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Loss surface of XOR artificial neural networks
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Training an artificial neural network involves an optimization process over the landscape defined by the cost
(loss) as a function of the network parameters. We explore these landscapes using optimization tools developed
for potential energy landscapes in molecular science. The number of local minima and transition states (saddle
points of index one), as well as the ratio of transition states to minima, grow rapidly with the number of nodes in
the network. There is also a strong dependence on the regularization parameter, with the landscape becoming more
convex (fewer minima) as the regularization term increases. We demonstrate that in our formulation, stationary
points for networks with Nh hidden nodes, including the minimal network required to fit the XOR data, are also
stationary points for networks with Nh + 1 hidden nodes when all the weights involving the additional node are
zero. Hence, smaller networks trained on XOR data are embedded in the landscapes of larger networks. Our
results clarify certain aspects of the classification and sensitivity (to perturbations in the input data) of minima
and saddle points for this system, and may provide insight into dropout and network compression.

DOI: 10.1103/PhysRevE.97.052307

I. INTRODUCTION

In recent years, machine-learning [1], and particularly deep
learning [2,3], techniques have proved to be highly effective
in automating complex tasks. Applications include face and
object recognition, scene understanding, natural language
processing, speech recognition, game playing, stock-market
analysis, and prognostic health management, among others.

A machine-learning algorithm can be viewed as a functional
mapping between inputs and outputs, the parameters of the
mapping being tunable. The learning or training process
involves optimization of parameters to minimize a cost (or loss)
function. The loss surface describes the relationship between
the values of the parameters and a performance metric, which
may include a regularization term. The reference input-output
data points used in the learning stage comprise the training set.
The performance metric measures the deviation between the
network output and the true output for a given input, and the
regularization term may be included to reduce overfitting.

For some machine-learning algorithms, such as linear
regression, ridge and lasso regression, etc., the loss surface
is usually convex, meaning that there is a single minimum,
which simplifies the optimization task. However, for more
sophisticated machine-learning techniques, most notably ar-
tificial neural networks (ANNs) commonly encountered in
deep learning, the loss surface is nonconvex [3] with multiple
minima. In fact, some studies have demonstrated that the loss
surface of single-neuron models may have an exponentially
increasing number of minima with increasing number of inputs
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(see, e.g., Ref. [4]). In Ref. [5], it is shown that training a
network with a single hidden layer containing hidden nodes,
one output and n inputs, is a nondeterministic polynomial-time
(NP)-complete problem. Commonly used iterative gradient
descent-based algorithms for optimization can converge to lo-
cal minima rather than the global minimum. Different random
initializations of the iterative optimization process will lead to
different local minima, but are unlikely to locate the global
minimum reliably unless the number of minima is small.

Despite the large number of local minima expected for
highly nonlinear and nonconvex functions, deep learning
frameworks perform reasonably well, as evaluated in terms
of performance on previously unseen test data. One of the
possible explanations for this observation is that there may be
no “bad” minima at all [6–13], where “good” and “bad” minima
are loosely defined in terms of the quality of the network
performance on the training set (i.e., the empirical error). In
Refs. [8,14], however, it was also argued that difficulties in
reaching the global minimum in such models arise from the
proliferation of saddle points, and further [8], that saddle points
give an illusion of a “bad” minimum because they correspond
to higher cost function values. This situation slows down
learning, which is typically implemented using gradient-based
methods, such as stochastic gradient descent [15,16] rather
than second-order methods. Alternative methods to escape
from saddle points have therefore been proposed, but many
of them eventually struggle to deal with the NP-hardness of
the problem [17]. The large ratio of saddle points to minima is
well known for molecular energy landscapes, both from theory
[18] and numerical investigations [19–24].

Recently, Ref. [25] showed that the loss surfaces of deep
linear neural networks (i.e., multilayer neural networks with
activation functions that are linear with respect to the input,
but with possibly nonlinear loss functions) as well as those of
certain special but unrealistic cases of deep nonlinear networks,
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have degenerate global minima with the same value for the cost
function. Moreover, they also showed that for these networks,
“bad” saddle points are indeed present, potentially making the
task of reaching a global minimum difficult.

In Ref. [26], the loss surface of a fully connected feed-
forward deep network with one output and rectified linear
(ReLU) activation functions was approximated by the mean-
field spherical p-spin model of statistical physics [27–29], to
take advantage of analytical results based on random matrix
theory [22,30–34]. With this approximate model, the authors
showed (and later further confirmed [35]) that the number of
saddle points with lower indices, at which the value of the loss
surface is beyond a certain threshold, diminishes exponentially
as the size of the deep network increases. The saddle points
and minima at which the value of the loss function is below
the threshold were found to be “good” minima. Hence, the
authors concluded that the deeper the network, the less likely
it is to find “bad” minima.

In Ref. [36] the ANN landscape was explored systematically
using optimization tools developed in the context of molecular
potential energy landscapes [37] (see also Refs. [38,39] for
other applications). In particular, a three-layer ANN architec-
ture was employed to fit the Modified National Institute of
Standards and Technology (MNIST) data [40], and the result-
ing landscapes for the cost function were found to exhibit a sin-
gle funnel structure [37,41,42]. This organization is associated
with efficient relaxation to the global minimum in molecular
science and has been identified with “magic number” clusters,
crystallization, and protein-folding landscapes [37,43,44]. Al-
though the number of local minima increases exponentially
with the number of degrees of freedom, relaxation to the global
minimum is effectively guided downhill in energy (the value
of the loss function in an ANN landscape) over relatively low
barriers [37]. Reference [36] provides a review, highlighting
the connections between molecular potential energy surfaces
and ANN landscapes.

In this paper, we present a detailed analysis of the landscape
of the loss function for ANNs using tools employed in the
analysis of energy landscapes. In particular, we aim to perform
a (near) exhaustive search of minima, saddle points of index
one (transition states [45]), as well as pathways that connect
pairs of minima via transition states. Another goal of this study
is to investigate the recently debated question of “bad” versus
“good” minima in the deep learning literature, in the context
of ANNs.

For our purposes the choice of data needs to satisfy certain
criteria: (1) the data should be nontrivial, i.e., they should
not be linearly separable; (2) the architecture of the ANN to
completely fit the chosen data should be known; (3) the ANN
to completely fit the data should only have a small number
of degrees of freedom, so that we can obtain an essentially
complete set of minima. We considered various public datasets,
including the well-known MNIST database of hand-written
digits. However, these did not satisfy our criteria for the
present investigation. Moreover, the current best network for
the MNIST dataset has far too many degrees of freedom (the
number of network parameters) for an exhaustive search of
local minima to be practical. In contrast, the exclusive OR
(XOR) data is both nontrivial (XOR is nonlinearly separable)
and simple enough to satisfy our criteria. Furthermore, the loss

function of various ANNs that fit the XOR function has been
studied in many previous contributions, as reviewed in the next
section. Hence, we focus on the XOR function in this paper.

Our principal results are: (1) a complete characterization
of local minima (i.e., all the different possible trainings) as
well as transition states and pathways between them; (2)
a classification of “good” and “bad” minima based on the
sensitivity of the corresponding trained network to perturbation
of the input data, as well as the sparsity (Sec. II) of the trained
network; (3) identification of “bad” minima, which exist even
for the simple XOR function; (4) demonstration that as long as
an ANN with one hidden layer is overspecified (i.e., the hidden
layer has more neurons than the minimum number required
to fit the data), the landscape contains an optimal ANN as
a minimum of the loss function where all the incoming and
outgoing weights for certain neurons vanish.

In the remaining sections we describe the XOR function,
explain the set up of the problem, and provide a brief summary
of the relevant results.

II. LOSS FUNCTION OF XOR

The exclusive OR (XOR) between two Boolean variables
is a logical operation whose output is true only when the two
inputs have different values. This function has been the subject
of several studies aimed at gaining insight into properties
of loss functions for small neural networks because of the
nonlinear separability of the data [46–51].

The neural network in our study has one input layer with two
nodes, one hidden layer with Nh nodes, and one output layer
with two nodes. The training set comprises two inputs with
four possible combinations X = {(0,0),(0,1),(1,0),(1,1)} and
their corresponding outputs Y = {0,1,1,0}. The two output
nodes correspond to probabilities assigned by the network to
possible output values 0 and 1. For each node j in the hidden
layer, a bias ωbh

j is added to the sum of the corresponding
weights used in the activation function. Similarly, for each
node i in the output layer, a bias ωbo

i is added to the sum of
corresponding weights. Hence, with the weights on the links
between hidden node j and output i being ω

(1)
ij and those on the

links between input k and hidden node j being ω
(2)
jk , and with

tanh as the activation function, the input-output relationship of
the network in question is

yi = ωbo
i +

Nh∑
j=1

ω
(1)
ij tanh

(
ωbh

j +
2∑

k=1

ω
(2)
jk xk

)
, (1)

where the internal sum from 1 to 2 corresponds to the two
components of the input data. The outputs are then converted
into softmax probabilities using

pc(W; X) = eyc/(ey0 + ey1 ). (2)

To train the model, we minimize

E(W; X) = − 1

|X|
|X|∑
d=1

ln pc(d)(W; X) + λV2, (3)

with respect to W = {ω
(1)
ij ,ω

(2)
jk ,ωbh

j , ωbo
i }, where c(d) is the

correct outcome for data item d. The loss function includes
a performance and a regularization term; V is either a vector

052307-2



LOSS SURFACE OF XOR ARTIFICIAL NEURAL NETWORKS PHYSICAL REVIEW E 97, 052307 (2018)

containing the ω
(1)
i,j and ω

(1)
j,k parameters, or alternatively all

the parameters V = W. We will return to the specific choice
of V below. |X| = 4 is the number of data points, which
corresponds to the cardinality of the training input set, and λ is
the regularization parameter. In our experiments, we consider
λ = 10−l for l = 1,2, . . . ,6. In Eq. (3), cross-entropy is used
as the performance term, where one of the probabilities in the
true distribution is one and the others are zero. Hence, the
summation reduces to a single term − ln pc(d) for each data
item.

Depending on the formulation, the XOR loss function may
possess a range of discrete and continuous symmetries [52–54].
Hence, once a minimum or a stationary point is found, others
can be found having the same loss function value (infinitely
many if continuous symmetries exist, corresponding to zero
eigenvalues of the Hessian second derivative matrix). In the
present work these degenerate solutions are recognised by tight
convergence of the loss function, and are lumped together.

For the loss function defined in Eq. (3) it is straightforward
to show that a stationary point for a network with Nh hidden
nodes is also a stationary point of some index for a network
with Nh + 1 hidden nodes if all the weights involving the
additional node are zero (see Appendix A). The extra degrees
of freedom associated with the larger network introduce more
flexibility, which we would expect to lead to a lower value
for the loss function after relaxation, and perhaps to a higher
Hessian index. However, the regularization term introduces a
competing effect, so the stationary point corresponding to the
augmented network with zero weights for hidden node Nh + 1
could be a minimum or a saddle point. Larger values of λ will
penalise nonzero values for the additional weights, and are
therefore more likely to conserve the Hessian index. We refer
to the network in which at least one of the weights is zero as a
sparse network; for a given network, the larger the number of
zero weights, the sparser the network.

Previous analysis of the XOR loss landscape

It was initially shown that one particular formulation of
the loss function for the simplest network required to solve
the XOR problem has only one minimum [46–48]. Reference
[50] demonstrated the absence of higher local minima in more
complex networks (networks with two hidden layers and two
units in each layer) as long as the activation units are not
saturated [49]; in contrast, when the activation units saturate
due to some weights having effectively infinite values, local
minima start to appear. The existence of suboptimal local
minima in landscapes of more complicated networks (networks
with two hidden layers, two units in the first layer and three
units in the second layer) was demonstrated in Ref. [51],
directly contradicting earlier assertions that two-layer neural
networks with sigmoid activation functions and Nh − 1 hidden
nodes do not have suboptimal local minima when the learning
is performed with Nh training samples [55]. Reference [14]
reported multiple minima for the XOR problem for specific
neural network architectures. Recently, the authors of Ref. [56]
took a bottom-up approach in which they analyzed the loss
function of a simple (“flattened”) neural network, which aims
to approximate the XOR function, and found “bad” minima
where learning fails. A thorough review of the studies of

optimization landscape of the ANNs for XOR up to 2001
can be found in Ref. [57] (see also Ref. [58]). We emphasize
that the loss functions in previous work are often constructed
differently, so the resulting landscapes may not be directly
comparable.

Our inclusion of regularization over all degrees of freedom
in the present work is a key difference from some previous
studies and simplifies the characterization of stationary points.
Without sufficient regularization, the machine learning land-
scape is likely to include very flat regions, probably including
non-Morse stationary points with zero Hessian eigenvalues
[48]. We explicitly wish to exclude such possibilities in the
present analysis.

III. ENERGY LANDSCAPE THEORY
AND COMPUTATIONAL METHODS

In chemical physics, the hypersurface defined by the po-
tential energy function, a multivariate nonlinear function of
3N atomic coordinates for N atoms, is referred to as the
potential energy landscape [37]. The most interesting points
on the energy landscape are usually stationary points where
the gradient vanishes. Stationary points are further classified
according to the number of negative eigenvalues, or the index
i, of the Hessian (second derivative) matrix. Stationary points
of index i = 0 are minima, where any small displacement of
internal degrees of freedom raises the energy. Local minima
are connected by geometrically defined steepest-descent paths
from transition states, which are saddles of index one [45].
Non-Morse stationary points have zero eigenvalues that do not
result from continuous symmetries of the Hamiltonian.

The computational methods employed for geometry op-
timization and construction of connected networks of local
minima and transition states are well established, and a brief
summary is provided here. More details are available in reviews
[37], including a recent contribution that focuses on machine-
learning landscapes [36].

Global minima and a survey of low-lying local minima were
obtained by basin-hopping global optimization [59–61], using
our GMIN program [62]. Here, steps are taken between local
minima, obtained via random changes to the coordinates of
the current minimum in the chain (in our case, the network
weights), with an acceptance criterion based on the change in
the loss function scaled by a fictitious temperature parameter.

To determine connections between local minima via tran-
sition states we first run double-ended searches between
specific pairs using the doubly-nudged [63] elastic band
[64,65] approach, which interpolates between the end points
via a sequence of images. The images corresponding to local
maxima are then converged to transition states using the single-
ended hybrid eigenvector-following algorithm [66–69]. For
each transition state, the two connected minima are determined
by calculating (approximately) the two geometrically defined
steepest-descent paths. The OPTIM program [70] was used for
all these calculations.

Although this methodology is well established, some addi-
tional effort was required to tighten convergence criteria and
ensure the accuracy of the pathways in terms of the connec-
tivity. These changes were necessary because the landscapes
in question support very soft degrees of freedom, even when
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regularization is included over all variables. For example,
with a single hidden node, the minimum with zero weights
is connected via a transition state with weights that are very
small in magnitude, and the difference in the loss function
is only 0.1425×10−10. All transition states were therefore
checked using eigenvector-following with analytical second
derivatives, and the steepest-descent paths were obtained using
a second-order method [71] after determining the displacement
from the transition state that maximized the decrease in loss
function. This procedure produced consistent connections for
all the transition states obtained when they were located in
alternative runs.

Additional checks were performed to ensure that stationary
points with zero Hessian eigenvalues were not included in the
databases. Here, zero eigenvalues were first defined using a
cutoff of 10−9, which is about an order of magnitude less than
the values observed for the smallest legitimate eigenvalues.
Changing the cutoff to 10−10 for λ = 10−6 and rerunning
connection attempts between all pairs of minima did not
produce any additional stationary points.

When regularization is applied to all variables, there are no
zero Hessian eigenvalues caused by continuous symmetries,
but singularities arise if the bias weights are not regularized.
These degrees of freedom could be treated by projection
and eigenvalue shifting [37] using analytical expressions for
the corresponding Hessian eigenvectors. In molecular geom-
etry optimization, continuous symmetries arise from overall
translation and rotation [37]; in neural networks, a uniform
displacement in the wbo

i has no effect on the probabilities. The
additional zero Hessian eigenvalues pose no problems for the
custom LBFGS minimisation routine (a limited memory ver-
sion of the quasi-Newton Broyden [72], Fletcher [73], Goldfarb
[74], Shanno [75] BFGS procedure) employed in GMIN [62].
However, shifting and projection would be required to locate
transition states and construct disconnectivity graphs (see
Sec. III A). We therefore restrict our landscape characterisa-
tions to loss functions with regularization applied to all the
variables, where the connectivity is well defined.

The database of minima and transition states resulting
from systematic connection attempts between pairs of local
minima constitutes a transition network [76–79]. Various
techniques have been described for refining such networks
[80–82] (See Refs. [36,83]). In the present work we employed
the PATHSAMPLE program [84] to distribute OPTIM jobs
and organize the resulting output to expand the stationary
point databases. The overall approach is known as discrete
path sampling [85,86].

Disconnectivity graphs

The energy landscape is a high-dimensional object, which
usually cannot be visualized effectively as a three-dimensional
surface. Instead, disconnectivity graphs [43,87–89] provide a
powerful approach for understanding the organization, faith-
fully representing the barriers between local minima. The
vertical axis in a disconnectivity graph corresponds to the
energy (cost or loss function), and each branch terminates at
the value for a local minimum. At a regular series of threshold
values, the local minima are grouped into disjoint superbasins
[87], whose members can interconvert via transition states

without exceeding the threshold. Branches join together at the
threshold where they can interconvert. The horizontal axis is
usually chosen so that the branches are spaced out and do not
overlap; order parameters can also be employed to arrange the
branches [90], or to color them.

IV. RESULTS AND DISCUSSION

In this section, we present our results and discuss their
interpretation. In particular, we consider the dependence be-
tween Nh and λ and the nature of the resulting landscape,
the relationship between the complexity of the network and
energy values, and introduce an empirical analysis of network
sensitivity to perturbation of the inputs.

A. Machine-learning landscapes

Machine learning landscapes were constructed for the loss
function of Eq. (3) with various combinations of regularization
parameters and hidden nodes. Selected examples are illustrated
here using disconnectivity graphs [43,87–89]. Figure 1 shows
the landscapes obtained for λ = 10−6 with one to six hidden
nodes, and Figs. 2–6 show how the landscape changes with
λ for six hidden nodes. In these graphs, the terminus of
each branch corresponds to the value of the minimized loss
function, with the global minimum at the bottom. Solutions
with identical values are lumped together, so the branches that
appear degenerate in Figs. 1(a) and 1(b) actually correspond to
slightly different loss values. For three hidden nodes and above,
networks corresponding to all the local minima represented in
Fig. 1 provide an accurate fit of the four input data points. To
quantify the prediction quality, we calculated the area under
the curve (AUC) values for receiver operating characteristic
(ROC) plots. All the AUC values obtained for the training
set of four possible input values are close to unity, except for
the coloured branches in Figs. 1(a) and 1(b). These results
show that once sufficient network parameters are included,
increasing the number of hidden nodes results in additional
solutions corresponding to local minima with only slightly
different loss function values.

For any values of Nh and λ, the trivial solution where all
weights are zero is always a bad minimum (as defined below).
In some cases, including this minimum in the disconnectivity
graphs changes the scale dramatically. Hence, we omit this
minimum in most of the graphs. Note that in Ref. [91] it
was shown that if the network architecture consists of parallel
subnetworks where each subnetwork has a particular architec-
ture defined by a specific elemental mapping, a minimum at
which all weights in one of the subnetworks are zero is the
global minimum. However, this formulation is different from
the present work, due to different activation functions.

Figures 2–6 illustrate the effect of the regularization pa-
rameter when applied over all the variables, including the bias
weights. λ basically sets the vertical scale, corresponding to
the optimized loss function value, and determines how many
minima the machine learning landscape can support. All the
local minima in these graphs correspond to AUC values close
to unity. The predicted probabilities for the correct output
corresponding to the two minima in Fig. 2 vary between 0.85
and 0.91. For minima in Figs. 3–6 corresponding to λ = 10−3

and smaller, the probabilities are 0.99 or better in each case.
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FIG. 1. Disconnectivity graphs for λ = 10−6 obtained with neural networks fitted to the XOR function containing Nh = (a) 1, (b) 2, (c) 3,
(d) 4, (e) 5, and (f) 6 hidden nodes. The blue bar illustrates the scale of the vertical axis that represents the energy (loss function) values. Note
the contraction in scale by a factor of 5000 from 1 to 2 hidden nodes. The branch colored blue in panel (a) corresponds to a minimum with
AUC 0.5; the branches colored red in panels (a) and (b) correspond to minima with AUC values of 0.75. All other minima have AUC values
that are practically unity.

The variation in the number of minima and transition states
as a function of λ for a fixed network architecture can be
understood from catastrophe theory. As λ increases from zero,
minima and transition states merge via fold catastrophes, and
the remaining uphill barriers from lower to higher energy
minima generally increase. A detailed analysis for surfaces
parameterized by a single parameter (such as λ in our case) is
provided in Refs. [92,93]. The decreasing number of minima
(i.e., increasing convexity) observed when varying λ between
10−6 and 10−2 is also known as topology trivialization [31]
in statistical physics, a phenomenon that has been noted for
various energy surfaces [22,30,94,95], including ANNs [96].

B. Visualizing networks at minima

In the insets of Figs. 2–6, we provide visualizations of
the ANN at a few representative minima. We represent each
minimum as a network: If a weight at the minimum is
numerically zero (i.e., 10−10 or smaller), we do not include a
connection between the corresponding nodes. The figures show
that for λ = 10−2, for one of the two minima the network is
fully connected, whereas for the other minimum exactly three

neurons are connected and the other three are disconnected.
For other values of λ, we find some minima at which zero,
one, or two neurons are disconnected, whereas all minima for
λ = 10−6 correspond to fully connected networks.

In the absence of separate training and testing data, the
quality of the solutions corresponding to local minima in the
learning process of a network has usually been measured in
terms of the network performance on the training set at the
weight values determined by the minima in question, i.e., the
empirical error. Here, we quantify the quality of minima by
considering both the associated empirical error and the ca-
pacity of the resulting network, or Vapnik-Chervonenkis (VC)
dimension [97], which can be intuitively interpreted as the
number of tunable parameters in a neural network. According
to the structural risk minimization principle, first proposed
by Vapnik [98], the optimal minimum corresponds to the
model with the smallest combined empirical risk and capacity.
While increasing model complexity is usually accompanied
by decreased empirical error, higher capacity can also lead to
overfitting, or the inability to generalize beyond the training
set. We restrict our analysis to models with enough capacity to
fit the training data, and note that models with less complexity
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FIG. 2. Disconnectivity graph for the neural network containing
six hidden nodes with regularization parameter λ = 10−2. The figure
also shows the neural network structures for the minima. The red
colored nodes in the neural network diagrams are bias nodes. They
are colored red to distinguish them from the regular neurons. An edge
between two nodes corresponds to nonzero weights, whereas no edge
means a numerically zero weight. The figures below each network
visualization illustrate the effect of perturbation to the inputs on the
network output. The color of the data point with (x,y) coordinates
corresponds to the output of the network for input values of x and y:
red and blue points correspond to the higher probability for outputs 1
and 0, respectively. The white triangle and square symbols represent
the 0 and 1 output, respectively, for the actual inputs present in the
training set.

than required will be penalized by the performance term in the
structural risk expression.

In our calculations, the performance metric is the AUC,
and the complexity of the model is coarsely measured as the
number of nonzero weights in the network. In the XOR case,
we find two separate regions of λ (at the discrete values we
have chosen): for λ = 10−1 and λ = 10−2, there exists at least
one “bad” minimum (in terms of empirical error), whereas
for λ = 10−3, . . . ,10−6 no such solutions are found except for
the trivial minimum with zero weights. However, for some

FIG. 3. Disconnectivity graph for Nh = 6 and λ = 10−3. The
layout of this figure is the same as for Fig. 2.

but not all of the “good” minima, many of the links have a
number of weights that are practically zero, which indicates
that less complex models suffice to successfully classify the
four data points in the training set. There is only one (up to
the discrete symmetries) minimum at λ = 10−2 in which only
as many weights are nonvanishing as are needed to construct
a minimal neural network to fit the XOR function, i.e., a
fully connected network with three hidden nodes. Hence, if
we define a suboptimal minimum as one in which more than
the necessary number of weights have nonvanishing values
(i.e., one at which more than the necessary number of neurons
remain connected), then there is only one optimal minimum:
the other minima are suboptimal.

C. Optimal network configuration

The minimal network we obtained in our experiments,
for any value of Nh > 2, has three fully connected hidden
nodes (i.e., all incoming and outgoing weights are nonzero
for these three neurons). However, it is well known that the
XOR data can be fitted with a network having Nh = 2. Hence,
a configuration with only nonzero weights that connect exactly
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FIG. 4. Disconnectivity graph for Nh = 6 and λ = 10−4. The
layout of this figure is the same as for Fig. 2.

two neurons to the inputs and outputs, in addition to the bias
weights, should be the “best” configuration for networks with
Nh > 2. In fact, this configuration is not a minimum but is
always a saddle point of index Nh − 2 for the values of λ

considered here. In other words, for the XOR data with the
present network set up, when the size of the network is larger
than the minimal network, the minimal network configuration
is a saddle point. This conclusion differs from a recent study
[99], which showed that deep networks converge to saddle
points at which the Hessian matrix is singular, because in our
case the “best” saddle point is not degenerate. Details of this
computation will be discussed elsewhere.

D. Network sensitivity to perturbations in the input data

Neural networks are susceptible to so-called adversarial
examples, where small perturbations in the input can cause
misclassification [100,101]. For networks operating on high-
dimensional spaces, effective adversarial perturbations need
to be carefully engineered. In the present work the effect
of perturbations can be analyzed in detail given the low
dimensionality of the input space. The sensitivity of a trained
network to perturbations in the input data is also referred to as
stability of the network [102] (see, e.g., Ref. [103], for a recent
attempt to relate generalization and geometry of landscapes for

FIG. 5. Disconnectivity graph for Nh = 6 and λ = 10−5. The
layout of this figure is the same as for Fig. 2.

ANNs). To this end, the output of the network for inputs in the
range [−0.5,1.5] with a step size of 0.015 was computed. The
insets of Figs. 2–6 located below the network visualization of
each of the selected minima illustrate the results. The color
of the data point with (x,y) coordinates corresponds to the
output of the network for input values of x and y: red and
blue points correspond to the higher probability for outputs 1
and 0, respectively. The white triangle and square symbols
represent the 0 and 1 output, respectively, for the actual
inputs present in the training set. Intuitively, a stable network
should output 0 when the inputs are similar to each other
and 1 otherwise, regardless of the actual values. Specifically,
and given the choice of the binary coding scheme (x,y) =
{(0,0),(0,1),(1,0),(1,1)}, for inputs satisfying |x − y| � 0.5,
the output of the network should be 0, with a desired output
of 1 for every other input combination. Inspection of Figs. 2–6
reveals that the sparser networks are more robust, although the
converse is not always true.

V. CONCLUSION AND OUTLOOK

Using the energy landscape theory developed in chemical
physics, we have investigated the optimization landscape of
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FIG. 6. Disconnectivity graph for Nh = 6 and λ = 10−6. The
layout of this figure is the same as for Fig. 2.

the loss function for neural networks trained to approximate
the XOR function. Our network has one hidden layer with
Nh neurons in the hidden layer. We find that the number of
minima and saddle points of index 1 change rapidly with
Nh and regularization parameter λ. More importantly, we
discovered that the loss surface includes minima where some
of the weights are essentially zero (around ∼10−10 or below),
such that some of the hidden neurons effectively appear
disconnected. The number of disconnected neurons can vary
with λ. In particular, for the XOR data and for any Nh > 3,
there is always a minimum at which exactly three hidden
neurons remain connected, with all the remaining Nh − 3
neurons being disconnected, indicating that a network with
3 hidden neurons is a minimal configuration to successfully
separate the XOR data, whereas a 2-neuron configuration
(which can also separate the data) is found to be a saddle point
of index Nh − 2 rather than a minimum.

The universal approximation theorem states that a feed-
forward ANN with one hidden layer and finite Nh can
approximate any continuous function defined on compact
subsets of the real space. The theorem assumes mild criteria
on the activation function. All these criteria are satisfied by
the ANN and the activation function (hyperbolic tangent) we
have chosen in the present work. The theorem, however, does

not yield a procedure to obtain the optimal number Nh to
approximate the function. At the very least, determining the
optimal number would require a priori knowledge of the data,
for example, how much data is available, whether the data
includes all the representative cases of the complete dataset, the
amount of noise, etc. Our study does not address the question of
how to find the optimal number of hidden neurons analytically.
However, we have shown empirically for the XOR example
that if we select a network with a larger number of neurons
than the optimal number required to fit the data, then for a
certain value of the regularization parameter there will be a
minimum in the landscape at which the corresponding network
will have only the optimal number of neurons connected and
all the others effectively disconnected.

Our results may also explain why a large number of
network parameters are found redundant in previous studies
[104,105]: if a model with more parameters than needed to
fit the data is used, a minimum with sufficient regularization
will make the unwanted network parameters redundant during
minimization. Our approach in turn provides a systematic
way to compress networks, a topic that has recently attracted
significant attention for fast and low-power mobile applications
[106,107] (see also Ref. [108] for an earlier attempt to use
an optimization approach to reduce the number of network
parameters, and see Ref. [109] for a review on other methods
to prune ANNs).

We note that linear regression with L2-regularization guar-
antees a unique minimum at which the unimportant features are
removed from the model, whereas the landscape of ANNs with
L2-regularization consists of multiple minima with differing
numbers of zero weights. Our results indicate that scanning
the landscape may provide a systematic way to perform
partial hyperparameter parametrization of ANNs, meaning
optimization of the number of hidden layers and the number of
neurons in each layer. Verifying this result for more complex
datasets, as well as for deeper ANNs, may shed further light
on the the more complex nature of the learning process. An
effort to investigate this issue is in progress.

Recent empirical findings on regularization techniques
aimed at decreasing coadaptation across different neurons
(e.g., dropout [110] and spatial dropout [111]) indicate that
one of the reasons complex models have a tendency to overfit
the training data is that, on training, some units may learn
to correct mistakes made by other units. This compensation
may be effective at improving performance on the training
set, but it usually leads to poor generalization capabilities.
Our results reinforce this hypothesis, since simpler models
showcase smaller risk for coadaptation, as there are fewer
potential symbiotic relationships among neurons available at
training.

Finally, we empirically demonstrated that sparse networks
tend to exhibit improved (i.e., reduced) sensitivity to pertur-
bations in the input, as evidenced by the 0-valued responses
around the diagonal defined by x = y. In contrast, for other
minima, undesired regions of 1-valued responses occur around
the y = 1 − x diagonal. This trend was observed across a range
of values for the regularization parameter λ. This analysis
quantitatively distinguishes between good and bad training:
if the learning is not done carefully, then it could lead to a
network corresponding to a minimum in the loss function that
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may appear good enough for the specific data, but could be
sensitive to perturbations in the inputs. Such a system may be
more vulnerable to adversarial attacks. Whether such minima
survive when more hidden layers are added is an open issue
and should be further investigated.

In the future, we plan to devise an algorithm that directly
finds the best minimum in the minimal network sense (and
the corresponding value of the regularization parameter), and
extend these investigations to deeper networks and larger
datasets, which may help to resolve potentially more complex

landscapes and issues concerning zero eigenvalues of the
Hessian for the cost function, which result in “flat” minima
[112,113].

ACKNOWLEDGMENTS

D.M., X.Z., and E.A.B. acknowledge internal funding
from UTRC. D.J.W. acknowledges financial support from the
EPSRC. We thank J.-M. Pasini, K. Reddy, K. Srivastava, and
A. Surana for their feedback.

APPENDIX: PROOF OF RESULTS IN SEC. II

Here, we prove that for the loss function defined in Eq. (3), a stationary point for Nh hidden nodes is also a stationary point
of some index for Nh + 1 hidden nodes if all the weights involving the additional node are zero.

Let WNh be a stationary point for the network with Nh hidden nodes, and let WNh+1 be the vector of weights for Nh + 1 hidden
nodes containing the same weights as WNh augmented by zero entries for the additional node. For this choice we see that

yi(WNh+1; X) = ωbo
i +

Nh+1∑
j=1

ω
(1)
ij tanh

(
ωbh

j +
2∑

k=1

ω
(2)
jk xk

)
= yi(WNh ; X) + ω

(1)
iNh+1 tanh

(
ωbh

Nh+1 +
2∑

k=1

ω
(2)
Nh+1kxk

)
= yi(WNh ; X).

Hence, pc(WNh+1; X) = pc(WNh ; X) and E(WNh+1; X) = E(WNh ; X) as well, (A1)

since λ|WNh+1|2 = λ|WNh |2 under these conditions. Similar results follow for the first derivatives, where

∂E(W; X)

∂W
= − 1

|X|
|X|∑
d=1

1

pc(d)(W; X)

∂pc(d)(W; X)

∂W
+ 2λW, with

∂pc(d)(W; X)

∂W
= pc(d)(W; X)

(
∂yc(d)(W; X)

∂W
−

2∑
k=1

pk(W; X)
∂yk(W; X)

∂W

)
. (A2)

For WNh a stationary point of the network with Nh hidden nodes we have

∂yi(WNh+1; X)

∂w
(2)
jk

= w
(1)
ij xksech2

(
wbh

j +
2∑

k=1

w
(2)
jk xk

)
=

⎧⎨
⎩

∂yi(WNh ; X)
∂w

(2)
jk

= 0 1 � j � Nh,

0, j = Nh + 1.

∂yi(WNh+1; X)

∂w
(1)
mj

= δimtanh

(
wbh

j +
2∑

k=1

w
(2)
jk xk

)
=

⎧⎨
⎩

∂yi(WNh ; X)
∂w

(1)
mj

= 0 1 � j � Nh,

0, j = Nh + 1.

(A3)

Similarly, for the bias weights

∂yi(WNh+1; X)

∂wbh
j

= w
(1)
ij sech2

(
wbh

j +
2∑

k=1

w
(2)
jk xk

)
=

⎧⎨
⎩

∂yi(WNh ; X)
∂wbh

j

= 0 1 � j � Nh,

0, j = Nh + 1.

∂yi(WNh+1; X)

∂wbo
m

= δim = ∂yi(WNh ; X)

∂wbo
m

= 0. (A4)

It is straightforward to show that the first derivatives also vanish for the regularization term at the corresponding stationary points.
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