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Social learning is widely observed in many species. Less experienced agents copy successful behaviors
exhibited by more experienced individuals. Nevertheless, the dynamical mechanisms behind this process remain
largely unknown. Here we assume that a complex behavior can be decomposed into a sequence of n motor motifs.
Then a neural network capable of activating motor motifs in a given sequence can drive an agent. To account
for (n − 1)! possible sequences of motifs in a neural network, we employ the winnerless competition approach.
We then consider a teacher-learner situation: one agent exhibits a complex movement, while another one aims at
mimicking the teacher’s behavior. Despite the huge variety of possible motif sequences we show that the learner,
equipped with the provided learning model, can rewire “on the fly” its synaptic couplings in no more than (n − 1)
learning cycles and converge exponentially to the durations of the teacher’s motifs. We validate the learning model
on mobile robots. Experimental results show that the learner is indeed capable of copying the teacher’s behavior
composed of six motor motifs in a few learning cycles. The reported mechanism of learning is general and can
be used for replicating different functions, including, for example, sound patterns or speech.
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I. INTRODUCTION

Social or imitation learning through transferring informa-
tion from an experienced agent to a naive one is widely
observed in many species, especially in primates and humans
[1]. It relies on adopting successful actions of others and
plays a fundamental role in development and communication.
Electrophysiological studies suggest that the so-called mirror
neurons take place in imitation learning [2,3]. Yet, the neuronal
dynamical mechanisms underlying such a learning remain
largely unknown.

Learning a task from scratch, i.e., without any prior knowl-
edge, is a complicated problem [4]. Humans rarely attempt to
do it. Instead, they usually extract chains of movement prim-
itives from instructions and demonstrations by other humans.
Such a paradigm also should be implemented in the future by
completely autonomous robots [5], which will facilitate their
social acceptance [6].

While learning, an agent (human or robot) first has to isolate
essential motor motifs from the movement of another more
experienced agent (e.g., “move right,” “turn left,” etc.). Then
it must be able to compose a meaningful behavior from these
motifs. Thus, the social learning is an example of a sequential
solving of an inverse and then a forward problems. Given n

motifs one can build up (n − 1)! different behaviors (e.g., for
n = 10 we get 362 880). At first glance, such an explosive
complexity may appear prohibitive for learning in small neural
networks.
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In this work we present an approach to fast social-like
learning of complex motor behaviors from an arbitrary number
of motor motifs. It allows synthesizing behaviors in a neural
network of a learning agent by observation of the dynamics of
a teacher in no more than (n − 1) learning cycles. Such a linear
(versus factorial) growth of the learning time is reasonable for
many applications.

The inverse problem, i.e., the segmentation of complex
movements into a sequence of primitives, is similar to the
problem of discovering network motifs in neural networks
[7], which relies on statistical analysis of graphs. To segment
movement trajectories Stulp and colleagues [8] proposed to
use a clustering method with principal component analysis.
However, even in common situations such an approach requires
a huge number of demonstrations and may become unfeasible
[9]. Another approach reduces the segmentation problem to a
sequential recognition of movements and comparing them to a
library of motor motifs [10]. Given that the library exists, this
approach permits quite efficient sequencing. For the sake of
simplicity, in our work we take a motif library for granted.

The forward problem can be conventionally subdivided into
two tasks: (1) implementation of certain motifs (e.g., moving
a hand from one point to another [11]) and (2) synthesis
of complex behaviors from motor motifs. The first task can
be approached by constructing dynamic movement primitives
(DMPs) [12]. A DMP is given by a dynamical system with
a single or multiple attractors and several parameters that
are adjusted to account for the trajectory exhibited by an
experienced human. The DMP approach is based on the
optimal control and in the case of a relatively small number
of degrees of freedom can be scaled to multiple but similar
demonstrations, which produces more flexible solutions [13].
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FIG. 1. Implementation of motor behaviors as sequences of motor motifs. (a) A Pioneer 3DX mobile robot used in experiments. (b), (c)
Two examples of the robot’s behaviors defined by graphs of six motor motifs (see main text). Depending on the order of the motifs and their
durations the robot can move along different trajectories (color codifies the active motif).

The second task is usually approached from the paradigm of
predictive control and optimization of trajectories [14,15]. We,
however, explore the complementary but different question:
How can a small neural network reproduce and learn one
of (n − 1)! behaviors? From the dynamical systems view-
point the social learning can be reduced to the problem
of copying, in terms of synchronization, ordered in time
patterns of neuronal activity from one experienced agent
to another, novel one. Although the general “hardwired”
architectures of the teacher’s and learner’s networks can
be the same, their intrinsic dynamics defining the activity
patterns can differ significantly. Then the learner should be
able to adjust its network couplings by only observing the
teacher dynamics, which leads to synchronization of the
behaviors [16].

To tackle the problem here we adopt a use case approach.
As a test bed we consider the generalized Lotka-Volterra model
with global inhibitory couplings among neurons [16,17].
Biological neural networks usually exhibit high asymmetry
in the coupling patterns [18,19], i.e., reciprocal connections
between neurons i and j may differ significantly. Earlier
it has been shown that this can be crucial for establishing
temporal associations [20,21]. It also enables maintaining gaits
in locomotion, retrieving ordered items from memory, and
codification of information in population bursts [22,23]. An
asymmetric Lotka-Volterra model can exhibit the so-called
winnerless competition (WLC) behavior, which occurs in
a vicinity of a stable heteroclinic loop connecting saddle
equilibriums (see, e.g., Refs. [17,24,25]). Then, in the presence
of a weak perturbation (e.g., noise; for details see Ref. [26]
and references therein) a trajectory can wander in the phase
space from one saddle to another, thus implementing a par-
ticular temporal pattern of neuronal excitation. This provides
extremely rich behaviors even in small neural networks (see,
e.g., Refs. [17,27–29]).

In this work we propose a learning algorithm capable of
copying the behavior of one WLC neural network to another.
Then we consider a teacher-learner social-like situation. A
teacher exhibits a complex behavior consisting of a sequence of
motor motifs [one of (n − 1)!] with specific durations. Another
agent, a learner, aims at mimicking the behavior. Despite the
behavior complexity growing extremely rapidly with n, we
show that the learning algorithm allows the learner to rewire
“on the fly” the synaptic couplings in no more than (n − 1)
learning cycles and converge exponentially fast to the durations
of the teacher’s motifs. We then validate the model on mobile
robots.

II. MOTOR MOTIFS AND BEHAVIORS

Our first goal is to provide a neural network architecture
that would enable a robot [Fig. 1(a); for details see Ref. [30]]
to perform a series of simple motor actions or motifs. Then a
complex motor behavior can be “programmed” as a sequence
of motifs. For illustration, we select the following:

M1: Go straight during time interval T1.

M2: Go straight during time interval T2.

M3: Turn left during time interval T3.

M4: Turn left during time interval T4.

M5: Turn right during time interval T5.

M6: Turn right during time interval T6.

For the sake of simplicity, in the description of the motifs
we did not specify the linear robot velocity, the radii of turns,
etc. These parameters will be essential in Sec. V. Inclusion of
similar motifs (e.g., M1 and M2) improves the robot flexibility
and complexity of possible behaviors. Note also that the
number and variety of motifs can be easily increased (with
six motifs we can implement up to 120 behaviors).

We can now connect the selected motifs in a graph and
thus implement a complex behavior. Figures 1(b) and 1(c)
are two examples of graphs and the corresponding behav-
iors of the robot. In the first case, we selected the cyclic
sequence [Fig. 1(b)]: M1 → M2 → M3 → M4 → M5 →
M6 → M1 → · · · , which generates a zigzag-like trajectory.
In the second case the sequence was [Fig. 1(c)]: M1 → M3 →
M6 → M4 → M2 → M5 → M1 → · · · , which generates a
more evolved trajectory.

Our second goal is to achieve a social-like learning of
behaviors. We thus assign one “more experienced” robot as
a teacher. The teacher knows how to reproduce some complex
behavior given by a graph, similar to those shown in Figs. 1(b)
and 1(c). Another robot, a learner, at the beginning cannot
replicate the teacher’s behavior. Its neural network is initialized
randomly and hence generates an arbitrary behavior (e.g., go
straight or make circles). Then the learner has to learn (1) the
teacher’s graph of motifs and (2) the time intervals T1, . . . ,Tn

of all motifs.

III. NEURAL NETWORK DRIVING BEHAVIORS

Let us now provide a neural network model capable of
driving a single robot, i.e., implementing all possible graphs
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FIG. 2. Behavior driving neural network. (a) Schematic representation of the neural network (example for n = 6). All neurons (circles)
are mutually coupled by inhibitory synapses (black and red links). Red links mark couplings α = (0.6,0.5,0.7,0.1,0.8,0.3)T that define the
activation sequence N1 → N2 → N3 → · · · , corresponding to the graph of motor motifs shown in Fig. 1(b). The coupling strength of black
links is equal to 2. (b) WLC dynamics generated by the network. Each neuron switches between on (active) and off (inactive) states. Bottom
colored stripe shows the activation intervals T1, . . . ,T6 of the corresponding neurons determined by α.

of motor motifs M1, . . . ,Mn with the corresponding time
intervals T1, . . . ,Tn.

We consider a neural network consisting of n � 3 globally
coupled neurons [Fig. 2(a), n = 6]. Activation of neuron
i during time interval Ti evokes the motor motif Mi , and
hence the robot performs the corresponding motor action
while the neuron stays active. Thus, we separate the physical
implementation of each motor motif from the decision-making
provided by the behavior-driving neural network. This enables
employing the same dynamical principles for controlling
different platforms and behaviors.

To describe a sequence of motor motifs [Figs. 1(b)
and 1(c)] corresponding to a sequence of activations of neurons
[Fig. 2(a)], it is convenient to introduce a directed cycle graph
G = (V,E) of length n = |V |, with the following vertices and
edges (circles and red arrows in Figs. 1(b) and 1(c)]:

V = {1, . . . ,n}, E = {(i,j ) ∈ V × V : i → j}. (1)

Then every possible closed circuit of activation of neurons can
be defined in terms of the adjacency or pathway matrix:

W = (wij )ni,j=1, wij =
{

1 if (j,i) ∈ E

0 otherwise.
(2)

In Eq. (2) wij = 1 corresponds to a situation when in the motor
sequence after motif j goes motif i. Note that deg+(v) =
deg−(v) = 1 for all v ∈ V , therefore W is an orthogonal
permutation matrix.

There exist (n − 1)! different complete cyclic sequences
represented by Hamiltonian cycles over V . Thus, even in a
relatively small graph there can exist a huge number of possible
cycles and hence motor behaviors.

To describe the network dynamics implementing sequences
of motor motifs, we use the Lotka-Volterra equation general-
ized to an arbitrary number of neurons n � 3 [16,17]:

ẋ = x � (1n − ραx) + ε 1n, (3)

where x(t) ∈ [0,1]n is the activation state of the neurons resem-
bling their firing rates, � stands for the Hadamard product,
1n = (1,1, . . . ,1)T , ε is a small constant (0 < ε � 1), and
ρα ∈ Mn×n(R+) is the interneuron coupling matrix describing
global (all-to-all) synaptic links among the neurons. Moreover,
since all elements of ρα are positive, the couplings among
neurons are inhibitory, i.e., activation of one neuron depresses
the activity of the others.

Earlier it has been shown that if the matrix ρα satisfies
appropriate conditions, then the network exhibits a WLC
behavior [31]. In particular, to satisfy the conditions we can
set the connectivity matrix to (see Ref. [16] for details):

ρij =

⎧⎪⎨
⎪⎩

1 if i = j

αj if wij = 1

2 otherwise,

(4)

where αj ∈ (0,1). Then in Eq. (3) with ε = 0, there exists an
attracting heteroclinic circuit visiting in a cycle n saddles, each
of which corresponds to activation of one neuron [31]. Such
a cycle is defined by the pathway matrix W and corresponds
to the graph G [Figs. 1(b) and 1(c)]. Since the heteroclinic
circuit is structurally unstable, any small perturbation (ε > 0)
leads to an emergence of a stable limit cycle in the vicinity
of the destroyed heteroclinic loop, which is the only attractor
implementing a WLC behavior.

Figure 2(b) illustrates an example of the WLC dynamics.
For the sake of visual clarity we have implemented the simplest
excitation circuit: N1 → N2 → N3 → N4 → N5 → N6 cor-
responding to the graph shown in Fig. 1(b). Loosely speaking,
at each time instant only one neuron is on and it inhibits the
activity of other neurons until another neuron “switches” on
and the process repeats. The duration of the on state of neuron
j is an increasing function of αj , which tends to infinity
if αj → 1 [16]. Thus, we can individually control the time
intervals of all motifs.

Therefore, playing with the pathway matrix W we can select
one of the (n − 1)! sequences of activation of the neurons
(and hence the graph of motor motifs), while choosing α =
(α1, . . . ,αn)T we can set the temporal extension of activation
for each neuron (and hence the time intervals T1, . . . ,Tn for
all motifs). Thus, the model (3) satisfies our needs and offers
an extremely flexible way for generating a variety of motor
behaviors.

IV. FAST LEARNING OF BEHAVIORS IN A
TEACHER-LEARNER FRAMEWORK

Let us now consider a social-like situation with two agents:
an experienced robot (a teacher) and a naive one (a learner).
The teacher has a well-trained neural network (3), which allows
reproducing some complex behavior [see, e.g., Figs. 1(b)
and 1(c)]. As we have shown in Sec. III the teacher’s behavior
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is defined by the pathway matrix Wx (subindex x refers to the
teacher) and the vector α.

The dynamics of the neural network driving the learner is
given by

ẏ = y � (1n − ργ y) + ε 1n, (5)

where y(t) ∈ [0,1]n is the activation state of the neurons and
ργ (t) is the coupling matrix with entries γ ∈ Rn

+ [counterpart
of α in Eqs. (3) and (4)].

At the beginning the learner has an arbitrary pathway matrix
Wy (counterpart of Wx) and the time interval vector γ . Thus,
the dynamics of the learner can differ significantly from the
dynamics of the teacher. Then the learner’s goal is to learn the
teacher’s behavior and reproduce it.

A. Learning time intervals

Let us first assume that the learner “knows” the pathway
matrix Wx , i.e., the graph of motor motifs of the teacher G.
However, the time intervals of the motifs (T1, . . . ,Tn) given by
α in the teacher and by γ (t) in the learner are unknown. Thus,
we have

Wy(t) = Wx, γ (0) �= α. (6)

Note that the initial values γ (0) are taken from a random
distribution, and we can even have a situation with γj (0) � 1
for some j ∈ V . In such a case the WLC conditions are not
satisfied, and the network evolves to an equilibrium state, and
hence the learner either stays still or performs a single motor
motif.

The learner aims at replicating the teacher’s behavior, i.e.,
y(t) for t > t ′ > 0 must repeat in some sense the behavior
of x(t). To proceed further let us introduce two essential
definitions.

Definition 1. Under the learning of a temporal pattern
we understand a situation when a learner, sharing the same
pathway matrix with the teacher (Wy = Wx), independently
on the initial conditions x(0), y(0), γ (0), can tune its synaptic
couplings γ (t ; x) in such a way that

lim
t→∞ γ (t ; x) = α. (7)

We note that condition (7) implies that the learner will
eventually succeed in reproducing the temporal sequence
shown by the teacher:

lim
t→∞(x(t) − y(t − t∗)) = 0n, (8)

where t∗ is some phase lag. This happens because for a
fixed (stationary) γ ∈ (0,1)n the WLC model (5) has a single
structurally stable attractor. Thus, given (7) at t → ∞ the
learner and the teacher will have the same stable limit cycle in
their phase spaces. Then the phase lag t∗ in (8) corresponds to
a delay in movement along the limit cycle of the teacher and
of the learner.

Definition 2. We say that the learning of a temporal pattern
is exponentially fast if

‖γ (t) − α‖2 � Me−κt , ∀t � 0

for some constants M > 0 and κ > 0.
We note that exponential convergence as opposed to a mere

asymptotic one ensures robustness of the learning process.

1. Learning rule and exponential convergence

Following the adaptive system approach [32,33] we now
postulate the learning rule:

γ (t) = γ0 + WT
y [θ (t) − (x(t) − x0)], (9)

where θ (t) ∈ Rn is the control variable obeying

θ̇ = x � (1n − ργ x) + ε 1n, θ (0) = 0. (10)

Note that learning rule [(9), (10)] does not depend on the direct
knowledge of the teacher’s internal parameters α and even of
the own behavior of the learner y(t), but it is fully based on the
observation of the teacher’s dynamics x(t). Thus, the learning
can be “mental”, i.e., without motor execution.

For further calculations it is convenient to introduce the
quadratic term:

p(t) = WT
y x(t) � x(t). (11)

Then we can formulate the following result.
Theorem 1. Under the learning rule [(9), (10)] the learner

learns exponentially fast any temporal pattern exhibited by the
teacher.

Moreover, assuming that the teacher exhibits a stable T -
periodic pattern [i.e., x(t + T ) = x(t)], we have the following
estimate for the convergence exponent:

κ = min{〈pj 〉}, 〈p〉 = 1

T

∫ t0+T

t0

p(t) dt. (12)

The proof is provided in Appendix A.

2. Numerical simulations

Let us now illustrate Theorem 1 and the learning abilities
of the proposed learning rule. For the sake of visual clarity
we built three-neuron networks for the teacher and the learner.
We then assigned three motor motifs: M1, move right; M2, turn
left; and M3, turn right. The teacher’s sequence of motor motifs
was set by selecting the pathway matrix:

Wx =

⎛
⎜⎝

0 1 0

0 0 1

1 0 0

⎞
⎟⎠, (13)

which imposes the motif sequence M1 → M3 → M2 → · · · .
The time interval vector was set to α = (0.2,0.6,0.8)T , i.e.,
T1 < T2 < T3. Then we set the initial values of the learner’s
couplings γ (0) = (1.6,0.1,2.3)T . Note that in this case
γ1,γ3 > 1, and hence the learner cannot exhibit a WLC
dynamics at the beginning. We now numerically integrate the
model (3), (5), (9), and (10) and by using x(t) estimate the
convergence exponent (12): κ = 0.0134.

Figure 3 illustrates the learning process. As expected
the couplings γ (t) converge exponentially to α [Figs. 3(a)
and 3(b)]. Steplike changes occur when the corresponding
component of p(t) goes through its maximum. This happens
in time intervals when the activation passes from one neuron to
another. At the beginning the learner does not follow a WLC
dynamics, as expected, and neuron 3 (responsible for right
turn) stays active for a long time interval [Fig. 3(c), 0.3T � t �
1.8T , where T is the oscillation period]. Nevertheless, once all
γj enter the region (0,1) [Fig. 3(a), t ≈ 1.5T ] the learner starts
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FIG. 3. Representative example of exponentially fast learning
of temporal patterns. (a) Dynamics of the coupling strengths of
the learner γ (t) (solid curves) converging to the corresponding
couplings of the teacher α (dashed lines). (b) Exponentially fast
convergence of the couplings. (c) Synchronization (with a time shift)
of oscillations in the learner with the teacher. (d) Simulation of the
robots’ movements. The teacher (left) performs zigzag movements,
while the learner (right) at the beginning moves in a circle, but after
two learning cycles it starts replicating the teacher’s behavior (color
coding is the same as in panel c).

generating a WLC behavior that finally synchronizes with the
teacher’s dynamics [Fig. 3(c), t � 2T ].

Figure 3(d) shows simulations of the robots’ movements
driven by the neural networks (see also Figs. 1(b) and 1(c)]. The
teacher performs a zigzag movements. Since the time interval
T3 corresponding to motif M3 (turn right) is the longest, the
robot exhibits a tendency to turn right [Fig. 3(d), teacher]. At
the beginning the learner has neuron 3 activated [Fig. 3(c),
0.3T � t � 1.8T ] and hence it performs circular movements
[Fig. 3(d), learner]. Then, however, it synchronizes with the
teacher and replicates its behavior.

B. Learning a sequence of motor motifs

Let us now consider the general case. At the beginning
the learner starts from an arbitrary orthogonal matrix Wy(0) ∈
Mn×n({0,1}), such that Wy(0) �= Wx . Then Wy(0) induces a
wiring in the graph of motor motifs different from that of the
teacher, i.e., Ey �= Ex .

Without loss of generality we can assume that the teacher
exhibits a T -periodic dynamics:

x(t) = x(t + T ), (14)

with a given pathway matrix Wx and a coupling vector α.
Following the derivation similar to the proof of Theorem 1
(see Appendix A) we obtain the following equation describing
the dynamics of the learner’s couplings:

γ̇ = −p � γ + q, (15)

where p is defined by (11) and

q = WT
y x � [

2x − (
2 − WT

y Wxα
) � WT

y Wxx
]
. (16)

Then from (15) we get

γ (t) = [γ0 + g(t)] � f (t), (17)

where

f (t) = e− ∫ t

0 p(τ ) dτ , g(t) =
∫ t

0
q(τ ) � f (τ ) dτ , (18)

where � stands for the Hadamard division. We note that f (t)
is a strictly positive function and γ (t) does not now converge
to α, but oscillates due to Wy �= Wx .

1. Criterium of successful learning

For a successful learning (Def. 1), the pointwise limit of
γ (t + kT ) [see also (B7)] for k → ∞ must be equal to α,
regardless of the value of t . However, in general it is an
oscillating function given by (17). We then introduce the
following mean-squared deviations ej : R2 → R:

ej (δ) = 1
2 〈[δ1 − (γj − δ2fj )]2〉, ∀j ∈ V, (19)

where δ = (δ1,δ2)T and 〈·〉 denotes the time averaging operator
over the period T . Note that for a given δ the learner can
evaluate (19) along the trajectory, i.e., it is an observable
variable.

We now can find the minimum of ej by evaluating the
gradient ∇ej and the Hessian matrix:

H(ej ) =
(

1 〈fj 〉
〈fj 〉

〈
f 2

j

〉
)

. (20)

We observe that det(H) = Var[fj ] > 0. Thus, ej is convex and
reaches the global minimum at ∇ej = 0. Solving this equation,
we get the coordinates of the minimum:

δ∗
j = H−1

( 〈γj 〉
〈γjfj 〉

)
= (〈γj 〉 − βj 〈fj 〉,βj )T , (21)

where βj = Cov[γj ,fj ]/Var[fj ]. In other words, δ∗
j is com-

posed of the intercept and slope values of linear regression of
γj over fj .

Given this observation we can formulate the following
result.
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Theorem 2. Let neuron i ∈ V be the successor of neuron
j in the learner’s sequence of motor motifs, i.e., (j,i) ∈ Ey .
Then

(j,i) ∈ Ex ⇔ ej (δ∗
j ) = 0. (22)

The proof is given in Appendix B. Equation (22) provides a
criterium that enables indirect inferring on the structure of the
pathway matrix in the teacher Wx by the learner by evaluating
the error e(δ∗

j ).

2. Iterative adjustment of Wy

Based on Theorem 2, we propose an iterative scheme to
adjust the pathway matrix of the learner Wy . For further
calculations, it is convenient to introduce the discrete time k,
such that the timeline is divided into intervals:

Ik = [(k − 1)T ,kT ), k = 1,2, . . . . (23)

We also denote

xk = x(kT ), θk = θ (kT ), γk = γ (kT ). (24)

The learner starts with a random orthogonal matrix Wy[0]
and the time interval vector γ0. Then in each interval Ik we have
the matrix Wy[k − 1] that defines the structure of the coupling
matrix ρk−1(γ ). The dynamics of the learner [compare to (5),

(9), and (10)] is given by (t ∈ Ik)⎧⎪⎨
⎪⎩

ẏ = y � [1 − ρk−1(γ )y] + ε 1n

θ̇ = x � [1 − ρk−1(γ )x] + ε 1n

γ = γk−1 + WT
y [k − 1](θ − θk−1 − x + xk−1).

(25)

We now find δ∗
j using (21) and then evaluate ej (δ∗

j ) from (19).
By applying Theorem 2 [i.e., detecting j such that ej (δ∗

j ) �= 0],
we find edges in the graph Gy that should be rewired (they do
not appear in Gx). After rewiring we get new matrix Wy[k].
This procedure is repeated for k = 1,2, . . .. Thereby, we obtain
a sequence of the matrices {Wy[k]}.

Below we will propose an algorithm of the network rewiring
that ensures

Wy[k] = Wx, ∀k � k∗ > 0, (26)

where k∗ < n, i.e., the number of steps required to find Wx

grows no more than linearly with the number of motor motifs
n. Thus, the learner can learn rapidly the pathway matrix of
the teacher. Then, in accordance with Theorem 1, the learner
also learns the time interval vector α exponentially fast.

C. Learning algorithm

Summarizing the abovementioned results we propose the
following algorithm of learning.

All possible connections

(1 2 3 4 5 6 7 8 . . .
· · · 9 10 11 12 13 )

Iteration 1

(1 3 5 7 8 10 12 )
(2 4 6 9 11 13 )

Iteration 2

Iteration 3 Iteration 4

(1 10 12 4 9 13 7 . . .
. . . 8 2 6 11 3 5 )

Iteration 5

(1 4 7 8 11 )
(2 6 10 12 )(3 5 9 13 )

(1 7 8 )(2 6 11 )
(3 5 10 12 )(4 9 13 )

FIG. 4. Representative example of dynamical learning of the teacher’s graph 1 → 10 → 12 → 4 → 9 → 13 → 7 → 8 → 2 → 6 →
11 → 3 → 5 → · · · defining the sequence of motor motifs in the teacher’s behavior. First panel shows in gray all possible connections.
Iterations from 1 to 5 show correctly identified connections in red and the remaining ones in gray. A legend below each panel shows the learner’s
graph. Filled red triangles correspond to newly identified connections, open red triangles mark previously identified connections, and open
black triangles label wrong connections.
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S0: Initialize the parameters: 1) Select the initial permutation
σ :V → V , σ = (1,2, . . . ,n); 2) Select random γ0; 3)
θ0 ← 0; 4) k ← 0; 5) � ← V .

S1: While � �= ∅ repeat:
(1) k ← k + 1.
(2) Set Wy[k − 1] = (wij )n

i,j=1, where

wij =
{

1 if i = σ (j )

0 otherwise.
(27)

(3) Integrate (25) over Ik by using the coupling
matrix ρk−1 given by Wy[k − 1].

(4) Find δ∗
j and ej (δ∗

j ) from (19)–(21).
(5) Set � = {j ∈ V : ej (δ∗

j ) �= 0} and label its el-
ements in ascending order � = {ω1, . . . ,ωm}, with
ωk < ωk+1, ∀k < m.

(6) For each i ∈ {1, . . . ,m} update the permutation
σ (wi) ← σ (wi+), where

i+ =
{
i + 1 if i < m

1 if i = m.
(28)

S2: Using the last Wy (note that now Wy = Wx) apply the
learning rule (9) and (10) for t � kT .

The learning time of the proposed algorithm is given by the
following theorem.

Theorem 3. The iterative learning process described at step
S1 of the algorithm converges in (n − 1) iterations at most.

The proof is provided in Appendix C. Thus, the learning
time grows linearly with the number of neurons, while the
number of possible behaviors grows extremely fast, as facto-
rial.

Let us now illustrate the algorithm numerically. We built two
neural networks with 13 neurons each (a teacher and a learner)
and selected a random pathway matrix Wx for the teacher. Then
we initialized the learner (step S0) and started the algorithm.
Figure 4 illustrates the process of learning of the connectivity
matrix Wy (step S1).

At the beginning there exist 4.79 × 108 possible graphs of
the motor motifs (panel “all possible connections”). At the
first iteration (lasting one period of the teacher’s behavior) the
learning algorithm identifies that the link going from neuron 7
to neuron 8 exists in the teacher, while the others defined by
Wy[0] do not (Fig. 4, Iteration 1). Thus, we keep link 7 → 8
and change the others (S1, item 6 of the algorithm). Then a new
wiring is set up and we repeat the calculation over the second
period of the teacher’s behavior. Within Iteration 2 the learner
finds two more correct links: 10 → 12 and 3 → 5 (Fig. 4,
Iteration 2). In the following three iterations, the learner gets
to learn all connections 1 → 10 → 12 → · · · . Thus, it was
able to learn the teacher’s sequence out of 4.79 × 108 possible
cases in only five iterations or demonstrations of the teacher’s
behavior.

Then in step S2 the time intervals of the motor motifs (the
values of γ ) converge exponentially (Theorem 1). Note that
this process does not depend on the number of motifs. Thus,
the time interval required to learn a complex motor behavior

grows linearly with the complexity of the behavior (i.e., with
the number of motifs).

V. EXPERIMENTAL VALIDATION

Let us now test experimentally the proposed learning model.
We equipped two robotic platforms [Pioneer 3DX, Adept
Mobilerobotics, linear sizes l × w: 45.5 × 38.1 cm, Fig. 1(a)]
with neural networks consisting ofn = 6 neurons. The network
dynamics had been implemented in Matlab (Mathworks) run-
ning on an on-board Intel NUC PC connected to the platform
through a COM interface. One platform played the role of a
teacher (with a predesigned complex motor behavior), while
the other one was designated as a learner with the driving
network randomly initialized.

In both platforms we implemented six motor motifs pro-
vided in Sec. II. The linear robot velocity was set to 10 cm/s
and the radii of turns to 17 cm. These parameters were chosen to
fit the robot’s behavior within the available arena (8 × 3.5˜m).
During all experiments the robots’ behavior was recorded by a
wide-angle zenithal USB camera. The geometric distortions of
the actual position of the robots in the arena (due to projection)
were corrected by applying an appropriate transformation.

The neural network dynamics of the teacher has been
translated into motor commands by

i(t) = argmax{xj (t)}6
j=1, (29)

where i(t) ∈ {1,2, . . . ,6} is the number of the motor motif
performed by the robot at time instant t . The same mechanism
has been used to drive the learner.

The pathway matrix Wx , defining the coupling matrix ρα ,
and hence the sequence of the motor motifs of the teacher,
was selected such that it reproduced the graph shown in
Fig. 1(c) (i.e., M1 → M3 → M6 → M4 → M2 → M5). The
values of α were set in such a way that the durations of
the motor motifs were T1 = 7.0 s, T2 = 7.1 s, T3 = 4.1 s,
T4 = 4.1 s, T5 = 9.4 s, T6 = 11.0 s. Then during one period
T = ∑

Ti = 42.7 s the teacher exhibited a behavior similar
to that shown schematically in Fig. 1(c). Figure 5(a) shows
the teacher’s trajectory corresponding to five repetitions of the
motor pattern. The robot repeats the behavior shown in Fig. 1(c)
and produces a complex “flower”-like trajectory [Fig. 5(a)].

The neural network of the learner was initialized at random
(Wy and γ were arbitrary chosen). Then the learning algorithm
(Sect. IV C) has been activated and the robot started moving.
Figure 5(b) shows the robot trajectory. At the beginning
the robot performed quite chaotic movements, only partially
reproducing the teacher’s motor pattern. However, after three
periods the learner was able to capture completely the pathway
matrix Wx [i.e., Wy(t) = Wx for t > 4T ] and started repeating
the teacher pattern quite reliably. Then the values of γ were
also tuned (exponentially fast), and finally the learner was able
to reproduce the teacher’s behavior faithfully.

To quantify the difference between the trajectories per-
formed by the robots we introduced the following metric:

D(t) = min
τ∈[0,T ]

[
1

T

∫ t

t−T

|cT (s) − cL(s − τ )|2 ds

] 1
2

, (30)
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FIG. 5. Experimental validation of learning. (a) Robot teacher
implements the behavior composed of six motor motifs shown in
Fig. 1(c). The brightness of colors corresponds to time (the brighter,
the closer to the present). (b) Trajectory of the robot learner. At the
beginning it differs significant from the teacher’s behavior. However,
in only three cycles the robot does learn the sequence of turns,
and then two more cycles are needed for final adjustment of the
coupling strengths. Eventually the learner replicates almost exactly
the behavior of the teacher. (c) Quantification of the learning error
(30), defined as the distance between trajectories of the teacher
and learner. Inset illustrates the trajectory curvature of the learner
(blue curve) with superimposed curvatures of the teacher in three
time windows marked by circles of different colors. The level of
coincidence increases with time.

where cT and cL are the curvatures of the teacher’s and learner’s
trajectories, respectively, evaluated by

c(t) = x̃ ′(t)ỹ ′′(t) − ỹ ′(t)x̃ ′′(t)
(x̃ ′(t)2 + ỹ ′(t)2)3/2

, (31)

where (x̃(t),ỹ(t)) is the parametric robot trajectory captured by
the video camera. Since the linear robot velocity is constant,
curvature (31) describes uniquely the robot trajectory on a two-
dimensional plane. We also note that the metric (30) is invariant
with respect to the translational and rotational symmetries and
the phase lag in the learner [see Eq. (8)]. Thus, the introduced
metric fulfills all requirements for a distance measure between
two trajectories.

Experimentally acquired trajectories are not precise due to
a number of reasons, starting from errors in the odometry
[30], identification of the robot position, and ending by the
distortions produced by the camera. Thus, to evaluate the
metric (30) we upsampled the trajectories shown in Figs. 5(a)
and 5(b) and denoised the data by a continuous wavelet
approach [34]. Figure 5(c) shows the dynamics of the distance
between the trajectories of the teacher and the learner. As
expected the distance strongly oscillates at the beginning due to
rewiring and changes of γ , but then decreases and approaches
a stationary level, defined by measurement and motor noise.

Thus, the learner robot can indeed adapt “on the fly” the wiring
of its decision-making network and mimic the movements of
the teacher.

VI. CONCLUSION

Cognitive learning of motor behaviors is a complicated
problem even for humans. In this work, we have proposed
an efficient mechanism for dynamical learning in neural
networks. In a social-like situation, a teacher (mobile robot
in experiments) can exhibit a complex behavior consisting
of a sequence of n motor motifs (simple motor actions). In
general, there exist (n − 1)! combinations of motifs. Moreover,
all motifs have specific time durations that also play an
important role in formation of the final motor behavior. Thus,
the complexity and variety of the motor patterns available
to an agent grow extremely rapidly with n. This poses two
problems: (1) How can a small neural network implement such
a variety of different behaviors? and (2) How can a learner
(i.e., another neural network) copy the unique behavior of the
teacher starting from random initial conditions?

To implement a motor behavior (e.g., to drive a robot
teacher) we have proposed to link the output of n neurons with
n motor motifs. Then an activation of a given neuron evokes
the execution of a corresponding motor motif. This approach
allows separating the “behavioral” neural network from the
executive motor part. Thus, the network dynamics does not
depend on specific motor motifs and physical properties
of the agent, and hence can be easily transferred to other
technical devices. To avoid contradicting commands in such an
architecture, two neurons cannot be active simultaneously. This
property has been achieved by employing the WLC paradigm
that ensures sequential “switching” of neurons in the network
and also enables simple independent control of the durations
of “on” states of the neurons [16,17,24].

Using the motor motif approach, a learner has to solve two
tasks: (1) Find the teacher’s graph of motifs (i.e., the pathway
matrix) and (2) Adjust the time durations of motifs (i.e., the
coupling strengths). To deal with the latter task, earlier we
provided a neural network model that enabled learning of the
activation times [16,35]. However, to reproduce the teacher’s
behavior it was necessary to start simulation from appropriate
initial conditions (although rather general). Besides, learning
required a long time. Here we have introduced a learning
rule and proved its exponentially fast (and thus robust) con-
vergence independently of the initial conditions (Theorem 1).
We note that the learning rule does not depend on the learner’s
state variable. Thus, during the learning an explicit motor
implementation of the behavior is not necessary. Therefore,
the agent can simply “observe” the teacher without moving
itself. Such a silent or “mental” learning can be observed in
humans and in artificial cognitive agents [36].

The learning of the teacher’s graph (task 1) is based on the
dynamic evaluation of the fitness of interneuron couplings over
the learner’s trajectory. We have provided a rigorous approach
(Theorem 2) that enables network rewiring “on the fly.” Such
a rewiring requires at most (n − 1) iterations of the algorithm
for its complete convergence (Theorem 3). Thus, the learning
time grows only linearly with the number of motor motifs.
In a numerical simulation with networks of n = 13 neurons
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we observed that the learner could find the teacher’s pathway
matrix (one out of 4.79 × 108 possible) in five steps only.

Thus, the provided approach enables fast learning in social-
like situations. To validate it, we tested the algorithm on mobile
robots. First, we implemented six motor motifs (go straight,
turn left, etc.) as executable commands. These motifs can be
considered as “genetically” programed primitives available to
a roving robot. Then we implemented neural networks in two
robots and designated one of them as a teacher and the other
as a learner. The teacher has been programmed to reproduce
a complex flower-like trajectory, while the learner was set
at random. Then the learner started to learn the teacher’s
trajectory. At the beginning its movements were quite chaotic.
However, after few cycles the learner has successfully “copied”
the teacher’s behavior. To confirm quantitatively the learning
behavior, we have proposed a special metric, invariant with
respect to translational and rotational symmetries and to a
time lag in the execution of trajectories. We have shown that
the distance between the teacher’s trajectory and the learner’s
behavior decreases in time.

In conclusion, the reported mechanism of learning is quite
general and can be used for replication of different behaviors
on different platforms. Moreover, the behaviors to be replicated
need not be motor. For instance, one can also think about
replication of sound patterns or speech. It may also serve as
a linker, connecting different scenarios and behaviors during
cognitive navigation [37].
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APPENDIX A: PROOF OF THEOREM 1

First, let us recall that the common operation of multipli-
cation of matrices has a higher priority then the Hadamard
operations. Now deriving (9) and using Eqs. (3) and (10) we
obtain

γ̇ = −WT (x � (ργ − ρα)x). (A1)

Then we observe that (ργ − ρα)x = W ((γ − α) � x). Substi-
tuting this to (A1) we get

γ̇ = −WT x � (γ − α) � x. (A2)

Therefore,

d(γ − α)

dt
= −p � (γ − α), (A3)

where p ∈ C(R,[0,1]n), given by (11), is a function of time
completely defined by the dynamics of the teacher. Integrating
(A3) we obtain

γ (t) − α = (γ0 − α) � e− ∫ t

0 p(τ ) dτ . (A4)

Since x(t) = 0 is not a solution of (3) and hence x(t) > 0
under a WLC dynamics, there exists κ > 0 such that p(t) � κ ,
which ensures the exponential convergence: ‖γ (t) − α‖ �

‖γ0 − α‖e−κt . If x(t) is periodic, then a lower bound for κ

is given by (12). �

APPENDIX B: PROOF OF THEOREM 2

1. Preliminary results

For further calculations it is convenient to introduce two
constants:

A = f (T ) ∈ (0,1)n, B = g(T ) ∈ Rn, (B1)

where f , g are given by (18), and T is the oscillation period of
the teacher’s pattern. These constants A and B are completely
determined by the teacher’s dynamics and the pathway matrix
of the learner, Wy .

Lemma 1. Let T be the period of the teacher’s pattern
x(t + T ) = x(t). Then, under the learning rule (15) and (16),
we have

γ (t + kT ) = γ (t) − (1n − A◦k) � (γ0

−A � B � (1n − A)) � f (t). (B2)

Note that (·)◦k in (B2) stands for the Hadamard kth power.
Proof. We notice that p(t) [see Eq. (11)] is T -periodic and

thus ∫ t+kT

0
p(τ ) dτ = k

∫ T

0
p(τ ) dτ +

∫ t

0
p(τ ) dτ.

Therefore,

f (t + kT ) = A◦k � f (t). (B3)

Then q(t) [see Eq. (16)] is also T -periodic, which together
with (B3) yields

g(t + kT )

=
k−1∑
l=0

∫ (l+1)T

lT

q(τ ) � f (τ ) dτ +
∫ kT +t

kT

q(τ ) � f (τ ) dτ

= B �
k−1∑
l=0

A◦−l + A◦−k �
∫ t

0
q(τ ) � f (τ ) dτ . (B4)

Now by substituting (B3) and (B4) into (17) we get

γ (t + kT ) = γ0 � A◦k � f (t) + B �
k∑

l=1

A◦l � f (t) + γ (t)

−γ0 � f (t) = γ (t)

−
[

(1n − A◦k) � γ0 − B �
k∑

l=1

A◦l
]

� f (t).

(B5)

Finally, since A ∈ (0,1)n we can evaluate the geometric
series:

k∑
l=1

A◦l = A � (1n − A◦k) � (1n − A), (B6)

which yields (B2). �
Corollary 1. Given the sequence

{γ (t + kT ) : 0 � t < T }∞k=1 ⊂ C([0,T ),Rn),
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there exists a constant vector C ∈ Rn such that

lim
k→∞

γ (t + kT ) = γ (t) − C � f (t) ∀t ∈ [0,T ). (B7)

Proof. Since A ∈ (0,1)n, limk→∞ A◦k = 0. Then denoting
C = γ0 − A � B � (1n − A) and applying Lemma 1 we arrive
to (B7). �

2. Proof of the theorem

On the one hand, given that (j,i) ∈ Ex ∩ Ey and taking into
account Eq. (A4) we get

γj (t + kT ) = αj + (γj (0) − αj )fj (t + kT ), (B8)

and thus

lim
k→∞

γj (t + kT ) = αj . (B9)

Then by Corollary 1 there exists Cj ∈ R such that

γj (t) = lim
k→∞

γj (t + kT ) + Cjfj (t) = αj + Cjfj (t). (B10)

Thus, by choosing δ∗
j = (αj ,Cj )T we obtain ej (δ∗

j ) = 0. This
δ∗
j matches the obtained from (21).

On the other hand, if ej (δ∗
j ) = 0 then

γj (t) = δ∗
j1 + δ∗

j2fj (t) ⇒ γ̇j (t) = δj2ḟj (t). (B11)

Now, we notice that δ∗
j2ḟj = −pjδ

∗
j2fj = −pj (γj − δ∗

j1) and
thus

γ̇j (t) = −pj (t)γj (t) + qj (t), (B12)

where qj (t) = pj (t)δ∗
j1. Let l ∈ V be the predecessor of i ∈ V ,

i.e., (l,i) ∈ Ex . From Eq. (16) we get

qj (t) = 2pj (t) + (αl − 2)xi(t)xl(t). (B13)

Now comparing the expressions for qj we get

xl(t) = δ∗
j1 − 2

αl − 2
xj (t), (B14)

which yields l = j , δ∗
j1 = αj and thus the i-th rows of the

pathway matrices Wx and Wy are the same. �

APPENDIX C: PROOF OF THEOREM 3

Let us define, for each vertex j ∈ V , the cumulative set of
tested successors up to step k > 0:

Sk(j ) = ∪k
l=1{σl(j )}. (C1)

We note that σ (j ) changes (item 6 of the algorithm) ensuring an
exhaustive sequential search due to the rule σ (wi) ← σ (wi+1)
and the ascending order established for � (item 5 of the
algorithm). If at step k the tested successor matches the
teacher’s network (item 4 of the algorithm), then the j th node
is excluded from � at step k + 1. Therefore, Sk+1(j ) stops
increasing. Thus, we have

j ∈ �k ⇔ |Sk+1(j )| = k + 1. (C2)

Now we notice that Sk(j ) ⊂ V \ {j} and hence the cardinality
of the cumulative sets satisfies the inequality

|Sk(j )| � |V \ {j}| = n − 1, k = 1,2, . . . . (C3)

Using (C2) and (C3) we thus obtain that ∀j ∈ V : j ∈ �k

iff k < n − 1. Therefore, �n−1 = ∅, i.e., the iterative learning
process converges at most in n − 1 steps. �

[1] W. Hoppitt and K. N. Laland, Social Learning: An Introduction
to Mechanisms, Methods, and Models (Princeton University
Press, Princeton, 2013).

[2] V. Gallesea and A. Goldmanb, Mirror neurons and the simulation
theory of mind-reading, Trend. Cogn. Sci. 4, 252 (2000).

[3] R. Cook, G. Bird, C. Catmur, C. Press, and C. Heyes, Mirror
neurons: From origin to function, Behav. Brain Sci. 37, 177
(2014).

[4] S. Schaal, Is imitation learning the route to humanoid robots?
Trend. Cogn. Sci. 3, 233 (1999).

[5] C. Breazeal, D. Buchsbaum, J. Gray, D. Gatenby, and B.
Blumberg, Learning from and about others: Towards using
imitation to bootstrap the social understanding of others by
robots, Artif. Life 11, 31 (2005).

[6] E. Broadbent, R. Stafford, and B. MacDonald, Acceptance of
healthcare robots for the older population: Review and future
directions, Int. J. Soc. Robot. 1, 319 (2009).

[7] U. Alon, Network motifs: theory and experimental approaches,
Nat. Rev. Genet. 8, 450 (2007).

[8] F. Stulp, E. Oztop, P. Pastor, M. Beetz, and S. Schaal, Compact
models of motor primitive variations for predictable reaching
and obstacle avoidance, in Proc. Conf. IEEE-RAS on Humanoid
Robots (IEEE, 2009), pp. 589–595.

[9] A. Colome and C. Torras, Dimensionality reduction and motion
coordination in learning trajectories with dynamic movement
primitives, in Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst.
(IEEE, 2014), pp. 1414–1420.

[10] F. Meier, E. Theodorou, F. Stulp, and S. Schaal, Movement
segmentation using a primitive library, in Proc. IEEE/RSJ Int.
Conf. Intell. Robot. Syst. (IEEE, 2011), pp. 3407–3412.

[11] J. A. Villacorta-Atienza, C. Calvo, S. Lobov, and V. A. Makarov,
Limb movement in dynamic situations based on generalized
cognitive maps, Math. Model. Nat. Phenom. 12, 15 (2017).

[12] S. Schaal, P. Mohajerian, and A. Ijspeert, Dynamics systems vs.
optimal control—A unifying view, Progr. Brain Res. 165, 425
(2007).

[13] T. Matsubara, S. Hyon, and J. Morimoto, Learning parametric
dynamic movement primitives from multiple demonstrations,
Neur. Netw. 24, 493 (2011).

[14] Y. Tassa, T. Erez, and E. Todorov, Synthesis and stabilization
of complex behaviors through online trajectory optimization,
in IEEE/RSJ Int. Conf. Intell Robots Syst. (IEEE, 2012),
pp. 4906–4913.

[15] A. R. Ansari and T. D. Murphey, Sequential action control:
Closed-form optimal control for nonlinear and nonsmooth sys-
tems, IEEE Trans. Robot. 32, 1196 (2016).

052308-10

https://doi.org/10.1016/S1364-6613(00)01500-X
https://doi.org/10.1016/S1364-6613(00)01500-X
https://doi.org/10.1016/S1364-6613(00)01500-X
https://doi.org/10.1016/S1364-6613(00)01500-X
https://doi.org/10.1017/S0140525X13000903
https://doi.org/10.1017/S0140525X13000903
https://doi.org/10.1017/S0140525X13000903
https://doi.org/10.1017/S0140525X13000903
https://doi.org/10.1016/S1364-6613(99)01327-3
https://doi.org/10.1016/S1364-6613(99)01327-3
https://doi.org/10.1016/S1364-6613(99)01327-3
https://doi.org/10.1016/S1364-6613(99)01327-3
https://doi.org/10.1162/1064546053278955
https://doi.org/10.1162/1064546053278955
https://doi.org/10.1162/1064546053278955
https://doi.org/10.1162/1064546053278955
https://doi.org/10.1007/s12369-009-0030-6
https://doi.org/10.1007/s12369-009-0030-6
https://doi.org/10.1007/s12369-009-0030-6
https://doi.org/10.1007/s12369-009-0030-6
https://doi.org/10.1038/nrg2102
https://doi.org/10.1038/nrg2102
https://doi.org/10.1038/nrg2102
https://doi.org/10.1038/nrg2102
https://doi.org/10.1051/mmnp/201712403
https://doi.org/10.1051/mmnp/201712403
https://doi.org/10.1051/mmnp/201712403
https://doi.org/10.1051/mmnp/201712403
https://doi.org/10.1016/S0079-6123(06)65027-9
https://doi.org/10.1016/S0079-6123(06)65027-9
https://doi.org/10.1016/S0079-6123(06)65027-9
https://doi.org/10.1016/S0079-6123(06)65027-9
https://doi.org/10.1016/j.neunet.2011.02.004
https://doi.org/10.1016/j.neunet.2011.02.004
https://doi.org/10.1016/j.neunet.2011.02.004
https://doi.org/10.1016/j.neunet.2011.02.004
https://doi.org/10.1109/TRO.2016.2596768
https://doi.org/10.1109/TRO.2016.2596768
https://doi.org/10.1109/TRO.2016.2596768
https://doi.org/10.1109/TRO.2016.2596768


FAST SOCIAL-LIKE LEARNING OF COMPLEX … PHYSICAL REVIEW E 97, 052308 (2018)

[16] A. Selskii and V. Makarov, Synchronization of heteroclinic
circuits through learning in coupled neural networks, Regular
Chaotic Dyn. 21, 97 (2016).

[17] M. Rabinovich, A. Volkovskii, P. Lecanda, R. Huerta, H. Abar-
banel, and G. Laurent, Dynamical Encoding by Networks of
Competing Neuron Groups: Winnerless Competition, Phys. Rev.
Lett. 87, 068102 (2001).

[18] N. Benito, G. Martin-Vazquez, J. Makarova, V. Makarov, and
O. Herreras, The right hippocampus leads the bilateral integra-
tion of gamma-parsed lateralized information, Elife 5, e16658
(2016).

[19] G. Martin-Vazquez, N. Benito, V. A. Makarov, O. Herreras,
and J. Makarova, Diversity of LFPs activated in different target
regions by a common CA3 input, Cereb. Cortex 26, 4082 (2016).

[20] H. Sompolinsky and I. Kanter, Temporal Association in Asym-
metric Neural Networks, Phys. Rev. Lett. 57, 2861 (1986).

[21] I. Tyukin, A. Gorban, C. Calvo, J. Makarova, and V. A. Makarov,
High-dimensional brain: A tool for encoding and rapid learning
of memories by single neurons, Bull. Math. Biol. (2018), doi:
10.1007/s11538-018-0415-5.

[22] E. Del Rio, V. A. Makarov, M. G. Velarde, and W. Ebeling,
Mode transitions and wave propagation in a driven-dissipative
Toda-Rayleigh ring, Phys. Rev. E 67, 056208 (2003).

[23] S. A. Lobov, M. O. Zhuravlev, V. A. Makarov, and V. B.
Kazantsev, Noise enhanced signaling in STDP driven spiking-
neuron network, Math. Model. Nat. Phenom. 12, 109 (2017).

[24] M. A. Cohen and S. Grossberg, Absolute stability of global
pattern formation and parallel memory storage by competitive
neural networks, IEEE Tran. Syst. Man Cyber. 13, 815 (1983).

[25] P. Varona, M. Rabinovich, A. Selverston, and Y. Arshavsky,
Winnerless competition between sensory neurons generates
chaos: A possible mechanism for molluscan hunting behavior,
Chaos 12, 672 (2002).

[26] V. S. Afraimovich, V. P. Zhigulin, and M. I. Rabinovich, On
the origin of reproducible sequential activity in neural circuits,
Chaos 14, 1123 (2004).

[27] F. Hadaeghi, M. Reza, H. Golpayegani, and G. Murray, Towards
a complex system understanding of bipolar disorder: A map
based model of a complex winnerless competition, J. Theor.
Biol. 376, 74 (2015).

[28] T. Rost, M. Deger, and M. Nawrot, Winnerless competition in
clustered balanced networks: Inhibitory assemblies do the trick,
Biol. Cybern. 112, 81 (2018).

[29] P. Arena, L. Fortuna, D. Lombardo, L. Patane, and M. G. Velarde,
The winnerless competition paradigm in cellular nonlinear
networks: Models and applications, Int. J. Circ. Theor. Appl.
37, 505 (2009).

[30] C. Calvo, J. Villacorta-Atienza, V. I. Mironov, V. Gallego, and
V. A. Makarov, Waves in isotropic totalistic cellular automata:
Application to real-time robot navigation, Adv. Compl. Syst. 19,
1650012 (2016).

[31] V. Afraimovich, M. Rabinovich, and P. Varona, Heteroclinic
contours in neural ensembles and the winnerless competition
principle, Int. J. Bifurc. Chaos 14, 1195 (2004).

[32] I. Yu Tyukin, D. V. Prokhorov, and C. van Leeuwen, Adapta-
tion and parameter estimation in systems with unstable target
dynamics and nonlinear parametrization. IEEE Trans. Autom.
Contr. 52, 1543 (2007).

[33] I. Tyukin, Adaptation in Dynamical Systems (Cambridge
University Press, Cambridge, 2011).

[34] A. E. Hramov, A. A. Koronovskii, V. A. Makarov, A. N. Pavlov,
and E. Sitnikova, Wavelets in Neuroscience (Springer, Berlin,
Heidelberg, 2015).

[35] V. A. Makarov, C. Calvo, V. Gallego, and A. Selskii, Synchro-
nization of heteroclinic circuits through learning in chains of
neural motifs, IFAC-PapersOnLine 49, 80 (2016).

[36] J. Villacorta-Atienza and V. A. Makarov, Neural network
architecture for cognitive navigation in dynamic environments,
IEEE Trans. Neur. Netw. Learn. Syst. 24, 2075 (2013).

[37] J. Villacorta-Atienza, C. Calvo, and V. A. Makarov, Prediction-
for-CompAction: Navigation in social environments using gen-
eralized cognitive maps, Biol. Cybern. 109, 307 (2015).

052308-11

https://doi.org/10.1134/S1560354716010056
https://doi.org/10.1134/S1560354716010056
https://doi.org/10.1134/S1560354716010056
https://doi.org/10.1134/S1560354716010056
https://doi.org/10.1103/PhysRevLett.87.068102
https://doi.org/10.1103/PhysRevLett.87.068102
https://doi.org/10.1103/PhysRevLett.87.068102
https://doi.org/10.1103/PhysRevLett.87.068102
https://doi.org/10.7554/eLife.16658
https://doi.org/10.7554/eLife.16658
https://doi.org/10.7554/eLife.16658
https://doi.org/10.7554/eLife.16658
https://doi.org/10.1093/cercor/bhv211
https://doi.org/10.1093/cercor/bhv211
https://doi.org/10.1093/cercor/bhv211
https://doi.org/10.1093/cercor/bhv211
https://doi.org/10.1103/PhysRevLett.57.2861
https://doi.org/10.1103/PhysRevLett.57.2861
https://doi.org/10.1103/PhysRevLett.57.2861
https://doi.org/10.1103/PhysRevLett.57.2861
https://doi.org/10.1007/s11538-018-0415-5
https://doi.org/10.1103/PhysRevE.67.056208
https://doi.org/10.1103/PhysRevE.67.056208
https://doi.org/10.1103/PhysRevE.67.056208
https://doi.org/10.1103/PhysRevE.67.056208
https://doi.org/10.1051/mmnp/201712409
https://doi.org/10.1051/mmnp/201712409
https://doi.org/10.1051/mmnp/201712409
https://doi.org/10.1051/mmnp/201712409
https://doi.org/10.1109/TSMC.1983.6313075
https://doi.org/10.1109/TSMC.1983.6313075
https://doi.org/10.1109/TSMC.1983.6313075
https://doi.org/10.1109/TSMC.1983.6313075
https://doi.org/10.1063/1.1498155
https://doi.org/10.1063/1.1498155
https://doi.org/10.1063/1.1498155
https://doi.org/10.1063/1.1498155
https://doi.org/10.1063/1.1819625
https://doi.org/10.1063/1.1819625
https://doi.org/10.1063/1.1819625
https://doi.org/10.1063/1.1819625
https://doi.org/10.1016/j.jtbi.2015.02.020
https://doi.org/10.1016/j.jtbi.2015.02.020
https://doi.org/10.1016/j.jtbi.2015.02.020
https://doi.org/10.1016/j.jtbi.2015.02.020
https://doi.org/10.1007/s00422-017-0737-7
https://doi.org/10.1007/s00422-017-0737-7
https://doi.org/10.1007/s00422-017-0737-7
https://doi.org/10.1007/s00422-017-0737-7
https://doi.org/10.1002/cta.567
https://doi.org/10.1002/cta.567
https://doi.org/10.1002/cta.567
https://doi.org/10.1002/cta.567
https://doi.org/10.1142/S0219525916500120
https://doi.org/10.1142/S0219525916500120
https://doi.org/10.1142/S0219525916500120
https://doi.org/10.1142/S0219525916500120
https://doi.org/10.1142/S0218127404009806
https://doi.org/10.1142/S0218127404009806
https://doi.org/10.1142/S0218127404009806
https://doi.org/10.1142/S0218127404009806
https://doi.org/10.1109/TAC.2007.904448
https://doi.org/10.1109/TAC.2007.904448
https://doi.org/10.1109/TAC.2007.904448
https://doi.org/10.1109/TAC.2007.904448
https://doi.org/10.1016/j.ifacol.2016.07.986
https://doi.org/10.1016/j.ifacol.2016.07.986
https://doi.org/10.1016/j.ifacol.2016.07.986
https://doi.org/10.1016/j.ifacol.2016.07.986
https://doi.org/10.1109/TNNLS.2013.2271645
https://doi.org/10.1109/TNNLS.2013.2271645
https://doi.org/10.1109/TNNLS.2013.2271645
https://doi.org/10.1109/TNNLS.2013.2271645
https://doi.org/10.1007/s00422-015-0644-8
https://doi.org/10.1007/s00422-015-0644-8
https://doi.org/10.1007/s00422-015-0644-8
https://doi.org/10.1007/s00422-015-0644-8



