑

k=km

k∑
x=0

w1−g(k,x) sin [θ∗
−�(k,k − x)] (17)

[with λ → λ(1 − g)/g in sin [θ∗
−�(k,x)]; cf. Eq. (10)] for

the function whose roots yield the self-consistent mean-field
� for the consumer ensemble. Numerically, one finds for
the consumer ensemble in the regular random graph that
λ∗

C < λ∗
G for all considered g < 1/2 and k [see thick dashed

blue line in Figs. 2(a)–2(d)], so that the critical threshold of
the full system is given by λ∗ = λ∗

G. This can be qualitatively
understood by considering that the lower bound on the critical
threshold for generators is larger than that for consumers
by a factor of (1 − g)/g [cf. Eq. (B4)]. Upon computation
of the self-consistent stable � ≡ ψ̂∗

C—the steady-state mean
phase of consumer neighbors of consumers—all consumer
phases are given in a reference frame in which their mean
generator-neighborhood phase ψ̂G is zero and their natural
frequency is of positive value. For the stable steady state,
the locked phases �∗

C(k,x) and ψ∗
C [thin dashed blue line in

Figs. 2(b)–2(d) for a regular random graph] are then computed
analogously to the generator ensemble.

To relate locked generator phases [θ∗
G(k,x),�∗

G,�∗
C,�̂∗

G]
and locked consumer phases [�∗

C(k,x),ψ̂∗
G,ψ̂∗

C,ψ∗
C], one

should express them in common coordinates. This can be
done by (1) substituting x → k − x in �∗

C(x), (2) changing
the sign of all consumer phases, and (3) additionally rotating
all consumer phases by an angle ρ so that −ψ̂∗

G + ρ = �̂∗
G and

−ψ∗
C + ρ = �∗

C . Step 1 expresses consumer classes based on
generator neighbors, while step 2 accounts for the differing
signs of the two natural frequencies. Note also that steps 1 and
2 leave Eq. (14) valid for the locked consumer phases θ∗

C(k,x)
in generator coordinates, whereas Eq. (15) becomes

θ∗
C(k′,k′x/k) � θ∗

C(k,x) (18)

for k′ > k and integer k′x/k. Finally, step 3 relates the two
sets of locked phases by demanding that computing the same
phase differently should yield (approximately) the same result.
As a result, the rotation angle is overdetermined as ρ = ψ∗

C and
ρ = �̂∗

G, and the extent to which both equations yield similar ρ

gives a measure of the quality of approximations (a1)–(a4) that
led to Eqs. (8) and (9). Figures 2(b)–2(d) show a good match
already for weak supercritical coupling strengths in the case
of the regular random graph, complementing Figs. 1(a)–1(d)
in supporting the validity of our mean-field assumptions for
this grid architecture. With the absence of bistability in both
decoupled oscillator ensembles, one can also exclude for that
type of regular random graphs the existence of bistable phase-
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FIG. 3. Comparison of phase-locked states in mean-field ap-
proach and numerical integration of Eq. (1) on regular random graphs
with (a, c, e) k = 4 and (b, d, f) k = 10. Symbols: averages from
full system in Eq. (1). Solid lines: predictions from Eqs. (10)–(12)
and consumer counterparts. Dashed lines: predictions from Eqs. (2)
with only assumptions (a1) and (a2). Dotted lines: predictions from
naive mean field. Error bars give data-point range between 16th and
84th percentile of respective distribution. (a, b) Critical thresholds
for different g. Data averaged over 103 network realizations with 104

oscillators each. (c–f) Locked phases θ∗
Y (x) ≡ θ∗

Y (k,x) of generators
[red (upper) lines and symbols] and consumers [blue (lower) lines
and symbols] for g = 0.3 and �∗

C ≡ 0. Dashed lines coincide with
solid lines. Data from one network realization with 106 oscillators,
all sampled. (c) λ = 0.75, (d) λ = 0.2, (e) λ = 1.5, and (f) λ = 0.4.
All phases given in radians.

locked regimes in the full mean-field description of coupled
generator and consumer dynamics.

V. COMPARISON WITH FULL SYSTEM

With the mean-field framework fully laid out, we now com-
pute critical thresholds and locked phases through Eqs. (10)–
(12) and their consumer counterparts. This is in turn compared
with numerical integration of the full system in Eq. (1).
To illustrate the role of neighborhood composition in phase
locking, we first choose again regular random graphs [sparse
graphs in Figs. 3(a), 3(c), and 3(e), and denser graphs in
Figs. 3(b), 3(d), and 3(f)]. As in Figs. 1(a)–1(d), we imme-
diately notice decreasing intra-class variances for increasing
graph connectivity and coupling strength. This confirms that
our nearest-neighbor approach works best for well-connected
graphs where longer-range correlations cause little variability
of locked phases within the same oscillator class.

For the computation of the critical thresholds in Figs. 3(a)
and 3(b), we demand that

∑N
j=1 θ̇2

j /N � 10−12 after t = 103

for the network to be considered in a frequency-synchronized
state. One observes that the closer g is to 1/2, the larger is
the critical threshold. This is plausible, as then the difference
in natural frequencies to bridge for synchronization increases,
while the phase pull of the weaker generator ensemble also
increases due to the ensemble’s increasing size. Our framework
(i) systematically underestimates λ∗; deviations grow with (ii)
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decreasing k and (iii) increasing g. The reason for (i) is that our
ansatz only distinguishes oscillators based on their natural fre-
quency and neighborhood type, yielding a mean-field descrip-
tion for the phase locking of each oscillator class. Yet the onset
of frequency synchronization in real networks presupposes that
also outlier oscillators phase-lock—oscillators whose network
embedding (i.e., connections beyond their neighborhood) is
particularly detrimental to their synchronization with respect
to the mean-field description of their class. These outliers
determine the onset of synchronization in real networks,
retarding it with respect to our mean-field approach. This
retardation is particularly pronounced for sparse connectivity,
as there fluctuations in the topology and frequency compo-
sition of higher-order neighborhoods are more manifest in
oscillator dynamics, thus explaining (ii). Finally, higher-order
frequency-composition fluctuations with retarding effect are
more pronounced the closer g is to 1/2, accounting for (iii).
This is because, combinatorially speaking, there are more
higher-order neighborhood configurations possible for more
similar ensemble sizes. A higher number of configurations also
means a higher chance of fluctuations with retarding effect
on phase locking. For the same reason, the retarding effect
of outliers is more pronounced in topologies with broader
degree distributions like the random graphs dealt with further
below.

For increasing supercritical coupling strengths, the impor-
tance of said fluctuations diminishes [compare Figs. 3(c) and
3(e) as well as Figs. 3(d) and 3(f)]. This becomes apparent first
through the increasingly accurate prediction of locked phases
by our framework [i.e., by considering Eqs. (10)–(12), (17),
and (3) and (4) in that order], and second in the full system
through the decreasing variances of locked phases within
one oscillator class. Moreover, plotting in Figs. 3(a)–3(f) the
output of Eq. (2) with only assumptions (a1) and (a2) yields
very similar results to our final approach that also includes
assumptions (a3) and (a4) [dashed lines in Figs. 3(a) and
3(b), complete overlap with solid lines in Figs. 3(c)–3(f)].
This underlines the quality of assumptions (a3) and (a4) and
indicates that assumptions (a1) and (a2) are the most significant
source of deviation from the full system given by Eq. (1). As
predicted in Eq. (14), locked phases increase monotonously
with x, and, for fixed natural frequency, spread no farther
apart than predicted by Eqs. (13) and (16) and their consumer
counterparts. We note that for coupling strengths just above
the critical threshold, the ensemble and thus also the global
phase spread can exceed π/2 [Figs. 3(c) and 3(d)]. This is a
phase-locked regime commonly not considered in the literature
where instead, authors build on a result from [16] that shows
the linear stability of all steady states with global phase spread
smaller than π/2. Our model is also in line with this result:
observed unstable self-consistent solutions of Eq. (12) for the
regular random graph all possess global phase spreads larger
than π/2.

Furthermore, we observe in Appendix E that our framework
is consistent with a more naive mean-field approximation,
which in our setup moreover coincides with the collective-
coordinate approach [24] for regular random graphs. It yields
θ∗
G(x) ≡ �G = arcsin ([λk(1 − g)]−1) and θ∗

C(x) ≡ 
C ≡ 0
above the critical threshold λ∗ = [k(1 − g)]−1. In Figs. 3(a)–
3(f), the predictions of the naive mean-field model are plotted
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FIG. 4. Assessing accuracy and relevance of mean-field approach
in Erdős-Rényi graphs. (a, c, e) Locked generator phases θ∗

G(k,x)
and (b, d, f) consumer phases θ∗

C(k,x). (a, b) Locked phases in the
full system with �∗

C ≡ 0; small k and x yield (a) largest values or
(b) smallest values. (c, d) Standard deviation for locked phases in
full system, normalized by respective ensemble phase spread in full
system. Small k and x yield largest values. (e, f) Error of mean-
field prediction for locked phases, normalized by respective ensemble
phase spread in full system. Small k and x yield (e) largest values or
(f) smallest values. λ = 1.1, 〈k〉 = 10, and g = 0.3. Data from full
system for one network realization with 106 oscillators, all sampled.
All phases given in radians.

with dotted lines, showing that the inclusion of neighborhood
heterogeneity in our more advanced approach yields a much
better approximation of Eq. (1).

The application of the mean-field approach to connected
random (Erdős-Rényi) graphs with P (k) = 〈k〉ke−〈k〉/k! is
illustrated in Figs. 4(a)–4(f). For the chosen mean degree
〈k〉 = 10 and network size N = 106, the minimum considered
degree is km = 1 and maximum degree kM = 28 (cf. Sec.
II), resulting in a cutoff for larger degrees [extended white
area in Figs. 4(e) and 4(f); cf. Sec. II]. With km = 1 and
Eq. (B5), a necessary condition for global phase locking is
λ � 1. Choosing λ = 1.1, we find the full system to be in a
weakly supercritical regime in which we test the validity of
our mean-field approach.

We observe in Figs. 4(a) and 4(b) that the monotony of
oscillator phases in the full system of Eq. (1) is correctly
predicted by Eqs. (14), (15), and (18). As expected, locked
generator phases converge to the reference phase �C ≡ 0
for large degrees and x = 0, i.e., for large neighborhoods
consisting of only consumers. Similarly, locked consumer
phases converge to �̂∗

G for increasing degrees k and x = k

[Fig. 4(b)]. As in the case of regular random graphs, the overall
phase spread exceeds π/2. For the full system, the variances
of locked phases within an oscillator class are very low for
both oscillator ensembles [Figs. 4(c) and 4(d)], also for classes
describing oscillators with lower degrees. This validates our
mean-field approach of only considering oscillator neighbor-
hoods when modeling phase locking in configuration models.
We normalize by the respective ensemble spread to obtain the
relative magnitude of fluctuations. Last, Figs. 4(e) and 4(f)
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illustrate the differences of averaged locked phases in the full
system and predicted locked phases, again normalized by the
respective ensemble spread. They show that our framework
predicts well the locked phases in the full system already for
weak supercritical coupling strengths. As in Figs. 3(c)–3(f) for
regular random graphs, we find a very good match for oscillator
classes (k,x) for which x ≈ kg, while predicted locked phases
deviate more the larger are deviations of x from that mean
number of generator neighbors.

VI. SUMMARY AND CONCLUSIONS

We present a mean-field approach to analytically assess how
the phase locking of randomly coupled oscillators is affected
by their local connection structure. To that end, we con-
sider asymmetric bipolar distributions of natural frequencies,
modeling the most common asymptotic regime in electrical
power grids. For those systems, we make two predictions,
provided that the underlying mean-field assumptions are ful-
filled reasonably well. First, locked phases in all networks
of the heterogeneous class of configuration models follow
the same functional form and monotonic behavior. As the
configuration model makes statements about entire network
ensembles, we predict, second, that all members of a given
ensemble have approximately the same locked phases and
linear stability. This contrasts with previous contributions that
focus on a specific (and rather simple) grid topology. The first,
inter-ensemble prediction, is substantiated numerically with
two nontrivial standard topologies for two different network
link densities and two different dynamical regimes each. The
second, intra-ensemble prediction, becomes evident in the
small standard deviations of ensemble statistics throughout
this work. Both results do not depend on the specific shape
of the bipolar distribution of natural frequencies, the latter of
which is completely determined by the fraction of generators in
the network. They show that while local connection structure
does not govern the transition frequency synchronization [3],
it shapes the phase-locked state. The practical use of these
results is that they can help mitigate transmission line tripping
and cascading failures in power grids.

The route to these main results is the following: Starting
from a mean-field approach [Eqs. (3)–(6) with assumption
(a4)], generator and consumer ensembles are decoupled, each
of which is analyzed separately and analogously [Eqs. (8) and
(9)]. For each ensemble, unstable phase-locked regimes are
detected and discarded, and stable locked phases are given
closed-form parametrized expressions [Eqs. (10) and (11)].
These expressions do not explicitly depend on imposed de-
gree distributions; such global network information is instead
contained in a mean-field parameter to which the considered
oscillator ensemble couples [Eq. (9)]. The search space for
that parameter is analytically constrained [Eqs. (13)], yielding
simple statements about the locked phases’ bounds [Eq. (16)]
and monotony [Eqs. (14), (15), and (18)] already without
knowing the parameter’s numerical value. For each ensem-
ble, the mean-field parameter is self-consistently calculated
through a simple expression [Eqs. (12) and (17), respectively].
Upon calculation, we find that above an ensemble-specific
critical threshold, there exists a linearly stable steady state in
each decoupled ensemble dynamics (Appendix C). For coupled

ensemble dynamics, i.e., the full mean-field model, the two
ensemble-specific critical thresholds automatically yield the
overall critical threshold. In order to actually couple ensemble
dynamics, an overdetermined rotation angle finally yields
the necessary coordinate transformation of locked consumer
phases.

Apart from the mentioned main results, we obtain further
insights into the system: The discrepancy of the rotation angle’s
calculated values is a model-intrinsic measure for the accuracy
of used mean-field assumptions, as is (the absolute value of) the
system frequency of the mean-field equations [Eq. (7)]. Both
measures indicate the validity of our mean-field approxima-
tions already for sparse and weak coupling. Additionally, we
find that our approach is consistent with a simpler mean-field
ansatz, lending further support to our working hypothesis.
We discover that for examined parameters and topologies the
framework rules out coexisting linearly stable phase-locked
regimes that conform to mean-field assumptions (a1)–(a4).
Furthermore, we find that for coupling strengths just above
the critical threshold the largest difference of locked phases
can exceed π/2 in both the full system and its mean-field
approximation—a regime commonly not considered in the
literature [3,23], but captured by our approach. For sparsely
connected or heterogeneous grids, critical thresholds are sys-
tematically underestimated; this is tied to the importance of
outlier oscillators that do not obey mean-field assumptions.

In future work, one could explore a generalization of the
functional form of locked phases to oscillator networks with
more heterogeneous distributions of natural frequencies. Ad-
ditionally, a more systematic investigation with our framework
could reveal power-grid topologies with coexisting phase-
locked regimes. While such multistability has been detected for
single network realizations [26,27], our framework can poten-
tially detect multistable regimes of a whole network ensemble
given by the respective configuration model. Furthermore, by
adjusting the binomial weights in Eqs. (3) and (4), our assump-
tion of random frequency mixing could be relaxed to account
for frequency correlations as in [28]. Finally, by yielding the
functional form of locked phases a posteriori, our proposed
approach could moreover tie dimension-reduction approaches
such as in [24,29,30] to intuitive mean-field assumptions.
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APPENDIX A: SYSTEM FREQUENCY
OF MEAN-FIELD EQUATIONS

Multiplying both sides of Eq. (5) [Eq. (6)] with
gwg(k,x)/x[(1 − g)wg(k,x)/x], summing over x and k, and
adding both equations, one obtains with Eqs. (3) and (4)

ωS = −λ〈k〉g(1 − g)(r̂G − rC) sin (�̂G − �C)
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for ωS ≡ ∑∞
k=1

∑k
x=0{[gθ̇G(k,x) + (1 − g)θ̇C(k,x)]

wg(k,x)/x} as the system frequency of the mean-field
Eqs. (3)–(6). Note that in our reference frame, the system
frequency in the full Eq. (1) is in contrast identical to zero.
Here rC and r̂G are not set to 1, but computed on the fly from
Eqs. (3) and (4). Hence any inaccuracy in assumption (a3)
translates into a nonzero system frequency of the mean-field
equations. Concurrently, it is easy to show along the same
lines that Eq. (2) with just assumptions (a1) and (a2) (i.e.,
allowing for variable neighborhood phase coherences) has
zero system frequency at any time t . From the approximative
character of assumption (a3) it follows that if the numerical
integration of Eqs. (3)–(6) for sufficiently large λ does yield
a synchronous regime (i.e., locked phase differences), it is
generally not in steady state, despite the initial rescaling of
natural frequencies to enter a co-rotating reference frame.
Instead, all phases then synchronously rotate with the system
frequency ωS . If ωS is subtracted from both sides of Eqs. (5)
and (6), synchronization is reflected by a steady state of
oscillators with natural frequencies shifted by −ωS and all
phases at time t rotated by −ωSt .

Obviously, |ωS | is the smaller the smaller (r̂G − rC) is; i.e.,
the better assumption (a3) is fulfilled. It vanishes for g → 0
and g = 1/2, the latter being due to the resulting symmetry
in Eqs. (3)–(6), which yields r̂G = rC . Yet |ωS | also decreases
with increasing λ and k: both yields decrease (�̂G − �C) and
a higher accuracy of the mean field, i.e., also decrease |r̂G −
rC |. Consequently, ωS in phase-locked regimes is largest for
slightly supercritical λ and small k, usually attaining values
of less than 1% of generator and consumer frequencies. This
small value justifies equating r̂G and rC in assumption (a3) and
thus also setting ωS = 0.

APPENDIX B: PARAMETRIZED LOCKED
GENERATOR PHASES

Here, we want to investigate the existence and form of stable
phase-locked solutions of Eq. (8) for a given degree k � 1. To
this end, we set � constant in the following and rescale time
by a factor (λk)−1, so that the decoupled generator dynamics
of Eq. (8) can be rewritten as

θ̇�,k(z) = (λk)−1 − f�(θ,z) (B1)

with θ�,k(x/k) ≡ θ�(k,x), f� (θ,z) ≡ z sin (θ − �) + (1 −
z) sin θ , � ∈ [0,2π ), integer k � 1, and z ∈ [0,1]. The contour
lines θ∗

�,k(z) defined by f� [θ∗
�,k(z),z] = (λk)−1 are called

solution branches in the following, because if they encompass
z = x/k, then z yields a steady state in Eq. (B1) and generator
class (k,x) is phase-locked in Eq. (8) for fixed � (stably or un-
stably). To understand how solution branches arise depending
on � and λ for given k, consider moreover the maxima f̂�(z)
of curves f�(θ,z = const) for each z ∈ [0,1] given by

f̂�(z) ≡
√

1 − 2z(1 − z)(1 − cos �). (B2)

Clearly a solution branch encompasses z as soon as

f̂�(z) � (λk)−1. (B3)

A short inspection of f̂�(z) confirms that if θ�,k(z � 1/2) is a
steady state, so are θ�,k(1 − z) and all θ�,k(z′) for which z′ < z,

with the necessary coupling strength increasing the closer z

is to 1/2. Hence if oscillator class (k,x � k/2) phase-locks,
so do all classes (k,x ′) with x ′ < x and x ′ � k − x, with the
class of the most balanced numbers of generator and consumer
neighbors phase-locking last.

Obviously f̂�(z) � 1 always holds, so that for λ < k−1,
no solution branch exists for any �. In this case, there is
no steady state in Eq. (B1) for any z or �, so that no
oscillator class (k,x) in Eq. (8) phase-locks. For larger λ, two
joined solution branches θ̄∗

�,k(z) and θ̃∗
�,k(z) appear, related as

θ̃∗
�,k(z) = π − θ̄∗

�,k(1 − z) + � and confined to all z fulfilling
2z(1 − z)(1 − cos �) � 1 − (λk)−2. Hence only generators
with a sufficiently small or large number of generator neighbors
x phase-lock. Finally, for all coupling strengths larger than

λ∗
�,k = [k|cos(�/2)|]−1 , (B4)

both solution branches are separated, and each lives on the
entire interval z ∈ [0,1]. As a consequence, all k + 1 generator
classes (k,x) for a given k phase-lock in Eq. (8), in particular
class x = k/2 in graphs with even-valued degree k. In coe-
volving Eqs. (8) and (9), λ∗

�,k (computed with steady-state �)
obviously is a lower bound for the critical threshold λ∗

G if k is
even valued.

For an odd-valued degree k, this lower bound is approxi-
mate: there, only the two generator classes at x = (k − 1)/2
and x = (k + 1)/2 must lie on the solution branches for all
classes in Eq. (8) to phase-lock, which is the case as soon as

λ � [(λ∗
�,k)−2 + sin2 (�/2)]−1/2 (B5)

[cf. Eqs. (B2)–(B4)]. This lower bound is always smaller than
λ∗

�,k , and the better approximated by it the larger k and the
smaller |�| are. Their largest relevant difference is obtained
by maximizing � on [0,π ] and minimizing k: in Eq. (12) and
Appendix C, we observe � = π/2 to be the approximately
largest self-consistent stable value for various degree distribu-
tions P (k) and generator abundancies g. Considering that 1
is the minimum odd-valued degree, one calculates λ∗

�,1 = √
2

versus the exact lower bound 1 in Eq. (B5). Choosing the next-
largest odd-valued degree k′ = 3, we already obtain λ∗

�,3 =√
2/3 ≈ 0.471 versus the exact lower bound 1/

√
5 ≈ 0.447.

Conversely, for the actual stable phase-locked regimes in
coevolving Eqs. (8) and (9), we observe λ∗

G � λ∗
�,k′ in Eq. (12)

and Appendix C, again for various P (k) and g. Hence, in the
following, we assume for odd-valued degrees k that λ∗

G � λ∗
�,k

for stable steady-state � in coevolving Eqs. (8) and (9). This
is a weaker statement than the strict proof for even-valued k

that λ � λ∗
�,k for any � in phase-locked states of Eq. (8).

Identifying θ̄∗
�,k(z)[θ̃∗

�,k(z)] with the solution branch for
which θ̄∗

�,k(0) = 0[θ̃∗
�,k(0) = π ] for λ → ∞, phase-locked

states lying on θ̃∗
�,k(z) are unstable and can thus be discarded:

first, observe that any linearly unstable steady state in Eq. (8)
with fixed � cannot be a stable phase-locked state in the system
of Eqs. (8) and (9) where � coevolves. In turn, for oscillator
classes with even-valued (odd-valued) degree k, Eq. (B4)
[Eq. (B5)] is a necessary condition for phase-locking in coe-
volving Eqs. (8) and (9). Second, the Jacobian for Eq. (B1) with
fixed � and z is J�,z(θ ) = −λ{z cos (� − θ ) + (1 − z) cos θ}
and thus changes sign at the maximum of f�(θ,z = const).
As the line f̂�(z) of these maxima separates the two solu-
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tion branches [Eq. (B2)] and furthermore J�,0[θ̄∗
�,k(0) = 0] =

−λ < 0 holds, it follows that the Jacobian is always positive
for fixed points on θ̃∗

�,k(z) [and negative for all fixed points on

θ̄∗
�,k(z)]. Hence the fixed points θ̃∗

�,k(z) of Eq. (B1) are unstable
and discarded, and the stable steady states are given by θ̄∗

�,k(z).
They are of the form

sin
[
θ̄∗
�,k(z)

] = (λk)−1[1 − (1 − cos �)z] + z sin �
√

1 − 2z(1 − z)(1 − cos �) − (λk)−2

1 − 2z(1 − z)(1 − cos �)
, (B6)

cos [θ̄∗
�,k(z)] = sin [θ̄∗

�,k(z)][1 − (1 − cos �)z] − (λk)−1

z sin �
, (B7)

with cos [θ̄∗
�,k(0)] =

√
1 − (λk)−2. From the behavior of

J�,z(θ ) ≡ −∂f�(θ,z)/∂θ discussed above, it furthermore im-
mediately follows for the contour lines θ̄∗

�,k(z) that

∂θ̄∗
�,k(z)/∂(λk) � 0. (B8)

APPENDIX C: SELF-CONSISTENT GENERATOR
MEAN FIELD

A parametrized phase-locked solution θ∗
−�(k,k − x) of

Eq. (8) describes the same phase-locked state as θ∗
�(k,x), but in

other angular coordinates, namely, for �G ≡ 0 and �C ≡ −�

in Eq. (5) instead of �C ≡ 0 and �G ≡ � as before. This
coordinate shift should not change the physics of generators in
the system; it can, however, be used to simplify the computation
of self-consistent � in Eq. (9). As its left-hand side is just �G,
Eq. (9) reads

0 =
kM∑

k=km

k∑
x=0

wg(k,x) sin [θ∗
−�(k,k − x)] ≡ FG(�) (C1)

in the shifted coordinates, to be fulfilled by all self-consistent
stationary �.

A generator class with degree k curtails the search space for
these � through Eqs. (B4) and (B5): with λ � k−1 necessary
for any class with degree k to phase-lock [Eqs. (B1)–(B3)], all
self-consistent � must fulfill

cos � ∈
{[

2(λk)−2 − 1,1
][

max
{
−1,2(λk)−2 − 1 − 2 1−(λk)−2

k2−1

}
,1

]
,

(C2)

for even- and odd-valued degree k, respectively. The search
space of self-consistent � is thus dictated by the smallest
realized generator degrees.

Next, we determine the linear stability of self-consistent
phase-locked solutions of Eqs. (8) and (9) with coevolving
mean field �. To that end, we calculate the entries of the sys-
tem’s Jacobian, computed at the stationary state parametrized
by �. Consider first that with Eq. (9) and Appendix D,

� = arccot

(∑kM

k=km

∑k
x=0 wg(k,x) cos [θ�(k,x)]∑kM

k=km

∑k
x=0 wg(k,x) sin [θ�(k,x)]

)
(C3)

can be assumed to be well defined sufficiently close to the fixed
point. With Eqs. (3), (10), (11), and (C3) and some algebra, we
obtain

∂θ̇�(k,x)

∂θ�(k′,x ′)

∣∣∣
θ∗ = −δkk′δxx ′λ

√
k2 − 2x(k − x)(1 − cos �) − λ−2

+ λxwg(k′,x ′) cos2 [� − θ∗
�(k′,x ′)](g〈k〉rG)−1

with

cos [� − θ∗
�(k,x)] = [x + (k − x) cos �]

√
k2 − 2x(k − x)(1 − cos �) − λ−2 + λ−1(k − x) sin �

k2 − 2x(k − x)(1 − cos �)
.

Here k,k′ � 1, x ∈ [0,k], x ′ ∈ [0,k′], and rG is as in Eq. (3).
The latter reappears after having set rG ≡ 1 already in assump-
tion (a3). Methodologically, it is coherent to reset rG ≡ 1, at
the cost of rendering the stability considerations inexact. The
Jacobian’s eigenvalues are also parametrized by �; inserting
the latter’s self-consistent solutions computed in Eq. (12)
reveals the linear stability of the steady states of coevolving
Eqs. (8) and (9). If all computed eigenvalues have negative real
parts, the system is linearly stable. If at least one eigenvalue
possesses a positive real part, the system is linearly unstable.

APPENDIX D: PROPERTIES OF LOCKED
GENERATOR PHASES

First, we show for fixed even-valued degree k that if
� ∈ [0,π ), then θ∗

�(k,x) ∈ [0,π ) for all x ∈ [0,k] in Eq. (8).
According to Eq. (10), this is obviously the case for � = 0. If
� ∈ (0,π ), consider that, for each x,

k2 − 2x(k − x)(1 − cos �) − λ−2 � 0
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holds through Eqs. (B2) and (B3). According to Eq. (10), it is
then sufficient to show that

0 < λ−1[k − (1 − cos �)x]

+ x sin �
√

k2 − 2x(k − x)(1 − cos �) − λ−2 (D1)

for � ∈ (0,π ) and all x ∈ [0,k]. Equation (D1) is surely
fulfilled for all integer x < k(1 − cos �)−1. For all larger x,
Eq. (D1) reduces to x > (λ sin �)−1. By proposition, this
is surely fulfilled if k(1 − cos �)−1 > (λ sin �)−1. As λ �
λ∗

�,k in all phase-locked regimes of Eq. (8) for all even-
valued k [Eq. (B4)], this is in turn surely true if λ∗

�,k >

(1 − cos �)(k sin �)−1. Again with Eq. (B4) for even-valued
k, this last inequality reduces to 1 > cos �, which is true for
all � ∈ (0,π ). Hence sin [θ∗

�(k,x)] > 0 in Eq. (10) and thus
θ∗
�(k,x) ∈ [0,π ) for all ∈ [0,k] and � ∈ [0,π ) if k is even

valued.
This also applies to all generator classes with degree k′ > k,

where k′ can be even or odd valued. The reason is a smaller
upper bound for θ∗

�(k′,x) through Eq. (B8) and a positive
lower bound through sin [θ∗

�(k,x)] = x/k sin �/f̂ (x/k) � 0
for λ → ∞ [Eqs. (B2), (B6) and (B8)]. From θ∗

�(k,x) ∈
[0,π ) for � ∈ [0,π ) follows sin [θ∗

−�,k(k,k − x)] > 0 for � ∈
(−π,0]. This inequality applies to all generator classes k′ > k,
so that if the smallest realized generator degree km in the
network is even valued, Eq. (12) cannot be fulfilled for any
� ∈ (−π,0]. Hence, in that case, any self-consistent � must
lie in the interval (0,π ) [as � = π can be immediately ruled
out with Eqs. (10) and (12)].

If, however, the smallest realized generator degree km in
the network is odd valued, then crucially λ � λ∗

�,km
is not true

for all � ∈ [0,π ) in supercritical regimes of Eq. (B1). More
specifically, it does not hold for � for which |�|∼π/2. Hence
the contribution

∑km

x=0 wg(km,x) sin [θ∗
−�,k(km,km − x)] to the

sum in Eq. (12) can be negative for those �. If on the one
hand this negative contribution is small, as to be expected in
heterogeneous network topologies where P (km) � 1, then the
above considerations still hold. If on the other hand P (km) ≈ 1,
as for example in regular random graphs, then the above
considerations still hold for all λG � λ, as λ∗

G � λ∗
�,km

is
assumed in phase-locked regimes of coevolving Eqs. (8) and
(9) (cf. Appendix B).

Our strict reasoning in the case of even-valued smallest
generator degrees km and our reasonable assumption in the case
of an odd-valued km lead to the following conclusions about
linearly stable phase-locked states in the coevolving Eqs. (8)
and (9):

Conclusion (c1). � lies in the intersection of (0,π ) with the
smallest interval defined in Eq. (C2).

Conclusion (c2). As sin [θ∗
�(k,x)] > 0 on � ∈ (0,π ), it fol-

lows from conclusion (c1) that θ∗
�(k,x) ∈ (0,π ). In particular,

the locked phases of generator classes are all less than π apart
from each other.

Conclusion (c3). Locked phases can be written as
θ∗
�(k,x) = arccot(cos [θ∗

�(k,x)]/ sin [θ∗
�(k,x)]) due to conclu-

sion (c2), so that with Eqs. (B6) and (B7), dθ̄∗
�,k(z)/dz � 0

for all z ∈ [0,1] and thus θ∗
�(k,x + 1) � θ∗

�(k,x) for all k � 1
and x ∈ [0,k − 1].

Conclusion (c4). As a consequence of conclusions (c2) and
(c3), the maximum difference on (0,π ) between any two gen-
erator phases is, for fixed k and �, 
�,k ≡ θ∗

�(k,k) − θ∗
�(k,0).

Obviously θ∗
�(k,0) = arcsin (λk)−1 [Eqs. (10) and (11)], while

sin [θ∗
�(k,k) − �] = (λk)−1 [Eq. (11)] leads to θ∗

�(k,k) =
arcsin (λk)−1 + � [Eq. (10)] and finally to 
�,k = �, an upper
bound for the maximum phase difference between any two
locked generator phases. Moreover, it immediately follows that
θ∗
�(k,x) ∈ [arcsin (λk)−1,� + arcsin (λk)−1].

Conclusion (c5). From Eq. (B8) it follows directly that
the larger a generator’s degree k with constant neighborhood
composition x/k is, the smaller is its locked phase on (0,π ).

APPENDIX E: LINKS TO OTHER ANALYTIC
APPROACHES

In regular random graphs with the same degree k and neigh-
borhood composition for all oscillators, (k,kg) with an integer
kg is the only relevant oscillator class. Hence, in these highly
regular settings, wg(k′,x ′) = kg[δ(k − k′)δ(kg − x ′)] with the
Dirac δ function, so that Eqs. (3) and (4) imply θY (k,kg) =
�Y = �̂Y at all times for oscillator type Y ∈ {G,C}. Therefore,
the system reduces to an effective two-oscillator problem. For
both decoupled generator and consumer dynamics, Eqs. (10)
and (12) (and their consumer counterparts) yield sin � =
[λk(1 − g)]−1 for the respective mean-field parameter. In
both cases, this parameter is trivially self-consistent as then
FG,C(�) ≡ 0. Hence �∗

G = ψ̂∗
C and also �̂∗

G = ψ∗
C for locked

neighborhood phases, so that locked consumer phases can be
unambiguously expressed by generator coordinates. In these
coordinates, the difference � = �G − �C between locked
generator and consumer phases is then the relevant system
variable. Its linear stability analysis in Appendix C then
reduces to determining when 1 − 2g(1 − g)(1 − cos �) �
(λk)−2. Considering that g ∈ (0,1/2] and k > 0, this reveals
a unique stable state at � = arcsin ([λk(1 − g)]−1) above the
critical threshold λ∗ = [k(1 − g)]−1.

The same results are obtained by a more naive mean-field
approximation of Eq. (1). There, oscillators j of same natural
frequency can be considered equivalent through setting θj =
�G for j ∈ [1,gN ] and θj = �C for j ∈ [gN + 1,N ]. Split-
ting the coupling term into two contributions from interactions
with kg generators and with k(1 − g) consumers, as well as
averaging Eq. (1) over the generator and consumer ensemble,
yields �̇ = (1 − g)−1 − λk sin � for the phase difference � ≡
�G − �C , with steady states and stability as above.

[1] J. A. Acebrón, L. L. Bonilla, C. J. Pérez Vicente, F. Ritort,
and R. Spigler, The Kuramoto model: A simple paradigm for
synchronization phenomena, Rev. Mod. Phys. 77, 137 (2005).

[2] A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno, and C.
Zhou, Synchronization in complex networks, Phys. Rep. 469,
93 (2008).

052310-11

https://doi.org/10.1103/RevModPhys.77.137
https://doi.org/10.1103/RevModPhys.77.137
https://doi.org/10.1103/RevModPhys.77.137
https://doi.org/10.1103/RevModPhys.77.137
https://doi.org/10.1016/j.physrep.2008.09.002
https://doi.org/10.1016/j.physrep.2008.09.002
https://doi.org/10.1016/j.physrep.2008.09.002
https://doi.org/10.1016/j.physrep.2008.09.002


WIELAND, MALERBA, AUMAITRE, AND BERCEGOL PHYSICAL REVIEW E 97, 052310 (2018)

[3] F. Dörfler and F. Bullo, Synchronization in complex net-
works of phase oscillators: A survey, Automatica 50, 1539
(2014).

[4] S. Gupta, A. Campa, and S. Ruffo, Kuramoto model of syn-
chronization: Equilibrium and nonequilibrium aspects, J. Stat.
Mech.: Theor. Exp. (2014) R08001.

[5] F. A. Rodrigues, T. K. D. M. Peron, P. Ji, and J. Kurths,
The Kuramoto model in complex networks, Phys. Rep. 610, 1
(2016).

[6] Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence,
Springer Series in Synergetics Vol. 19 (Springer, Berlin, 1984).

[7] Y. Kuramoto and I. Nishikawa, Statistical macrodynamics of
large dynamical systems. Case of a phase transition in oscillator
communities, J. Stat. Phys. 49, 569 (1987).

[8] S. H. Strogatz, From Kuramoto to Crawford: Exploring the onset
of synchronization in populations of coupled oscillators, Phys.
D (Amsterdam, Neth.) 143, 1 (2000).

[9] J. G. Restrepo, E. Ott, and B. R. Hunt, Onset of synchronization
in large networks of coupled oscillators, Phys. Rev. E 71, 036151
(2005).

[10] P. Kundur, Power System Stability and Control (McGraw-Hill,
Inc., New York, 1994).

[11] G. Filatrella, A. H. Nielsen, and N. F. Pedersen, Analysis of a
power grid using a Kuramoto-like model, Eur. Phys. J. B 61, 485
(2008).

[12] T. Nishikawa and A. E. Motter, Comparative analysis of existing
models for power-grid synchronization, New J. Phys. 17, 015012
(2015).

[13] D. Witthaut and M. Timme, Braess’s paradox in oscillator
networks, desynchronization and power outage, New J. Phys.
14, 083036 (2012).

[14] R. S. Pinto and A. Saa, Optimal synchronization of Kuramoto
oscillators: A dimensional reduction approach, Phys. Rev. E 92,
062801 (2015).

[15] K. Schmietendorf, J. Peinke, R. Friedrich, and O. Kamps,
Self-organized synchronization and voltage stability in networks
of synchronous machines, Eur. Phys. J.: Spec. Top. 223, 2577
(2014).

[16] F. Dörfler, M. Chertkov, and F. Bullo, Synchronization in
complex oscillator networks and smart grids, Proc. Natl. Acad.
Sci. USA 110, 2005 (2013).

[17] D. Manik, D. Witthaut, B. Schäfer, M. Matthiae, A. Sorge,
M. Rohden, E. Katifori, and M. Timme, Supply networks:
Instabilities without overload, Eur. Phys. J.: Spec. Top. 223, 2527
(2014).

[18] L. Buzna, S. Lozano, and A. Díaz-Guilera, Synchronization in
symmetric bipolar population networks, Phys. Rev. E 80, 066120
(2009).

[19] M. Rohden, A. Sorge, D. Witthaut, and M. Timme, Impact
of network topology on synchrony of oscillatory power grids,
Chaos 24, 013123 (2014).

[20] S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes, Critical
phenomena in complex networks, Rev. Mod. Phys. 80, 1275
(2008).

[21] A. E. Motter, S. A. Myers, M. Anghel, and T. Nishikawa,
Spontaneous synchrony in power-grid networks, Nat. Phys. 9,
191 (2013).

[22] M. Verwoerd and O. Mason, Global phase-locking in finite
populations of phase-coupled oscillators, SIAM J. Appl. Dyn.
Syst. 7, 134 (2008).

[23] C. Wang, N. Rubido, C. Grebogi, and M. S. Baptista, Approx-
imate solution for frequency synchronization in a finite-size
Kuramoto model, Phys. Rev. E 92, 062808 (2015).

[24] G. A. Gottwald, Model reduction for networks of coupled
oscillators, Chaos 25, 053111 (2015).

[25] V. Marceau, P.-A. Noël, L. Hébert-Dufresne, A. Allard, and L. J.
Dubé, Adaptive networks: Coevolution of disease and topology,
Phys. Rev. E 82, 036116 (2010).

[26] D. Mehta, N. S. Daleo, F. Dörfler, and J. D. Hauenstein,
Algebraic geometrization of the Kuramoto model: Equilibria and
stability analysis, Chaos 25, 053103 (2015).

[27] D. Manik, M. Timme, and D. Witthaut, Cycle flows and multi-
stability in oscillatory networks, Chaos 27, 083123 (2017).

[28] P. S. Skardal, J. G. Restrepo, and E. Ott, Frequency assortativity
can induce chaos in oscillator networks, Phys. Rev. E 91, 060902
(2015).

[29] E. Ott and T. M. Antonsen, Low dimensional behavior of
large systems of globally coupled oscillators, Chaos 18, 037113
(2008).

[30] E. A. Martens, E. Barreto, S. H. Strogatz, E. Ott, P. So, and T. M.
Antonsen, Exact results for the Kuramoto model with a bimodal
frequency distribution, Phys. Rev. E 79, 026204 (2009).

052310-12

https://doi.org/10.1016/j.automatica.2014.04.012
https://doi.org/10.1016/j.automatica.2014.04.012
https://doi.org/10.1016/j.automatica.2014.04.012
https://doi.org/10.1016/j.automatica.2014.04.012
https://doi.org/10.1088/1742-5468/14/08/R08001
https://doi.org/10.1088/1742-5468/14/08/R08001
https://doi.org/10.1088/1742-5468/14/08/R08001
https://doi.org/10.1016/j.physrep.2015.10.008
https://doi.org/10.1016/j.physrep.2015.10.008
https://doi.org/10.1016/j.physrep.2015.10.008
https://doi.org/10.1016/j.physrep.2015.10.008
https://doi.org/10.1007/BF01009349
https://doi.org/10.1007/BF01009349
https://doi.org/10.1007/BF01009349
https://doi.org/10.1007/BF01009349
https://doi.org/10.1016/S0167-2789(00)00094-4
https://doi.org/10.1016/S0167-2789(00)00094-4
https://doi.org/10.1016/S0167-2789(00)00094-4
https://doi.org/10.1016/S0167-2789(00)00094-4
https://doi.org/10.1103/PhysRevE.71.036151
https://doi.org/10.1103/PhysRevE.71.036151
https://doi.org/10.1103/PhysRevE.71.036151
https://doi.org/10.1103/PhysRevE.71.036151
https://doi.org/10.1140/epjb/e2008-00098-8
https://doi.org/10.1140/epjb/e2008-00098-8
https://doi.org/10.1140/epjb/e2008-00098-8
https://doi.org/10.1140/epjb/e2008-00098-8
https://doi.org/10.1088/1367-2630/17/1/015012
https://doi.org/10.1088/1367-2630/17/1/015012
https://doi.org/10.1088/1367-2630/17/1/015012
https://doi.org/10.1088/1367-2630/17/1/015012
https://doi.org/10.1088/1367-2630/14/8/083036
https://doi.org/10.1088/1367-2630/14/8/083036
https://doi.org/10.1088/1367-2630/14/8/083036
https://doi.org/10.1088/1367-2630/14/8/083036
https://doi.org/10.1103/PhysRevE.92.062801
https://doi.org/10.1103/PhysRevE.92.062801
https://doi.org/10.1103/PhysRevE.92.062801
https://doi.org/10.1103/PhysRevE.92.062801
https://doi.org/10.1140/epjst/e2014-02209-8
https://doi.org/10.1140/epjst/e2014-02209-8
https://doi.org/10.1140/epjst/e2014-02209-8
https://doi.org/10.1140/epjst/e2014-02209-8
https://doi.org/10.1073/pnas.1212134110
https://doi.org/10.1073/pnas.1212134110
https://doi.org/10.1073/pnas.1212134110
https://doi.org/10.1073/pnas.1212134110
https://doi.org/10.1140/epjst/e2014-02274-y
https://doi.org/10.1140/epjst/e2014-02274-y
https://doi.org/10.1140/epjst/e2014-02274-y
https://doi.org/10.1140/epjst/e2014-02274-y
https://doi.org/10.1103/PhysRevE.80.066120
https://doi.org/10.1103/PhysRevE.80.066120
https://doi.org/10.1103/PhysRevE.80.066120
https://doi.org/10.1103/PhysRevE.80.066120
https://doi.org/10.1063/1.4865895
https://doi.org/10.1063/1.4865895
https://doi.org/10.1063/1.4865895
https://doi.org/10.1063/1.4865895
https://doi.org/10.1103/RevModPhys.80.1275
https://doi.org/10.1103/RevModPhys.80.1275
https://doi.org/10.1103/RevModPhys.80.1275
https://doi.org/10.1103/RevModPhys.80.1275
https://doi.org/10.1038/nphys2535
https://doi.org/10.1038/nphys2535
https://doi.org/10.1038/nphys2535
https://doi.org/10.1038/nphys2535
https://doi.org/10.1137/070686858
https://doi.org/10.1137/070686858
https://doi.org/10.1137/070686858
https://doi.org/10.1137/070686858
https://doi.org/10.1103/PhysRevE.92.062808
https://doi.org/10.1103/PhysRevE.92.062808
https://doi.org/10.1103/PhysRevE.92.062808
https://doi.org/10.1103/PhysRevE.92.062808
https://doi.org/10.1063/1.4921295
https://doi.org/10.1063/1.4921295
https://doi.org/10.1063/1.4921295
https://doi.org/10.1063/1.4921295
https://doi.org/10.1103/PhysRevE.82.036116
https://doi.org/10.1103/PhysRevE.82.036116
https://doi.org/10.1103/PhysRevE.82.036116
https://doi.org/10.1103/PhysRevE.82.036116
https://doi.org/10.1063/1.4919696
https://doi.org/10.1063/1.4919696
https://doi.org/10.1063/1.4919696
https://doi.org/10.1063/1.4919696
https://doi.org/10.1063/1.4994177
https://doi.org/10.1063/1.4994177
https://doi.org/10.1063/1.4994177
https://doi.org/10.1063/1.4994177
https://doi.org/10.1103/PhysRevE.91.060902
https://doi.org/10.1103/PhysRevE.91.060902
https://doi.org/10.1103/PhysRevE.91.060902
https://doi.org/10.1103/PhysRevE.91.060902
https://doi.org/10.1063/1.2930766
https://doi.org/10.1063/1.2930766
https://doi.org/10.1063/1.2930766
https://doi.org/10.1063/1.2930766
https://doi.org/10.1103/PhysRevE.79.026204
https://doi.org/10.1103/PhysRevE.79.026204
https://doi.org/10.1103/PhysRevE.79.026204
https://doi.org/10.1103/PhysRevE.79.026204



