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Cooperation dynamics of generalized reciprocity in state-based social dilemmas
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We introduce a framework for studying social dilemmas in networked societies where individuals follow
a simple state-based behavioral mechanism based on generalized reciprocity, which is rooted in the principle
“help anyone if helped by someone.” Within this general framework, which applies to a wide range of social
dilemmas including, among others, public goods, donation, and snowdrift games, we study the cooperation
dynamics on a variety of complex network examples. By interpreting the studied model through the lenses of
nonlinear dynamical systems, we show that cooperation through generalized reciprocity always emerges as the
unique attractor in which the overall level of cooperation is maximized, while simultaneously exploitation of the
participating individuals is prevented. The analysis elucidates the role of the network structure, here captured by
a local centrality measure which uniquely quantifies the propensity of the network structure to cooperation by
dictating the degree of cooperation displayed both at the microscopic and macroscopic level. We demonstrate the
applicability of the analysis on a practical example by considering an interaction structure that couples a donation
process with a public goods game.
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I. INTRODUCTION

A social dilemma arises in a situation where individual
decisions are at odds with the performance of the collective. As
such it represents the epitome for studying the emergence and
stability of cooperative behavior in both natural and artificial
systems [1–3].

Ever since the publication of Darwin’s epochal work [4],
the apparent paradox of cooperation in social dilemmas has
been at the focus of the research community. The insight
that all major transitions in biological evolution, from simple
to complex structures, are characterized by some degree of
cooperation and sacrifice [5] has subsequently led to major
advances in the field. However, despite decades of investigation
the cooperation paradigm is still regarded as one of the most
challenging issues currently faced by scientists [6].

A particular setting the study of which is of great value
to the complex systems community is a situation where an
individual has repeated encounters within not necessarily the
same group or interaction structures. In this context, the
concepts of direct reciprocity (“help someone who has helped
you before”) [7] and indirect reciprocity (“help someone who
is helpful”) [8] have been able to provide solutions for the
emergence of cooperation in essentially disparate types of
social dilemmas. Although initially structured for encounters
resembling a prisoner’s dilemma [9], both mechanisms have
been extended to account for a disperse class of interaction
structures that are ubiquitous in natural systems (see [10–16]).

While being of significant theoretical value, the extent
to which direct and indirect reciprocity are able to explain
cooperation in real-life systems has recently been put into
question [17,18]. The reason for this is that the application
of the rules is costly (in terms of memory and processing

requirements), in the sense that they demand high cognitive
abilities such as recognition of the group with which an
individual is engaged in reciprocal mechanisms or knowledge
about the interaction outcomes. This, for example, limits the
emergence of cooperation in systems where there is random-
ness in the interactions and the individuals do not posses the
cognitive prowess to acknowledge with whom they play [18].

To tackle this problem, the concept of generalized reci-
procity, formally defined as the rule of “help anyone if helped
by someone,” has been developed [19]. This concept, the
roots of which lie within “upstream reciprocity” [20,21], has
been fully explored in [17,18]. The intrinsic feature that may
favor generalized reciprocity over others is that the proximate
mechanism behind it may be explained by the changes of an
individuals’ physiological condition [22–24]. In other words,
the decision of an individual whether to cooperate or not is
based on an internal cooperative state which captures its past
experience. To shed light on the dynamical process behind
state-based generalized reciprocity, we provide an intuitive
illustration in Fig. 1.

This simple behavioral mechanism may apply to a wide
range of dynamical interaction structures. Specifically, the
internal state may mimic aggregated fitness in biological sys-
tems, wealth or well-being in animal and human societies, or
energy level in artificial (e.g., communication) systems. These
observations are complemented with convincing empirical
evidence suggesting the possibility that such a mechanism
may have indeed emerged in natural systems by evolution
[22,23,25–27].

Nevertheless, the development of theoretical models has
been lacking and so far only pairwise linear interactions
between individuals [28,29] have been considered. Other
ubiquitous scenarios that describe a social dilemma as group
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FIG. 1. The concept of generalized reciprocity explained by the
(random) interactions within a group of five individuals. Solid directed
lines are active relationships, whereas dashed lines are inactive in the
respective round. In each round the individuals are colored according
to their willingness for cooperation described by the internal state. As
shown, in round t = 1 individual I exchanges cooperative experiences
with 1, 2, and 3. This results in changes in the internal states of the
interacting individuals and the level of cooperation that is provided
when tasked in t = 2.

interactions [30], the possibility of nonlinear payoffs [11,12],
or even intertwined combinations of them [31] have been
eschewed.

Our contribution

Motivated by the early exploits of Motro [32] on public
goods, and the insights provided in [14,15,33], here we revisit
the concept of social dilemmas within a society that follows
a state-based behavioral mechanism in the spirit of [29]. We
implement this framework to examine the applicability of the
behavioral mechanism in a wide class of payoff structures,
and thus study the general setup that is required for state-
based generalized reciprocity to promote cooperation. Under
this rather general model, the well-studied problems of the
prisoner’s dilemma [34], the public goods game [30], and the
common-pool resource problem [35] arise as special cases
(see Appendix A for simple examples). Moreover, the model
can easily accommodate different combinations of interaction
structures and/or payoff functions and capture their dynamics.
Even though such structures have been widespread in natural
systems [12], the role of generalized reciprocity in their
cooperation dynamics is yet to be explored.

By treating the problem from the perspective of dynamical
systems, here we develop a systematic way to investigate the
implications created by these structures. Our model reveals
that, under some simple assumptions, cooperation through
generalized reciprocity emerges as the unique attractor that
maximizes the global level of cooperation while at the same
time preventing each participating individual from being ex-
ploited by the environment. The analysis elucidates the role of
the interaction topology, here described via a complex network,
which covers the standardly studied “mixed population” and
“regular lattice” models as special cases. It turns out that here a
critical role is played by a specific network centrality measure
which quantifies the propensity of the network structure to
cooperation, by dictating the degree of cooperation displayed
both at the microscopic and macroscopic level.

The structure of this paper is as follows. In Sec. II we intro-
duce the interaction structure, the state-based social dilemma,
and the behavioral update rule. In Sec. III we provide an
analytical study of the asymptotic behavior of the cooperation
dynamics in a population consisting of both individuals that
follow a state-based update rule and unconditional defectors.
We examine two phase transitions, extinction of cooperation
and unconditional cooperation, which are shown to critically
capture the properties of the behavioral mechanism based
on generalized reciprocity. In Sec. IV we address in detail
a practical example by considering an interaction structure
that couples a donation process with a public goods game
played on random graphs. The last section summarizes our
findings. Further examples of social dilemmas with some
additional analysis and theoretical background are provided
in Appendices A–C.

II. MODEL

A. Interaction structure

We consider a class of dynamical models constituted of
a finite population N of N individuals. The models run in
discrete time and explain the evolution of the N -dimensional
vector p(t) ∈ [0,1]N , where the ith entry, pi(t), describes the
internal state of individual i in round t . According to our
representation the individual payoff generated in each time
step is a function of the population state vector:

yi,G(t) = bi,G(p(t)) − ci,G(pi(t)), (1)

where bi,G and ci,G are, respectively, the benefit and cost
function of individual i, both parametrized by a connected
graph G(N ,E). The graph is defined by a set of vertices N ,
corresponding to the set of individuals, and E ⊆ N × N is
the set of edges which determines the pairwise relationships
between individuals.

The generality of the model is captured by the freedom in
the choice of the benefit function bi,G and the cost function
ci,G . The only constraint that we thereby make is that we
restrict both functions to be sufficiently smooth and adhere
to several simple assumptions that define a social dilemma. In
particular, we assume that the benefit function is nondecreasing
with respect to each coordinatewise projection that is not i,
with the note that it is strictly increasing for some projections
that are defined through the network topology and the rules
of interaction. This implies that i gains with the increase in
the willingness for cooperation of a particular group of other
individuals. We name this group the l neighborhood of i and
represent it as N (l)

i . Moreover, we restrict the cost function
to be an increasing function of pi(t) in order to capture the
social setting of paying a higher cost for the increments in
the benefits of others. Finally, both functions should satisfy
bi,G(0) = ci,G(0) = 0 so as to indicate that nothing happens
when everyone defects unconditionally.

In one possible physical interpretation, the model (1) de-
scribes the payoff of a continuous game with deterministic
(i.e., fixed) interactions between the individuals at each time
step and where each individual has a continuum of behavioral
strategies to choose from. This is, for example, the case
with the continuous iterative prisoner’s dilemma. In another
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interpretation, (1) provides a deterministic approximation for
the steady state of stochastic interactions among the individu-
als, with random payoffs generated by the individual internal
states. In this context, bi,G and ci,G are affine maps with respect
to the random variables. The second interpretation, that we
will closely follow, is aligned to the concept of generalized
reciprocity, in the sense that it describes the individual payoffs
as a function of the benefit they obtain through random
interactions with individuals from their neighborhood, without
explicit records to the contributions during these interactions.

B. The social dilemma

The definitions of the benefit and cost functions offer a
realistic representation for a plethora of real-life situations.
However, they alone do not describe the social dilemma. To
set the stage for this phenomena, we must define two additional
conditions that have to be present within the payoff structure.

First, for every individual there should exist a point beyond
which cooperation is costly, i.e., beyond this point the individ-
ual is better off by not increasing the willingness to cooperate,
while expecting cooperation from others. This implies that full
cooperation by all individuals does not belong to the set of
Nash equilibria, defined as the set of points that maximize
the individual’s payoff given the set of available actions of
all other individuals. Formally, we define this condition as the
point p ∈ [0,1]N , such that for every other point p̂ satisfying
projj (p̂) � projj (p) for all j ∈ N (l)

i , where projj (p̂) is the j th
coordinatewise projection of p̂, the rate at which the benefit of
individual i changes is lower than the change in the cost when
only its internal state is slightly perturbed while everything else
is kept constant. In other words, for all those p̂,

∂bi,G(p̂)

∂pi

<
dci,G(p̂i)

dpi

. (2)

Second, for all p̂ ∈ [0,1]N , the sum over the changes in benefits
of all j ∈ N must be greater than or equal to the change in cost
provided by i,

∑
j

∂bj,G(p̂)

∂pi

� dci,G(p̂i)

dpi

, (3)

with the strict inequality holding when p̂ = 0.
Condition (3) together with the definitions of the benefit and

cost functions, bi,G and ci,G , reveals that full cooperation by all
individuals, pi(t) = 1, for all i and t , is an efficient solution,
i.e., it is a solution that maximizes the overall population
payoff. Considered together these two conditions build a
structure under which egoistic behavior leads to depletion of
the performance of the overall system, which is exactly the
social dilemma metaphor.

A typical example for an interaction mechanism that is
easily captured by this representation is the snowdrift game,
where cooperation is a favorable trait for an individual as long
as the number of cooperative neighbors is low [36]. Another
group of mechanisms that are modeled when condition (2)
holds for all p̂ ∈ [0,1]N and condition (3) is a strict inequality
for every p̂ is composed of the prisoner’s dilemma [36],
the common pool resource problem [35], the public goods
game [30], as well as extensions and combinations of these

three interactions’ structures that constrain the cost of an
individual to be a function only of its own state (see, for
example, [14,15,31,32,37–39]). In Appendix A we provide a
short overview for state-based social dilemmas that can be
described through the first three interaction structures, while
a comprehensive example for the public goods game will be
analyzed in Sec. IV.

C. Behavioral update mechanism

In our scenario, the individuals follow the state-based
behavioral update introduced in [29], apart from a fraction
of the population (a set D) of unconditional defectors [with
pi(t) = 0, i ∈ D, for all t].

The behavioral update rule describes the cooperative state
of individual i at time t + 1 as a function of its accumulated
payoff Yi,G(t) by time t :

pi(t + 1) = fi(Yi,G(t)), (4)

where Yi,G(t) = Yi,G(t − 1) + yi,G(t), with Yi,G(0) being the
initial condition and yi,G(0) = 0.

We assume that the function fi : R → (0,1), which maps
the payoffY to the willingness for cooperationpi , is continuous
on the interval (0,1) and has a continuous inverse (i.e., is a
homeomorphism). Additionally, it is monotonically increasing
with limY→−∞ fi(Y ) = 0 and limY→∞ fi(Y ) = 1.

An example of a function with the above properties (which,
for example, is often used for modeling in biology and ecology)
is the logistic function fi(Y ) = [1 + e−κi (Y−ωi )]

−1
, where the

parameters κi and ωi define the steepness and the midpoint of
the function, respectively.

This rule provides a simple description for the cooperative
behavior in a wide range of dynamical interaction structures.
Specifically, the internal state may mimic aggregated fitness
in biological systems, wealth or well-being in animal and
human societies, or energy level in artificial systems [29]. Its
advantage lies in its simplicity since (4) can easily be described
as a Markovian process where an individual only has to know
its present state and payoff in order to determine the next
action. This is significantly different from other reciprocal
update rules. For instance, in certain interaction structures
direct reciprocity requires extensive memory requirements to
record their own and their opponents’ actions in order for
cooperation to thrive [40].

III. RESULTS

A. Cooperation dynamics

We begin the analysis by studying the properties of the
steady-state solution p∗. We will thereby assume that the
interaction structure is nondegenerate, which, in our terms,
means that the Jacobian of the individual payoff functions
accounting only for the individuals that follow the generalized
reciprocity update rule, Jy

\D(p), at the point 0 is nonsingular.
In fact, it is easy to notice that as a consequence of (3)
this assumption always holds when the whole population
follows (4).
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Now, in steady state, for the individuals adhering to (4), i.e.,
the nondefectors, the following holds:

p∗
i = fi

(
f −1

i (p∗
i ) + bi,G(p∗) − ci,G(p∗

i )
)
. (5)

By applying the inverse map, we obtain

f −1
i (p∗

i ) = f −1
i (p∗

i ) + bi,G(p∗) − ci,G(p∗
i ). (6)

For the above equation to hold, it is required that (1) y∗
i,G

.=
bi,G(p∗) − ci,G(p∗

i ) = 0, unless either (2) p∗
i = 1 (i.e., Y∗

i,G =
∞) or (3) p∗

i = 0 (i.e., Y∗
i,G = −∞).

It is easy to verify that condition 3 is a special case
of condition 1 when p∗

j = 0 for all j ∈ N (l)
i . Indeed, when

p∗
i = 0, it must be that y∗

i,G � 0. By the definition of (4),
the condition y∗

i,G < 0 implies p∗
i = 0 which, on the other

hand, implies y∗
i,G � 0, leading to a contradiction. Therefore,

whenever p∗
i = 0 it must hold that y∗

i,G = 0, which is true if

and only if p∗
j = 0 for all j ∈ N (l)

i .
These conditions, together with the (strict) monotonicity

of the function fi and the assumption that the interactions
are nondegenerate, reveal that each individual i conforming
to (4) will increase and decrease, respectively, its willingness
for cooperation (based on its environment, i.e., on the state dy-
namics of other individuals), until the system reaches a steady
state where it satisfies either y∗

i,G = 0 or p∗
i = 1, for all i �∈ D.

In other words, each individual following the generalized
reciprocity rule will cooperate with the maximal willingness,
given its environment, so that it is not exploited. In this context,
the steady state p∗ may be interpreted as a solution of the
constrained optimization problem of maximizing the global
level of cooperation, subject to all individuals that follow the
rule receiving a non-negative payoff while the unconditional
defectors have p∗

i = 0:

p∗ = arg max
p ∈ [0,1]N

⎧⎨
⎩

∑
i �∈D

pi ; yi,G(p) � 0 ∀i and pi = 0 ∀i ∈ D

⎫⎬
⎭.

(7)

In Appendix B we provide further reasoning behind this repre-
sentation. Moreover, there we also discuss that the solution to
Eq. (7) is unique, i.e., the corresponding dynamical system has
a unique attractor. This implies that local cooperative behavior
diffuses as a flux of energy over the network, eventually
saturating at a point where cooperation is maximized under
the constraint that no single individual is exploited.

B. Phase transitions

Next, we turn our attention to the phase transitions of the
system. There are two such points which are of particular
interest to us. The first transition corresponds to the situation
when the behavioral rule (4) is not able to support cooperation,
i.e., below this point the steady-state solution is described by
p∗ = 0. The contrapositive of this condition represents a weak
requirement for cooperation, in the sense that it represents a
necessary condition for individuals with positive willingness
for cooperation to exist.

The second transition point that we investigate quantifies
a stronger condition for cooperation, corresponding to the
situation where above this point all individuals (aside from the

unconditional defectors) are unconditional cooperators, i.e.,
the steady-state solution reads p∗

i = 1 for all i �∈ D.
We study both transitions by using a differential equation

representation of the update rule (see Appendix C for more
details regarding the conditions under which the representation
is valid):

ṗi = dfi

(
f −1

i (pi)
)

dY
[bi,G(p) − ci,G(pi)]. (8)

In the following we provide a description of the conditions that
are required for extinction and full unconditional cooperation
to happen. The detailed proofs are provided in Appendix C.

In particular, by analyzing the asymptotic stability of the
system at the fixed point p∗ = 0 we show that the sufficient
condition for extinction of cooperation can be approximated
as

λmax
(
J\D

y (0)
)

< 0, (9)

where λmax(J\D
y (p)) is the largest eigenvalue of J\D

y (p).
In fact, a similar result can be reached by studying the

optimization problem (7). Altogether, this indicates that when
every eigenvalue of the reduced Jacobian J\D

y (0) is negative,
the system becomes dissipative and there is a continuous
shrinkage in the displayed level of cooperation.

Similarly, by examining the stability of the linearized
system at the point 1\D (the N -dimensional vector with entries
1 for all i �∈ D and zero otherwise), we get that unconditional
cooperation is asymptotically stable if

min
i �∈D

(
v

\D
i,G

)
> 1, (10)

where v
\D
i,G is

v
\D
i,G = bi,G(1\D)

ci,G(1)
. (11)

We note that the strict inequality in the approximation of the
condition might be relaxed, as suggested by the sufficient and
necessary conditions for unconditional cooperation. Indeed, on
the one hand, from the properties of the update rule we have that
v

\D
i,G > 1 for all i �∈ D implies y∗

i,G > 0, and hence p∗
i = 1 for

all i �∈ D. On the other hand, in the necessary part the weak in-
equality v

\D
i,G � 1 holds, which follows by directly substituting

p∗
i = 1 in (1) and repeating the same argument for all i �∈ D.

This further implies that individuals for which the inequality
is not satisfied will never cooperate unconditionally. In this
sense, the quantity v

\D
i,G arises as an index that quantifies the

burden of each individual when cooperating, thus ultimately
determining the degree of cooperation both at the microscopic
and macroscopic level.

IV. DISCUSSION

A. Public goods example

As a constructive example for the applicative power of
our framework, we consider an interaction mechanism which
couples the iterated public goods game with a simple donation
activity.

In particular, we assume that in each time step nature
randomly conditions whether the state of the global system is

052305-4



COOPERATION DYNAMICS OF GENERALIZED … PHYSICAL REVIEW E 97, 052305 (2018)

in provision of public goods or in donation. When in the public
goods state, each individual i acts as a factor in di processes
of production represented by its nearest neighbors N 1

i , with
di = |N 1

i | being the degree of the individual. Its input in each
round t is proportional to the internal cooperative state pi(t),
whereas its productivity is inversely related with the degree di ,
thus leading to equal aggregate productivity of each individual.

For concreteness, we consider a linear production function,

qj (t) = α
∑

k

Akj

dk

pk,

where α is a parameter that describes the efficiency among
the producers and Akj ∈ {0,1} is the (k,j )th entry of the
adjacency matrix A of the graph. In order to follow standard
practice, we always fix Aii = 1, thus each individual has one
production process represented by its own vertex. To make the
provision of public goods related with generalized reciprocity
we assume that after production takes place qj (t) is distributed
to a randomly (on uniform) chosen individual from the nearest
neighbors of j .

On the other hand, when the system is in a donation state,
each individual i chooses a nearest neighbor at random and
decides whether to donate him an amount α with probability
proportional to its internal state pi(t).

The resulting public goods interaction is a randomized
version of the model introduced in [41], which has been
extensively studied from the perspective of network reciprocity
(a comprehensive review is provided in [42]). In addition, when
combined with the donation activity, it resembles the famous
“carrot” mechanism in a generalized reciprocity system [31].
One round of this interaction structure is depicted in Fig. 2.

B. Properties

In this structure, the random payoff of individual i in round
t is defined as

yi(t) = e(t)y1i(t) + (1 − e(t))y2i(t),

where e(t) is a Bernoulli random variable with parameter ε that
describes the global state, and

y1i(t) =
∑

j

m1ji(t)qj (t) − pi(t),

y2i(t) = α
∑
j �=i

m2ji(t)xj (t) − xi(t) (12)

are the payoffs of the public goods game and the donation
process. In Eq. (12), m1ji(t), m2ji(t), and xj (t) are, respec-
tively, Bernoulli random variables with parameters Aji/dj ,
Aji/(dj − 1), and pj (t).

In this example, the benefit and cost functions represent
affine maps with respect to the random variables. Therefore,
we can approximate the analysis of the steady state with the
following deterministic payoff:

yi(t) = εα
∑

j

Aji

dj

∑
k

Akj

dk

pk(t)

+(1 − ε)α
∑
k �=i

Aki

dk − 1
pk(t) − pi(t). (13)

FIG. 2. Scheme for the studied example. The top row shows one
round of interactions for two production processes I and J in the
network example that we examine. Solid directed edges indicate the
contributions by individuals i ∈ {1,2,3,4}, whereas the curved dashed
edges are the randomly distributed outputs qj , with j ∈ {I,J }. The
bottom row describes the donation activity for the same individuals.

From (13) one can easily deduce that for each particular
individual i conditions (2) and (3) are satisfied whenever α ∈
(1, di

zi

1
ε
), where zi = ∑

j Aji/dj is a centrality measure which
quantifies the expected number of times that individual i is
selected to be at the receiving end of a production process or a
donation. The effect of the distribution of zi (also referred to as
the neighborhood importance index) on the network propensity
for cooperation has been discussed in [29].

A refined version of this index, which is proportional to the
maximal average benefit of individual i, can be defined as

s
\D
i = ε

∑
j

Aji

dj

∑
k �∈D

Akj

dk

+ (1 − ε)
∑

k �∈D∪i

Aki

dk − 1
. (14)

Its relation with the efficiency parameter α directly determines
the level of cooperation of the system because the cooperation
index v

\D
i,G can be written as

v
\D
i,G = αs

\D
i .

This implies that full cooperation will exist whenever

α >
1

s
\D
min

, (15)

where s
\D
min is the minimum among the s\D indices.
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Finally, the matrix J\D
y (0) the largest eigenvalue of which

determines whether cooperation will die out or not is

J\D
y (0) = α

[
εM\D

1 + (1 − ε)M\D
2

] − I,

where the (i,j )th entries of M\D
1 and M\D

2 are M
\D
1ij =∑

k
Aki

dk

Ajk

dj
and M

\D
2ij = Aji

dj −1 (M\D
2ii = 0), and I is the identity

matrix.
This implies that the condition for extinction of cooperation

reads

α <
1

λmax
(
εM\D

1 + (1 − ε)M\D
2

) . (16)

In the special case when every individual follows the
update (4), M\D

1 and M\D
2 represent left stochastic matrices,

in which case λmax(εM\D
1 + (1 − ε)M\D

2 ) = 1. Since α > 1 is
prerequisite for a social dilemma, this condition will never
hold in a population consisting exclusively of individuals that
follow the state-based rule (i.e., without defectors).

C. Implications

We test these analytical findings on three different types
of random graph models, the random regular (RR) graph,
the Erdos-Renyi (ER) random graph, and the Barabasi-Albert
(BA) scale-free network.

Throughout the analysis, as a measure for the global level
of cooperation we consider the fraction of unconditional coop-
erators 〈p∗〉 out of the individuals that follow the state-based
update rule. In the top row of Fig. 3 we study the evolution

of this variable as a function of the efficiency parameter α

when D = ∅ and by considering three cases of ε. Namely, we
examine the situations when there is only a donation process
(ε = 0), when there is equal probability for happening of both
processes (ε = 0.5), and when only public goods are present
in the system (ε = 1).

The condition for extinction of cooperation is plotted in
the figure as a square point. As suggested by the analytical
findings, cooperation in each graph and interaction structure
exists as long as α satisfies the condition for a social dilemma.

However, the dependency of 〈p∗〉 on α is generally disparate
across the three interaction structures we explore, with the
only similarity arising in the RR graph. In that case, it can
be seen that full unconditional cooperation happens always
independently of the interaction structure. For the ER and BA
graphs, we discover that in each interaction structure the former
graph acts as a better promoter of cooperation for low values
of α. While this persists when donation is the sole mechanism,
whenever provisioning of public goods enters the system, a
critical point appears beyond which the BA graph performs
better in terms of the number of unconditional cooperators
(see the inset plots).

To interpret these observations, in the bottom row of Fig. 3
we display the probability density function of the index s\D,
when there are no defectors (here simply denoted as s). The
figure shows that the distribution of this variable in the RR
graph resembles a Dirac delta function with the mass centered
on 1. This implies that the condition for asymptotic stability
of unconditional cooperation is satisfied for every plausible
α, which in turn implies the full unconditional cooperation
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FIG. 3. Results for the public goods example. The top row shows the fraction of unconditional cooperators 〈p∗〉 as a function of α, while
the bottom row gives the estimated probability density function of the index s. The columns correspond to different values of the parameter ε.
The results are averaged over 100 realizations with each graph having N = 100 and average degree 5.
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observed atα = 1. For the ER and BA random graphs we notice
that the distribution of s is positively skewed with the BA graph
exhibiting by far larger skewness. A direct consequence of this
is the remark for the evolution of 〈p∗〉 in the two graphs. More
precisely, the right tail of the distribution determines the degree
of cooperation provided when the level of efficiency is low. In
this regard the lower slope in the ER graph indicates that for
low α there will be more individuals for which the necessary
condition for unconditional cooperation is satisfied.

Similarly, the left tail explains why the BA graph converges
to full unconditional cooperation faster than the ER graph in the
case of public goods. In particular, as ε increases the kurtosis
in the distribution of s also increases for both ER and BA
graphs, implying that the individuals tend to become more
similar in regard to this index. The increment is larger for the
BA graph, and therefore the lower thresholds for unconditional
cooperation in the case of public goods.

In order to quantify the effect of defectors, in Fig. 4
we display contour plots for the fraction of unconditional
cooperators as a function of both the efficiency parameter and
the fraction of individuals that are unconditional defectors for
each of the studied random graphs. In the figure, above the
green (light gray) lines is the region where cooperation ceases
to exist, whereas below the red (dark gray) lines is the region
where all individuals outside the defector set cooperate uncon-
ditionally. In the region in-between, unconditional cooperators
coexist with partial cooperators (those with 0 < p∗

i < 1) and

unconditional defectors. As defectors we always set the D

individuals with the highest values of d/z. This is the group
of individuals for which the social dilemma requires a larger
α as a means to disappear, if there is a positive probability for
reaching a public goods state.

We find that, among the random graph models, the ER
graph model requires the lowest efficiency (benefit to cost
ratio) for the cooperation to persist (i.e., not to be extinct),
followed by the RR graph. The BA graph presents itself as
the topology where extinction of cooperation is more probable
(compared with ER and RR graphs), for the same average graph
degree. We remark that this observation is independent of the
choice for ε. In contrast, it can be noticed that there is quite a
colorful discrepancy with respect to the threshold above which
full (i.e., unconditional) cooperation begins. In this aspect,
when donation is the only natural process, the RR graph is
the most supportive to cooperation, followed by the ER and
the BA graph. However, when public goods is included in the
possible natural states, it seems that when around half of the
population is constituted by defectors the BA graph performs
better in promoting unconditional cooperation, while the ER
graph is the best promoter of unconditional cooperation when
the majority of the population are defectors.

Similarly to the scenario without defectors, in the case with
defectors the findings can also be attributed to the distribution
of the index s. Concretely, the inclusion of defectors can be
described as an internal force which ultimately decreases the
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FIG. 4. Contour plots for the transition points. The green (light gray) curves are contour plots for the transition points to extinction of
cooperation while the red (dark gray) curves are the transition points to full unconditional cooperation, with the dashed lines indicating the
estimated thresholds from Eqs. (9) and (10). With the black vertical line we denote the minimum of d/z. The rows represent different types of
random graphs (RR, ER, and BA) while the columns correspond to different values of ε. The results are averaged across 100 graph realizations
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value of s. From this point of view, the extinction of cooperation
is related to the right tail of the distribution since then one
faces instances where the necessary condition for existence
of cooperation is not fulfilled. As discussed previously, the
ER graph has the largest tail for the distribution of the index s

among the studied random graphs, and therefore is most robust
to extinction of cooperation when defectors are included. On
the other hand, it seems considerably more delicate to precisely
quantify the differences between the random graph models
with respect to the existence of full unconditional cooperation
as a function of the distribution of the index s, as the results
depend on the specific choice of the individuals which are
selected as defectors. Nonetheless, one can notice that, as
the number of defectors increases the distribution of s is
driven towards lower values and thus the threshold for full
cooperation increases. Evidently this has lowest effect on the
RR graph since the distribution of s in that case concentrates
around one value, i.e., there are no tails, hence the observed
lower thresholds for full unconditional cooperation in the sole
donation case. We note that, in general, this explanation does
not hold when provision of public goods is a possible state in
the global system since then, as shown previously, for each
individual a critical point exists after which cooperation is no
longer a social dilemma. For instance, the value of this critical
point in the RR graph is independent of the selected individual
(its minimum for each graph and structure in the figure is
denoted as a black vertical line). From the figure, it appears
that the ER graph requires the lowest efficiency in order to have
a nonempty set of individuals for which the social dilemma
disappears, followed by the BA graph. A direct corollary of
this is the observed lower threshold for full unconditional
cooperation in these two graphs, compared to the RR graph,
when a large fraction of the population behaves as defectors.

V. CONCLUSION

In this paper we developed a unifying framework for
studying the role of a state-based behavioral mechanism cen-
tered on generalized reciprocity, on the cooperation dynamics
in complex networks. Such mechanisms have been recently
discovered in natural systems which involve low-level interac-
tions among network agents with limited processing/cognitive
abilities. Interestingly, they have also been attested at the more
intelligent level of human interactions [23,27].

While there is significant empirical evidence for the pres-
ence of these mechanisms in a plethora of real-life systems,
the role of the network structure on the cooperation dynamics
under general interaction models has only recently started to
shape the research in various fields. In this context, we believe
that the here introduced framework provides a systematic way
to study the various aspects of cooperation in complex net-
works. In particular, the generality of the addressed framework
allows for incorporation of a wide range of social dilemmas
and interaction structures in the model.

Besides its theoretical value, we believe that the framework
may also be used to quantify the cooperation dynamics in
real-life systems governed by similar behavioral mechanisms.
We refer to a recent experimental study which suggests that
the pay-it-forward principle of generalized reciprocity is a
better promoter of long-term cooperation among humans

than indirect reciprocity simply because it is cognitively less
demanding [43]. In this context, our (and similar) models may
provide the theoretical background for the observed long-term
behavior. Indeed, the above observation may be addressed
from the dynamical systems perspective, under which the
application of a behavioral mechanism based on generalized
reciprocity yields a unique attractor where the overall level of
cooperation is maximized, while at the same time the involved
individuals are prevented from exploitation.

As a final remark, we point out that the presented framework
may apply beyond the studied structures and can easily be
coupled with other mutual processes found in social and
natural systems [44,45]. As such it acts as a building block for
investigating the role of state-based generalized reciprocity in
the dynamics of intertwining phenomena of different natures.
This represents an interesting direction for future work.

APPENDIX A: SOCIAL DILEMMA EXAMPLES

1. The prisoner’s dilemma

This is the most famous example for a social dilemma
where the interactions are pairwise. In the simplest case, in
a prisoner’s dilemma a cooperator pays a cost γ for the
other individual to receive a benefit β [34]. In the original
case, β > γ is a prerequisite in order for a social dilemma to
exist. When extended to a network structure, each individual
meets with its nearest neighbors N 1

i and experiences the same
interactions. Therefore, the payoff of individual i in a prisoner’s
dilemma played on a network where the strategies are formed
by a state-based update can be written as

yi(t) = β
∑

j

Aijpj (t) − γ dipi(t). (A1)

For a dilemma to exist, Eq. (2) needs to hold for all p̂ and Eq. (2)
has to be a strict inequality for all p̂. It is obvious that this will
happen if β > γ , as in the original interaction structure.

The prisoner’s dilemma can be easily extended to account
for random interactions, and thus to resemble more closely
interactions where generalized reciprocity can happen. For
example, this is done in [28,29].

2. Snowdrift game

The snowdrift game is the simplest form of a nonlinear
interaction structure where cooperation by an individual is an
advantageous strategy whenever the state of the neighboring
individuals is defective.

The payoff in a pairwise snowdrift game defined on a
network can be written in a similar way as in the prisoner’s
dilemma. In particular, the payoff of individual i in round t is

yi(t) =
∑

j

Aij

[
βpj (t) + βpi(t) + pi(t)

(
γ

2
− β

)
pj (t)

]

−γ dipi(t). (A2)

In this interaction structure, condition (2) implies that coop-
eration by i will be a favorable threat as long as the average
level of cooperation by the neighbors satisfies the following
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inequality:

∑
j

Aij

di

pj <
β − γ

β − γ /2
.

On the other hand, condition (3) will be satisfied whenever
β > γ/2.

Interestingly, one may find out that, by applying the rules
for extinction and full cooperation that we described, a state-
based generalized reciprocity update rule always leads to full
cooperation by the individuals that follow it as long as β > γ .
This result is independent of the structure of unconditional
defectors.

3. Common-pool resource problem

The common-pool resource problem is a situation that best
depicts the “tragedy of the commons” [46]. Formally, a tragedy
of commons is a situation where there is a shared renewable
resource that will continue to produce benefits if the population
does not overharvest it but in which any single individual profits
from harvesting as much as possible [47].

As a typical example for this situation we consider a model
where a mixed population (represented by a fully connected
network) at each round t is harvesting a resource R(t) with an
amount that is inversely proportional to its internal state. The
payoff of each individual i is given as

yi(t) = (1 − δpi(t))(R(t) − 1) − γpi(t), (A3)

where δ is a parameter which regulates the optimal consump-
tion by the group [optimally each individual would consume a
(1 − δ) fraction of the resource], and γ is the opportunity cost.

Different dynamics can be used for the evolution of R(t +
1). For simplicity we assume that in each round the resource
grows by one unit and depletes by the average amount of the
consumption by all individuals (for other representations see
[48]). Mathematically, this is written as

R(t + 1) = R(t) + 1 − R

N

∑
j

(1 − δpj (t)). (A4)

To estimate p∗, one first needs to estimate the equilibrium
resource R∗ from Eq. (A4) and substitute the result in Eq. (A3).

Then, the conditions (2) and (3) for the social dilemma are
given as 0 < γ < δ < 1 and δ < γN .

APPENDIX B: STEADY-STATE ANALYSIS

In the main text, we pointed out two assumptions on
which our analysis is built. First, in every case we con-
sider a fraction of individuals that behave as unconditional
defectors, i.e., pi(t) = 0 for all t . This indicates that we
can reduce the examination of the model to the properties
of the payoff functions of each i �∈ D defined on the set
PN
D = {pD ∈ [0,1]N : ∀i ∈ D, proji(pD) = 0}. Moreover, we

assumed that the interaction structure is nondegenerate, i.e.,
Jy

\D(0), where Jy
\D
ij (0) = ∂yi,G (0)

∂pj
for all i,j �∈ D, is a nonsin-

gular matrix. As we will see, the second assumption ensures
that the system will never be stuck in a saddle point. Against
this background, we can derive the described proposition for
the steady-state solution.

Proposition 1: Steady-state solution. If a fraction of the
individuals base their state update pi(t) on the rule

pi(t + 1) = fi(Yi,G(t)),

where Yi,G(t) = Yi,G(t − 1) + yi,G(t), with Yi,G(0) being
the initial condition and yi,G(0) = 0, and fi : R → (0,1)
is a strictly monotonic homeomorphism that satisfies
limY→−∞ fi(Y ) = 0 and limY→∞ fi(Y ) = 1, then the stable
steady-state solution p∗ is unique and can be found as the so-
lution to the constrained optimization problem of maximizing
the overall level of cooperation such that every individual has
a non-negative payoff, i.e.,

p∗ = arg max
p ∈ PN

D

⎧⎨
⎩

∑
i �∈D

pi ; yi,G(p) � 0 ∀i

⎫⎬
⎭. (B1)

Sketch of proof. For all i �∈ D, fix Yi,G(0) to some arbitrary
real number. By construction, pi(1) ∈ (0,1). Moreover, the
reduced individual payoff vector y\D(t) that accounts for the
payoffs of all those i can be approximated as

y\D(1) ≈ J\D
y (0) · p\D(1),

where p\D(1) is the corresponding state vector in t = 1.
Since J\D

y (0) is nonsingular, there exists some i in the set
of individuals that follow the rule such that yi(1) �= 0. Without
loss of generality, let us assume that for all those i yi,G(1) > 0
[similar arguments hold when there exist individuals with
yi,G(1) < 0]. The strict monotonicity implies that these indi-
viduals will increase their cooperative state in the following
period. By iterating the same procedure for a finite amount of
times we can easily deduce that similar dynamics will appear in
every period t (the set of individuals with positive payoffs may
change). In the limit as t → ∞, the individuals with positive
payoffs will be able to increase their states until p∗

i = 1 or
some p∗

i that satisfies yi,G(p∗) = 0. The second possibility
is again a result of the strict monotonicity of f (a negative
payoff implies that the individual will decrease its cooperative
state until the condition is reached). Therefore, in the steady
state each individual conforming to (4) will cooperate with the
maximal willingness, based on its environment, so that it is not
exploited, indicating that the steady-state internal cooperative
state vector p∗ can be found as a solution to (B1).

Notice that a steady-state solution can still be found as
a solution to (B1) even if Jy(0). However, then due to the
singularity of Jy(0) multiple steady states may appear that
behave as saddle points.

Now let us turn to the uniqueness part. It is known
that a constrained optimization problem will have a unique
maximum if the objective function (in this case

∑
i pi) is

strictly quasiconcave and all constraints are quasiconcave
[yi(p)]. Formally, a continuously differentiable function f is
quasiconcave in a convex set X , if for any two points x1 and
x2 in the set such that f (x1) � f (x2) we have that

Jf (x2)(x1 − x2) � 0, (B2)

where Jf (·) is the Jacobian of the function f , with the strict
inequality whenever implying that the function is strictly
quasiconcave. Further information about the properties of
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(strictly) quasiconcave functions and their role in constrained
optimization can be found in [49].

For simpler notation, let p�(p)
.= ∑

i �∈D pi . Since p�(p)
is linear with respect to each projection, it is easy to show
that for every p1 and p2 such that p�(p1) > p�(p2), the strict
inequality in (B2) will hold. In addition, by Taylor expanding
yi(p) for all i, at a point p2 it follows that the constraints are
quasiconcave for all p1 such that yi(p1) � yi(p2). �

APPENDIX C: PHASE TRANSITION ANALYSIS

The analysis for the phase transitions of the system relies
heavily on the differential equation form (8). Therefore, before
we analyze them we rewrite the discrete system in the contin-
uous form presented in the main text. Concretely, the update
rule can be described with the following recurrence relation:

pi(t + 1) = fi

[
f −1

i (pi(t)) + bi,G(p(t)) − ci,G(pi(t))
]
. (C1)

Note that from this representation the steady-state equation (5)
is derived.

By expanding Eq. (C1) pointwise through the Taylor series
at the point f −1

i (pi(t)) we can approximate pi(t + 1) as

pi(t + 1) ≈ pi(t) + dfi

[
f −1

i (pi(t))
]

dY
[bi,G(p(t)) − ci,G(pi(t))],

which can be written in the differential form given in Eq. (8),
i.e.,

ṗi = dfi

(
f −1

i (pi)
)

dY
[bi,G(p) − ci,G(pi)],

for all i �∈ D.
Moreover, as can be seen from Eq. (8) the study of the

system is dependent on the properties of the (higher order)
derivatives of fi . Since we do not have a specific form for the
update rule, they may be difficult to attain. Nevertheless, we
can use a simple trick based on the smoothness of the update
rule to discover the properties. In particular, notice that the
famous logistic function, defined as

g(Y ) = [1 + e−κ(Y−ω)]−1,

where the parameters κ and ω define the steepness and the
midpoint of the function, respectively, is a specific func-
tion that satisfies our definition for being a generalized
reciprocity update rule. More importantly, this function has
well-defined derivatives. For example the first derivative is
dg(Ŷ )
dY

= g(Ŷ )(1 − g(Ŷ )) and the second is d2g(Ŷ )
dY 2 = g(Ŷ )(1 −

g(Ŷ ))(1 − 2g(Ŷ )).
Hence, we can define a continuously differentiable and

monotonically increasing function hi : R → R that acts as
a monotonic transformation of the accumulated payoff and
which satisfies

fi(Y ) = g(hi(Y )). (C2)

Besides this, the function hi also satisfies
limpi→1 hi(f −1

i (pi)) = f −1
i (pi) and limpi→0 hi(f −1

i (pi)) =
f −1

i (pi). An illustrative example for this transformation is
given in Fig. 5. Now, studying the derivatives of fi is a
simpler task since we can implement the chain rule and use
the properties of the derivatives of the logistic function.
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FIG. 5. An example for monotonic transformation of f . Here,
the accumulated payoffs Yj for j ∈ {1,2} are mapped to h(Yj ) so
g(h(Yj )) = f (Yj ).

Proposition 2: Extinction of cooperation. If

λmax
(
J\D

y (0)
)

< 0, (C3)

where λmax(J\D
y (0)) is the largest eigenvalue of the matrix

J\D
y (0) with entries defined as Jyij

(0) = ∂yi (0)
∂pj

for all i,j �∈ D,
then p∗ = 0 is an asymptotically stable steady state.

Proof. To prove this proposition we implement Lyapunov’s
direct method for stability. First, we define the function L(p) =∑

i �∈D pi . It is clear that this function is a candidate for being a
Lyapunov function since L(0) = 0 and L(p̂) > 0 for all p̂ �= 0.

The time derivative of L(p) is

L̇(p) =
∑
i �∈D

pi(1 − pi)
dhi

(
f −1

i (pi)
)

dY
[bi,G(p) − ci,G(pi)],

(C4)

which in a neighborhood around p = 0 can be approximated
as

L̇(p) ≈
∑
i �∈D

pi

⎡
⎣∑

j �∈D

∂bi,G(0)

∂pj

pj − dci,G(0)

dpi

pi

⎤
⎦ (C5)

= p\DT J\D
y (0)p\D, (C6)

where T is the transpose operator. For the system to be
asymptotically stable at p∗ = 0, expression (C6) has to be
negative for all p �= 0. Clearly, (C6) is a quadratic form,
therefore this will happen only if J\D

y (0) is negative definite,
i.e., if λmax(J\D

y (0)) < 0. �
Proposition 3: Unconditional cooperation. Unconditional

cooperation, defined as p∗ = 1\D, where 1\D is an N × 1-
dimensional vector with entries 1 for all i �∈ D and zero
otherwise, is an asymptotically stable steady state if

min
i �∈D

(
v

\D
i,G

)
t > 1,

where v
\D
i,G = bi,G (1\D)

ci,G (1) .
Proof. To analyze the asymptotic stability of the N − D-

dimensional system of differential equations (8) at the point
p∗ = 1\D we apply the Hartman-Grobman theorem and study
the corresponding linear system [50]. The linearization asserts
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that a steady state of the system of differential equations will
be locally asymptotically stable when all eigenvalues of its
Jacobian J\D(p∗) have negative real parts. To find when this

is satisfied, we define J\D
i (p) = ṗi . Then, the ij th entry of

J\D(p̂), where i,j �∈ D, at an arbitrary point p̂ of this system
can be calculated as

J
\D
ij = ∂Ji

∂pj

(p̂) =

⎧⎪⎪⎨
⎪⎪⎩

d2fi (f −1
i

(p̂i ))

dY2

dfi (f −1
i

(p̂i ))

dY

[bi,G(p̂) − ci,G(p̂i)] + d(f −1
i fi (p̂i ))
dY

[
∂bi,G (p̂)

∂pi
+ dci,G (p̂i )

dpi
)
]
, if i = j,

dfi (f
−1
i (p̂i ))
dY

∂bi,G (p̂)
∂pj

, otherwise.

Let p∗ →1\D. Since the update rule fi is monotonically increasing with limY→∞ fi(Y )=1, we have that limpi→1
dfi (f

−1
i (p̂i ))
dY

= 0.
Therefore,

lim
p∗→1\D

J
\D
ij =

⎧⎪⎨
⎪⎩

limp∗→1\D

d2fi (f −1
i

(p∗
i

))

dY2

dfi (f −1
i

(p∗
i

))

dY

[bi,G(p∗) − ci,G(p∗
i )], if i = j,

0, otherwise.

(C7)

This expression simplifies the analysis because we are left with a diagonal matrix, and it is known that in that case the
diagonal entries correspond to the eigenvalues of the matrix. Next, by applying the properties of fi defined with the monotonic
transformation hi , i.e., Eq. (C2), we find that

lim
p∗→1\D

J
\D
ii = −dh(f −1(1))

dY
[bi,G(1\D) − ci,G(1)]. (C8)

Since dhi (f
−1
i (1))

dY
= 1, this expression will be negative if and only if bi,G(1\D) − ci,G(1) > 0, i.e., v

\D
i,G > 1. Moreover, because for

asymptotic stability (C8) needs to hold for all i �∈ D, we get expression (10). �
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