
PHYSICAL REVIEW E 97, 052301 (2018)

Framework based on communicability and flow to analyze complex network dynamics

M. Gilson,1 N. E. Kouvaris,1,2 G. Deco,1,3 and G. Zamora-López1

1Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra,
Carrer Ramon Trias Fargas, 25-27, 08005 Barcelona, Spain

2Namur Institute for Complex Systems (naXys), Department of Mathematics, University of Namur, Rempart de la Vierge 8,
B 5000 Namur, Belgium

3Institució Catalana de la Recerca i Estudis Avanats (ICREA), Universitat Pompeu Fabra, Passeig Lluís Companys 23,
Barcelona, 08010, Spain

(Received 19 January 2018; published 2 May 2018)

Graph theory constitutes a widely used and established field providing powerful tools for the characterization
of complex networks. The intricate topology of networks can also be investigated by means of the collective
dynamics observed in the interactions of self-sustained oscillations (synchronization patterns) or propagationlike
processes such as random walks. However, networks are often inferred from real-data-forming dynamic systems,
which are different from those employed to reveal their topological characteristics. This stresses the necessity
for a theoretical framework dedicated to the mutual relationship between the structure and dynamics in complex
networks, as the two sides of the same coin. Here we propose a rigorous framework based on the network response
over time (i.e., Green function) to study interactions between nodes across time. For this purpose we define the flow
that describes the interplay between the network connectivity and external inputs. This multivariate measure relates
to the concepts of graph communicability and the map equation. We illustrate our theory using the multivariate
Ornstein-Uhlenbeck process, which describes stable and non-conservative dynamics, but the formalism can be
adapted to other local dynamics for which the Green function is known. We provide applications to classical
network examples, such as small-world ring and hierarchical networks. Our theory defines a comprehensive
framework that is canonically related to directed and weighted networks, thus paving a way to revise the standards
for network analysis, from the pairwise interactions between nodes to the global properties of networks including
community detection.
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I. INTRODUCTION

The study of complex networks has become a central
tool to investigate many natural and man-made systems in
various scientific and technical domains, such as sociology [1],
neuroscience [2,3], biology [4], chemistry [5,6], and telecom-
munications [7]. As a descendant of classical graph theory,
the primary toolbox to study complex networks relies on sta-
tistical descriptors, like the distribution of degrees, clustering
coefficient, and centrality of nodes [8,9]. Initially designed for
symmetric binary graphs, these measures have been extended
to investigate directed [10] and weighted [11] networks, aiming
to interpret real-world data. While accounting for the directed
nature of links is rather straightforward, the study of weighted
networks with “off-the-shelf” metrics inherited from graph
theory is less natural. In real networks the weights associated to
the links represent physical or statistical quantities, beyond the
mere existence or absence of the link. Therefore, predefined
measures and formulas for binary graphs are often limited,
which underlines the need for formalisms that are better suited
for the study and interpretation of weighted networks.

The mutual relationship between network structure and
dynamics has been studied in both directions. On the one
hand, intricate topologies support the emergence of complex
collective dynamics in networks [12,13]. The description of
networks using the graph measures provides intuitive but

largely simplified information about how the network topology
may affect its dynamics. For example, strongly connected
clusters of nodes are expected to synchronize internally before
synchronizing with each other. As an effort to link the network
structure to the pairwise functional associations of nodes,
Estrada and Hatano [14] introduced communicability. The
rationale behind it is to take into account indirect paths in
addition to direct paths in the network to evaluate the inter-
actions between nodes. This measure was used to assess the
contribution of structural topology to functional connectivity
in fMRI data [15].

On the other hand, the behavior of multivariate network
dynamics has been employed to reveal the structural organi-
zation of complex topologies [16–18]. Connectivity patterns,
from the local to global scales, induce a variety of timescales in
the functional interactions between nodes and groups thereof.
Accordingly, the multivariate Ornstein-Uhlenbeck (MOU)
process was used to define the notion of network complexity,
relying on the entropy of the correlation pattern resulting
from a given network connectivity [19–21]. Another direction,
based on the collective dynamics of coupled phase oscillators,
was developed to reveal communities and hierarchical scales
along the path to global synchrony since denser structures syn-
chronize before sparser components [16]. A related approach
exploited the diffusion of random walkers in graphs to reveal
community structure: The map equation searches the simplest
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description of the random walks in a two-stage hierarchy that
defines communities [18].

However, the bidirectional relationship between topology
and dynamics is rarely studied simultaneously, i.e., considering
“the two sides of the same coin.” Moreover, one aspect of
the data analysis is often overlooked: Many real networks
are inferred from multivariate signals that have a temporal
structure. This means that these data should be interpreted as
a dynamic system, taking time into account. Here we strive to
reach an overarching viewpoint and define graphlike measures
for such complex network dynamics.

In the present study, we develop a theoretical framework
to characterize and explore the properties of complex network
dynamics. It is based on the MOU process [22], which can be
interpreted as a non-conservative propagation of fluctuating
activity in a network with linear feedback [23]. The MOU
process has been used for a long time to study the Brownian
motion [24] and applied to model data in many fields, such as
interest growth in economy [25], epidemic spreading [26,27],
and fMRI in neuroscience [28,29]. It has also been used
to quantify network complexity [20,21]. From the theory
of linearly coupled dynamics we derive two core measures:
dynamic communicability and flow, which serve as the basis
for multivariate network descriptors. These are tightly related
to the Green function of the coupled MOU process—the
matrix exponential of the Jacobian for the MOU dynamics—
that describes the network response resulting from a unitary
impulse at a given node. This framework is canonically related
to directed and weighted networks, aiming to lift limitations of
tools derived from current graph theory. It sits in the general
context of matrix exponentials applied on adjacency matrix or
their Laplacian to explore graph properties [30–33].

The manuscript is organized as follows. In Sec. II we
introduce the framework and illustrate it with simple network
examples. There, we contrast our theory to previously proposed
formalisms of communicability [14,34], community detection
[16,32], and heat kernel [35,36]. We introduce a network metric
that quantifies the heterogeneity of interactions resulting from
the dynamic communicability or flow, which we term diversity.
Section III presents three applications of our framework to
stereotypical synthetic networks. The first two examples deal
with the properties of random graphs and small-world networks
[37], while the third example illustrates the potential of our
formalism to detect community structure and hierarchical
levels in networks [18,32]. Finally, we present a last example
from dynamic systems (not graph theory), which examines
balanced dynamics in a network with excitatory and inhibitory
nodes.

II. THEORY FOR STABLE NETWORK DYNAMICS WITH
LINEAR FEEDBACK

In this section we introduce a framework to characterize
the properties of complex networks through induced dynamics
on their topology. To do so, we consider the multivariate
Ornstein-Uhlenbeck process—a nonconservative and stable
propagation of fluctuating activity—and develop graphlike
measures to describe the relationship between connectivity and
network dynamics. First, we define dynamic communicability
to characterize the impulse response of the network due to its

connectivity. Meanwhile, we relate our theory to previously
proposed formalisms that also involve matrix exponentials
to quantify interactions or relationships between nodes in
networks. Then, we take into account the effect of inputs with
the definition of the flow, of which dynamic communicability
is a particular case. The section ends with an investigation of
the spectral properties of the flow and the definition of the
measure of diversity, which is used with the applications to
classical benchmark networks in Sec. III.

The concept of communicability for graphs was proposed
by Estrada and Hatano [14] to evaluate the influence that nodes
exert over one another relying on two simple but realistic
assumptions. This measure postulates that (i) the interaction
between nodes accumulates along all possible paths of various
lengths, not only the shortest paths; and that (ii) shorter paths
are more influential than longer paths. In practice, given the
adjacency matrix A of a network, communicability is defined
as the matrix exponential of the adjacency matrix, eA; see
Figs. 1(a) and 1(b). Since the matrix exponential has an exact
series expansion eA = ∑

n�0 An/n!, communicability can be
understood as a summation of influence over all possible paths
with a factorial decay for the influence of the paths (given
by the powers An) depending on their lengths n. Although
communicability has been related to the Green function or
Hamiltonian of a network of coupled springs [31,34], its
precise dynamical interpretation has remained rather unclear.
In Appendix A, we show a rigorous formalization based on a
cascade of activity in a network [38], for which eA corresponds
to the growth rate for activity in continuous time. Such a system
is nonconservative, as each node sends a “unit of activity” to
all its targets for each unit received, so the total activity on the
network rapidly grows over time and diverges. This definition
can be extended to examine weighted and directed adjacency
matrices [34], as shown in the example matrix A in Fig. 1.

The above definition of communicability is suitable to study
graphs, but limited for complex networks associated with many
real dynamic systems. To show this point, we consider the
MOU process that has been used to model such network
dynamics in many scientific disciplines [24–29]. A MOU
process is determined by (i) a local leakage, (ii) a directed
weighted graph associated with linear coupling, and (iii) input
covariances. It describes the propagation of activity over a
network:

dxi =
⎛
⎝−xi

τi

+
∑

1�j�N

Aij xj

⎞
⎠dt + dzi, (1)

where τi is a decay time constant for node i, Aij is the connec-
tion weight from node j to node i, and zi is a Wiener process
representing the fluctuating input received by node i. If we
ignore the dissipation due to the local leakage τi and the noisy
inputs zi , the system reduces to the nonconservative exploding
cascading system, see Appendix A with Eq. (A1) related to the
above-mentioned graph communicability. Intuitively, stability
requires τi to be sufficiently large such that the dissipation at
the nodes is faster than the growth due to the cascading effect
determined by the connectivity. In matrix form, Eq. (1) can be
written as

dx = Jxdt + dz, (2)
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(a) Adjacency matrix A

(d) Exponential for random-walker Laplacian: eLt with L=(A-D)D-1

t=2t=1 t=6

(b) Communicability: eA (c) Laplacian spectrum

FIG. 1. Communicability and Laplacian flow for “static” graphs. (a) Binary directed adjacency matrix A. (b) Communicability defined as
eA [14]. (c) Schematic evolution of the eigenvalues of the random-walk Laplacian L = (A − D)D−1 in Eq. (A2) with D being a diagonal matrix
with the degree of each node [32]. Arrows indicate the “speed” of the corresponding eigenvalues, which are larger for more negative real parts.
(d) Exponential matrix of the random-walk Laplacian eLt at three abstract “time” snapshots.

where the Jacobian matrix J is determined by the leakage time
constant and the connectivity as

Jij = −δij

τi

+ Aij , (3)

where δij is the Kronecker δ. Notice that we employ the usual
convention in dynamical systems rather than that of graph
theory: Aij is the weight of the link from node j to node i.
In the following we will consider in most cases that nodes
have identical τi = τ .

The solution of Eq. (1) has a canonical relationship with
the matrix exponential of its Jacobian [22]. Given the initial
conditions x(0) at time t = 0, the state at time t > 0 is given
by Lütkepohl [22],

x(t) = eJ t x(0) +
∫ t

0
eJu dzt−u, (4)

which also depends on the particular realization of z. Inter-
estingly, the contribution of the connectivity on the activity
of the nodes for a time interval � is quantified by the matrix
exponential eJ� for both contributions: The element (i,j ) of
eJ t describes the effect of the impulse response from j onto
i after time t when taking network effects into account—
corresponding to the Green function of the ordinary linear
differential system in Eq. (1). The communicability proposed
by Estrada and Hatano [14] thus corresponds to t = 1 and
ignores the temporal evolution of the matrix when t varies, as
well as the dissipation due to the diagonal matrix elements.

The matrix exponential is also reminiscent of the formalism
developed to examine the hierarchical structure of Kuramoto
oscillators [16] and of the map equation [32] for complex
graphs, where the graph Laplacian L replaces the Jacobian

J . In those studies, a spectral analysis of eLt while varying
the (abstract) time t reveals a hierarchical community struc-
ture. This phenomenon is illustrated for the map equation in
Fig. 1(c): The zero eigenvalue remains still, while all other
eigenvalues are eliminated toward the left side (starting with
those that have the largest negative real parts). Therefore, fewer
and fewer eigenvalues determine the network structure of eLt ,
which becomes simpler and eventually converges toward a
row matrix. The transition from t = 1 to t = 6 in Fig. 1(c)
can be used to determine communities: Increasing t spans the
hierarchies in the graph and allows for a multiscale description
of the graph in Fig. 1(a). The overall structure has simplified
from t = 1 to t = 2, indicating a possible community structure
corresponding to nodes with similar rows. For the row matrix at
t = 6, all columns of eLt become very close to the stationary
distribution of random walkers, which depends solely on L.
Details about the mathematical formulation are provided in
Appendix A 2; see Eq. (A2) for the dynamic system giving rise
to eLt in Eq. (A3) and the spectral decomposition in Eq. (A5).

There are four important differences (some being related
to one another) that are worth stressing between our approach
and previous work:

(1) The dynamic regime is nonconservative and stable
for the MOU, which is suitable to study many real dynamic
systems where time has a natural and concrete meaning. The
local leakage determined by τi is equivalent to a negative
self-connection for each node, such that the Jacobian J has
eigenvalues with strictly negative real part for the Jacobian
J . For a positive coupling matrix A and identical τi = τ , the
dominating eigenvalue (or spectral diameter) of A needs to
satisfy λmax < −1/τ to counterbalance the global feedback
determined by A (faster decay than the cascading growth
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process). In comparison, the dynamic system related to the
graph communicability in Eq. (A1) is nonconservative, but not
stable (exploding). However, the map equation in Eq. (A2)
and heat kernels correspond to conservative systems, as they
each involve a type of Laplacian that has a zero eigenvalue
[32,35,36].

(2) The basis of our framework is the network response
over time, which corresponds to the Green function and is the
basis of the concept of dynamic communicability. Because
of the stable nature of the MOU dynamics, the network
response decays to zero (moreover, it is integrable). This
means that the interest is on the temporal evolution of the
node interactions described by the Green function. In contrast,
previous studies give a “static” picture of node interactions
[14], even for temporal networks [34]. This comes from a
description based on a dynamic system related to an “imaginary
time” or abstract “inverse temperature,” which diverges when
the inverse temperature increases (so the analysis focuses on
given finite times).

(3) Another difference concerns the “normalization” asso-
ciated with the matrix exponential. The use of the Laplacian
[31,32,35,36] can be seen as a normalized version by the
node degrees, compared to graph communicability [14,34] and
exponential of the adjacency matrix in general [33]. In our case,
we rely on the subtraction of the matrix exponential for the
corresponding unconnected network (similar to a null model).
The rationale is to evaluate the extra contribution due to the
connectivity, as will be specified below.

(4) The MOU dynamics are also determined by the input
properties, in addition to the network connectivity. Unlike the
equilibrium distribution x̃ of random walkers—see Eq. (A4)
in Appendix A 2—the inputs are independent from the con-
nectivity. Moreover, the variable of interest for those inputs
zi is their covariance matrix �, that is, their second-order
statistics. This follows because the dynamic system defined by
Eq. (1) is dissipative, so its activity fades to the same fixed point
irrespective of the initial condition x(0). We thus focus on the
operation of the network connectivity on the input covariance
matrix �, which shapes the covariances of the node activities
xi [23]. This will be the basis of the concept of flow.

Together, this points to a richer description of the stable
dynamic MOU system, incorporating the temporal dimension
and input properties.

A. Dynamic communicability as a measure of interactions
across time

Now we focus on the activity propagation through to the
recurrent connectivity in the MOU process to define several
time-dependent metrics that characterize the influence of
the topology on the network dynamics, ignoring the input
properties. Dynamic communicability is the “deformation” of
the Green function of the MOU, namely eJ t in Eq. (4), due to
the presence of the connectivity embodied by the (weighted
and directed) matrix A. As mentioned above, this is quantified
by the following subtraction with a MOU process that has the
same leakage J 0

ij = −δij /τi , but no connectivity:

C(t) = ||J 0||(eJ t − eJ 0t ). (5)

(c)

(a)

4

... ...
1
2
3
4

1 2 3

time t

early middle late

Dynamic communicability C(t)

(b) Comparison with null
model (no connectivity)

2 3

1 4

Jacobian J

in
pu

t c
om

m

cin(t)

cout(t)
output comm

total comm SC(t) = sum over matrix

FIG. 2. Dynamic communicability for a multivariate Ornstein-
Uhlenbeck (MOU) process. (a) The dynamics for the network (top
left) is determined by the Jacobian matrix J (bottom left) with −1/τi

on the matrix diagonal in blue and the recurrent connectivity A (off-
diagonal elements) in red. Dynamic communicability is the family of
matricesC(t) in Eq. (5), which involves the exponential of the Jacobian
multiplied by time t . (b) The sum SC(t) of all matrix elements of C(t)
quantifies the total effect due to the recurrent connections (red area
between the curves). Here the scaling factor is α = ||J 0||. (c) The
sums of matrix elements in C(t) along rows and columns give the
input and output communicability for each node, respectively.

The scaling factor ||J 0||−1 = || ∫
t�0 eJ 0t dt || is used for

normalization purpose; || · || is the L1-norm for matrices (i.e.,
sum of elements in absolute value). We coin the measure with
the term “dynamic” to stress that the matrix C(t) evolves over
time as illustrated by the successive matrices C(t) in Fig. 2(a).

From the matrix family C(t)—akin to a space-space-time
tensor—we define several simplified measure to interpret
the information, while keeping the focus on the temporal
evolution. The total communicability SC(t) is the sum of all
elements of C(t) at a given time t :

SC(t) = e†C(t)e =
∑

1�i,j�N

C(t). (6)

We have used the unit vector e of dimension N . The
presence of connections Aij > 0 increases the values of the
matrix eJ t , whose sum is represented by the black curve in
Fig. 2(b), to be compared with the dashed-dotted curve for
eJ 0t . The difference between the curves (red area) gives SC(t).

Following the tradition of graph theory, which provides
metrics to characterize the properties of a network at different
scales, we can evaluate the properties of individual nodes. As
done previously with graph communicability [34], we define
the input and the output communicability of a node as the row
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and column sums, respectively:

cin(t) = C(t) e, (7)

cout(t) = C(t)† e.

The input and output communicabilities of the example
network in Fig. 2(a) are shown in Fig. 2(c). Notice that the
vector elements of cin(t) and cout(t)—with vector elements∑

1�j�N Cij (t) and
∑

1�j�N Cji(t) indexed by 1 � i � N ,
respectively—are also time-dependent measures, and thus they
allow us to investigate how the properties of a node evolves
from the moment the network has been perturbed until activity
stops due to the dominant dispersion term.

Finally, the integration of the matrices C(t) over time gives
the overall interaction between two nodes over the whole time
t � 0, yielding the matrix

C =
∫ ∞

0
C(t) dt = ||J 0||[J−1 − (J 0)−1], (8)

where the inverse of the Jacobian appears. In the following,
we distinguish semantically between the concrete connections
in the network (embodied in A) and the interactions resulting
from the propagation of activity in the network, which are
quantified by the dynamic communicability. Note that nodes
without direct connection have a nonzero interaction if there
exists at least a path allowing them to communicate via other
nodes.

To illustrate how dynamic communicability captures the
properties of the network topology, we examine four simple
networks; see Fig. 3(a). Blue arrows correspond to a directed
open chain (1 → 2 → 3 → 4). Red and magenta arrows to
a directed closed loop (1 → 2 → 3 → 4 → 1) with equal
and distinct weights, respectively. Last, brown arrows to a
bidirectional cycle. The corresponding matrices A have the
same total weight. Right panel of Fig. 3(a) shows that the
total communicability for the loop networks is larger than for
the open chain, even though the weights sum equally in the
connectivity matrices. This can be understood by expanding
the matrix exponential as a series of matrices corresponding to
direct connections, then paths of lengths 2, 3, and so on,

eJ t = e−t/τ eAt = e−t/τ
∑
n�0

tnAn

n!
, (9)

where we have used the fact that the τi = τ are all equal. For
the open chain we have that An = 0 for n � N = 4, whereas
these matrices have positive elements for loops and contribute
to the total communicability for all interactions, including
those corresponding to nodes that are not directly connected.
This results in larger sustained total communicability for the
recurrent topologies than for the open chain.

Although the total communicability is almost identical for
the three loop networks, the nodes have differentiated roles,
as captured by the input and output communicabilities defined
in Eq. (7) and displayed in Fig. 3(b): The responses are the
same for all nodes in the red loop with equal weights, but
they exhibit variety for the magenta loop with distinct weights.
The temporal evolution of the communicability matrices thus
convey important information about the roles of nodes. Due to
the asymmetry in input and output connections, some nodes
seem to play the role of “broadcasting” information while

2 3

1 4
1.33 1.33

1.33

1 1

1

1

0.5 0.5

0.5

0.5

1.2 0.7

1.1

1

(a)

(b)

Loop topology

identical connections distinct connections

(c) Match between communicability and weight

Time constant τ acts as temperature(d)

FIG. 3. Spatiotemporal properties of dynamic communicability.
(a) Example network topologies (left) with colored links (self loops
are not represented) and their total communicability over time (right).
(b) Input and output communicabilities for the loop networks with
identical and distinct weights [top-right red and bottom-right magenta
networks in panel (a)]. (c) Correspondence between the weight and
communicability for each pair of nodes at three time snapshots for
the network with unbalanced weights [bottom-right magenta network
in panel (a)]. (d) The left panel shows the total communicability
over time for three different values of τ as shown in the legend. The
middle panel displays the theoretical relationship between the total
communicability integrated over time SC in Eq. (11) as a function of
the 1/τ for a given Ain. The time constant τ acts as a “temperature”
that reduces SC for small values (i.e., high values of 1/τ ); note also
that SC diverges when τ reaches the value 1/Ain (dashed line). The
right panel shows a similar plot with the compound parameter Ainτ

appearing in Eq. (11) on the x axis.
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others are clearly more likely to act as “receivers.” Figure 3(c)
displays the evolution of the communicability for individual
connections: It is initially aligned with the connection strengths
(left panel), then becomes more homogeneous, especially with
an increase of communicability for unconnected nodes (middle
panel), before fading out eventually (right panel).

Finally, we briefly look into the role of the time constant
τ on the diagonal of J , as well as that of J 0. The mean-field
approximation lumps nodes together as a single unit with self-
feedback −1/τ + Ain, where τi = τ is assumed to be identical
and Ain is the mean input weight to each node. In this way,
the total communicability and its time-integrated value can be
approximated by

SC(t) � e−t/τ
(
eAint − 1

)
τ

, (10)

SC �
∫ +∞

0

e−t/τ
(
eAint − 1

)
τ

dt = Ainτ

1 − Ainτ
. (11)

Here the factor ||J 0|| in Eq. (5) leads to a homogeneous
dimensionless formulation, as well as normalizes communi-
cability regardless of the network size. The time constant
τ thus acts as a temperature, as can be seen in Fig. 3(d):
Large values for τ correspond to increased SC(t) in the left
panels and SC in the middle panel. Compared to Estrada’s
communicability eA, we do not choose whether the relevant
time is, e.g., t = 1 or t = τ , which give different matrix
structures e−1/τ eA and e−1eAτ . Instead, we consider the whole
time line as done in the Laplacian formalization of the map
equation [32]. The temperaturelike effect of τ is also remi-
niscent of the extension of the concept of communicability
to a multivariate autoregressive process of order larger than
2 [34]: An “inverse temperature” parameter is introduced to
determine a scaling factor between discrete time steps. The
MOU dynamics is stable for Ain < τ−1, which corresponds to
exploding communicability for too strong network feedback,
as indicated in the middle and right panels when Ain reaches
τ−1 or Ainτ reaches 1 (vertical dashed gray lines). In other
words, a unit quantity of activity homogeneously injected in
the network corresponds to SC on average after circulating
through the nodes.

B. Definition of flow to quantify the propagation of fluctuating
inputs via the network connectivity

We have defined dynamic communicability based on the
propagation kernel of the MOU process and ignoring the
external noisy inputs. Now, we incorporate the input properties
to describe the propagation of the fluctuating activity in
the network, which fully characterizes the complex network
dynamics. This is a major theoretical novelty of our study
(third dot point above): The input statistics of interest for
a stable MOU process correspond to the input (co)variance
matrix � of the vector z in Eq. (1), which are independent
of the Jacobian J . This is represented by the purple arrows
with various thicknesses in Fig. 4(a), indicating that the nodes
may receive inputs with various levels of fluctuations. When
the noisy inputs received by the nodes are independent, �

is a diagonal matrix. In the general case, however, nodes
may receive cross-correlated inputs (spatially “pink” noise),

as represented by the purple dashed arrows. This corresponds
to (positive) off-diagonal elements in the matrix �.

To quantify the propagation of this fluctuating activity, we
define the flow in relation with the argument in the integral of
Eq. (4) as

F(t) = ||J 0||eJ t
√

�, (12)

where
√

� is the real symmetric “square root” matrix of the

input covariance matrix, satisfying � = √
�

√
�

†
. The spa-

tial covariances between the node activities Q = 〈x(t)x(t)†〉,
where the angular brackets 〈·〉 denote the averaging over
randomness induced by z—can be rewritten in terms of the
integrated flow over time [22] as

Q =
∫ +∞

0
eJ t � eJ †t dt = ||J 0||−2

∫ +∞

0
F(t) [F(t)]†dt.

(13)

In other words, our definition of flow F(t) can be thought
as the “square root” of the correlation of the propagating noise,
whose integration over time is the zero-lag covariance matrix
Q. Note that the entropy of Q was used to define network
complexity [19–21]. The flow in Eq. (12) can be decomposed
into two components, one related to the leakage and one to the
network effect induced by the recurrent connectivity (related
to communicability), so that

F intr(t) = ||J 0||eJ 0t
√

�,
(14)

F extr(t) = C(t)
√

�.

Interpreting the MOU process as a noise-diffusion network
[23], the diagonal elements of � represent the amount of
fluctuating intrinsic activity to the nodes, whose total de-
termines the overall input to the network. This means that
configurations of

√
� corresponding to � with the same trace

(sum of diagonal elements) inject the same amount of input
“noise” in the network. By adjusting the diagonal of

√
�, we

can redistribute the propagation of fluctuating activity injected
to the network nodes, which modulates the total flow SF (t)
at each time, as illustrated in Figs. 4(b) and 4(c) where the
intrinsic and extrinsic flows are represented separately. Figure 4
shows that the intrinsic part, although initially larger, quickly
becomes smaller than the extrinsic part. Therefore, the extrinsic
part is more important for the long-term behavior and the
network pattern of interactions between nodes. Note also that
the same normalization is kept as with C(t). Compared to the
first � configuration with equal excitabilities for all nodes [red
solid curves in Fig. 4(c)], the second configuration sets larger
excitability for node 3 with low output strength, which slightly
decreases the total extrinsic flow (dark-red dashed curves).
Last, cross-correlated inputs correspond to synergetic inputs
(with cross-correlations) for the MOU dynamic model and
induce an extra contribution to the flow, which can strongly
affect the extrinsic flow as shown with the bottom configuration
in Fig. 4(b). Off-diagonal elements of � induce a superlinear
contribution to the flow F(t). This is further illustrated in
Fig. 4(c) where the dark-red dotted curve is above the others
for the extrinsic flow. In the following we concentrate on the
extrinsic flow F extr(t) in Eq. (14), which we simply refer to as
flow F(t).
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FIG. 4. Flow describes the noise diffusion in a MOU network. (a) Schematic diagram of the example network with recurrent connectivity A

and input covariances �. The connectivity corresponds to the magenta loop with distinct weights in Fig. 3. (b) Intrinsic and (input and output)
extrinsic flow for three configurations of input covariance matrices � (left column). (c) Evolution of the intrinsic and extrinsic parts of the total
flow SF (t) over time for the three configurations in panel (b).

It is worth noting from the difference in the bottom row of
Fig. 4(c) that the structure of the output flow is affected by
changes in � for the corresponding nodes (1 and 3), whereas
changes in the input flow concern the whole network. This can
be understood from Eq. (12) which defines a linear mapping for√

�: A change in cross-correlations for given inputs changes
the corresponding columns in

√
�, which in turn affect the

same columns in F(t). To further illustrate the effect of input
cross-correlations, we consider a toy example with two nodes.
Preserving the diagonal of � corresponds to the constraint on
a2 + b2 to be constant, namely comparing

√
� =

(
a b

b a

)
for � =

(
a2 + b2 2ab

2ab a2 + b2

)

against
√

�′ =
(

a′ 0
0 a′

)
for �′ =

(
a′2 0
0 a′2

)

with a′2 = a2 + b2. (15)

The extra contribution to the extrinsic part of F(t) due to
the cross-correlations b is thus determined by a + b − a′ =

a + b − √
a2 + b2 > 0 when the inputs are positively corre-

lated (b > 0) multiplied by the corresponding two columns of
the communicability C(t); conversely, the contribution is nega-
tive for negative cross-correlations. In conclusion, synergistic
inputs induce an increase of flow, which is consistent with
previous definitions [39].

C. Definition of diversity D and spectral properties of the flow

Now we define the diversity of the matrices F(t) or C(t),
which can be seen as a proxy for the rearrangement of the node
interaction structure over time. DiversityD is a time-dependent
measure defined as a coefficient of variation:

DF (t) = σ{i,j}[Fij (t)]

μ{i,j}[Fij (t)]
, (16)

where μ{i,j} and σ{i,j} are the mean and standard deviation
over the matrix elements indexed by (i,j ). The same definition
holds for C(t).

The spectrum of the Laplacian in Eq. (A2) plays a major
role in exploring the hierarchical structure of networks [16,32],
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as illustrated in Fig. 1(c). Assuming that the Jacobian J is
diagonalizable [40], one can write J = P	P −1, where 	 is a
diagonal matrix, the columns of P are the right eigenvectors
vk of J , while the rows of P −1 are the left eigenvectors
uk , thus forming a dual basis of vk . For an identical τ for
all nodes, communicability can be expressed in terms of the
eigenvalues λk (on the diagonal of 	) and their associated
right/left eigenvectors:

C(t) =
∑

1�k�N

e−t/τ (eλkt − 1)

Nτ
vkuk†. (17)

Note that a similar spectral decomposition is presented
in Eq. (A5) for the Laplacian, as a comparison. The larger
the real part of λk , the later in time is the peak for the
time-dependent function e−t/τ (eλkt − 1) in Eq. (17) and the
larger its maximum. This means that small eigenvalues are
expressed first, but weakly, while the dominating eigenvalues
(with smallest negative real part) correspond to late large peaks.
Eigenvalues with nonzero imaginary part induce damped
oscillations over time. Switching from communicability to
flow in the former calculations simply implies the replacement
of the left eigenvectors uk by

√
�uk to take into account the

input statistics �:

F(t) =
∑

1�k�N

e−t/τ (eλkt − 1)

Nτ
vk(

√
�uk)†. (18)

Assuming that the connectivity A corresponds to a spec-
trum with a dominating eigenvalue λmax. The corresponding
eigenvectors are vmax � e/

√
N and umax � e/

√
N , which was

used in Eq. (10) to evaluate the mean communicability. For the
flow, this becomes

μ{i,j}[Fij (t)] = SF (t)

N2
=

∑
1�k�N

e−t/τ (eλkt − 1)

Nτ

e†vk(
√

�uk)†e
N2

= e−t/τ (eλmaxt − 1)

Nτ

[√
�

N2
+ o(1)

]
. (19)

We have defined the sum of matrix elements
√

� =
e†

√
�e = ∑

1�i,j�N

√
�ij and o(1) indicates that the effect of

all other eigenvalues than the dominating one vanishes quickly
in comparison. However, deviations from this expected average
arise from “irregularities” in the connectivity (e.g., due to its
sparsity) and are reflected in the second-order statistics of the
flow across all node pairs:

F(t)[F(t)]†

=
∑

1�k,l�N

e−t/τ (eλkt − 1)

Nτ

e−t/τ (eλl t − 1)

Nτ
vkuk†�ulvl†

=
[
e−t/τ (eλmaxt − 1)

Nτ

]2

vmaxumax†�umaxvmax†

+ e−t/τ (eλmaxt − 1)

Nτ

×
[ ∑

k 	=max

e−t/τ (eλkt − 1)

Nτ
vmaxumax†�ukvk† + o(1)

]
. (20)

The standard deviation over the matrix elements can be
evaluated using the trace of the matrix in Eq. (20):

σ{i,j}[F(t)] =
√

tr[F(t)[F(t)]†] = e−t/τ (eλmaxt − 1)

Nτ

×
[√

tr(vmaxvmax†)
√

umax†�umax

N2
+ o(1)

]
.

(21)

In the end, D depends differently on the left and right
eigenvectors:

DF (t) =
√

tr(vmaxvmax†)
√

umax†�umax

√
�

+ o(1), (22)

where o(1) lumps together the terms in the last line of Eq. (20),
which decay exponentially as e(λk−λmax)t/2 for the corresponding
eigenvalues (real or with imaginary parts). The same phe-
nomenon as in Fig. 1(c) is at work here: Eigenvalues close to
the dominating one(s) have a longer-lasting effect. Diversity
D is thus predicted to converge to a nonzero asymptotic value,
with a speed of convergence depending on the spectrum of A.

III. BENCHMARK OF COMMUNICABILITY AND FLOW
USING SYNTHETIC NETWORKS

The previous section has established a theoretical frame-
work to characterize complex network dynamics. In this
section we show how this extends the classic approach of
graph measures, which aims to extract information about the
network topology. To do so, we base our network analysis
on the (extrinsic) flow in Eq. (14), simply denoted by F(t),
respectively. When inputs are ignored, we sometimes employ
(dynamic) communicability C(t), as they coincide. More pre-
cisely, we show how the time-dependent measures of total flow
S and flow diversity D in Eq. (16) can be used to compare
networks dynamics and, beyond, compare networks. From the
equations above, the intuitive interpretation is that the total flow
S reflects the global network feedback (sum of all interactions
between nodes at a given time). In contrast, D measures
the heterogeneity of those interactions (as a coefficient of
variation). In addition, we investigate the functional roles of
the nodes (e.g., feeders and receivers) that can be studied via
the input/output communicability and flow, as suggested in
Figs. 3(b) and 4(b).

Practically, we examine in depth the behavior of these mea-
sures in several benchmark networks. We begin with randomly
connected networks to understand the effect of the size, density,
and mean weight. Then we examine small-world ring lattices
and hierarchical networks to uncover the interplay between the
connectivity and input properties. For these three well-known
examples from graph theory, we consider directed and/or
weighted networks. Finally, we study a last example from
dynamic systems, balanced excitatory-inhibitory networks. In
each case, we will illustrate the practical use of the tools
introduced in Sec. II.

052301-8



FRAMEWORK BASED ON COMMUNICABILITY AND FLOW … PHYSICAL REVIEW E 97, 052301 (2018)

(c)(b)(a)

(d) (f)(e)
time constant τ variance structure cross-correlations

FIG. 5. Dynamic communicability and flow in randomly connected networks. Influence of properties of the dynamic system on the total
communicability/flow S (top panels) and its diversity D (bottom panel) in a random network: (a) network size; (b) connectivity density (while
preserving the mean input strength); (c) mean input weight per node; (d) spread of distribution of τi on the diagonal of the Jacobian in Eq. (3);
(e) colinearity between the input variances and the dominating left eigenvector of the connectivity, related to umax†�umax in Eq. (22); and (f)
number of cross-correlated inputs. The error bars correspond to the variability over 10 simulated networks. The dashed black curves in panels
(a) and (b) come from Eq. (10). In panels (c)–(f), the networks have 100 nodes with 30% density and same mean input weight per node.

A. Communicability and flow capture the properties of the
network interactions and inputs

As a first example, we consider randomly connected graphs.
For the adjacency matrix A, the dominating eigenvalue λmax

is determined by the average input weight Ain to each node
and the remaining eigenvalues are distributed around zero.
We illustrate using numerical simulations how the network

properties and the influence of the diagonal elements −1/τi

are captured by the total flow SF (t)—equal to SC(t) in the case
of uniform inputs—and its diversity DF (t). The normalization
by ||J 0||−1 in Eq. (5) allows for the comparison of network
with various sizes in Eqs. (10) and (19), as illustrated in the
top panel of Fig. 5(a). This figure shows a finite size effect
where the diversity DC(t) of smaller networks stabilizes at
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FIG. 6. Flow in a ring lattice. (a) Reference ring lattice with N = 15 nodes (“ref”, left diagram) and three reconfigurations. In the original
ring (“ref”), each node is connected bidirectionally up to its second neighbor (four connections per node). For configuration “R,” the connectivity
differ by 7 rewired connections, with directed connections from sources 2, 6, 9, 10, 12, and 13 to targets 3, 4, 8, 9, 10, 14, and 15. The two
left configurations have homogeneous input variances (diagonal of �), as indicated by the sizes of the purple circles. Configurations “U” and
“R+R” are copies of the same two connectivities but have distinct variances. In each graph, the first two nodes are labeled for reference. (b)
Differences in input and output flow (top and bottom panels, respectively) for each of the three transformations with respect to the reference
configuration in panel (a). For “U,” � was adjusted to mimic the effect of the rewired connectivity (“R,” with homogeneous �) on the output
flow. For “R+R,” � was set to obtain a similar output flow as with the ring lattice “ref,” yielding a weak difference. See the main text for detail.
(c) Total communicability S and diversity D for 20 networks with 20% rewiring of various sizes. (d) Same as in (c) with networks of size
N = 40 and three rewiring ratios. (e) Same as in panel (d) for the flow with the reference and transformed networks in panels (a) and (b). The
order of the curves from top to bottom is “U,” “ref,” “R,” and “R+R.”

larger values (i.e., larger noise in umax compared to e/
√

N ).
In contrast, increasing the density reduces the variability
homogeneously across time. Interestingly, Fig. 5(c) shows
that a weaker network feedback shortens the response but
delays the homogenization of communicability. The mean

input weight per node is thus the main factor regulating
the homogenization speed for the nodal activities in random
networks, unlike the network size and density in Figs. 5(a)
and 5(b). Using heterogeneous time constants τi [randomly
distributed with various spreads in Fig. 5(d)] induces an overall
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FIG. 7. Community analysis for the loop of five groups. (a) Example of adjacency matrix with 5 groups of 20 nodes with strong random
connectivity (diagonal blocks). In addition, the groups are connected as a loop (off-diagonal blocks). In the following we vary the common
strength of the between-group connections, while keeping fixed the weight of the within-group connections. (b) Influence of the between-group
weight—indicated in the legend as a fraction of the within-group weights—on the total communicability S and its diversity D. (c) Communities
detected employing Newman’s modularity greedy algorithm on the flow F(t) at 4 time snapshots t . The plotted values represent the (averaged
over 10 simulations) participation indices for each pair of nodes. Black indicates that two nodes are always in the same community. The node
ordering is the same as in (a). The simulated networks of each row differ by the between-group weight (same ratio as in panel (b), as indicated
on the left). Finally, the networks of the bottom row have positively correlated inputs between groups 1 and 2.

stronger leakage compared to homogeneous τi = τ at the
mean value, which weakens the total communicability S . In
these four cases, the curve for DC(t) exhibits the predicted
decay over time, which comes from all eigenvalues compared
to the dominating eigenvalue. Note that the phenomenon is

similar to Fig. 1(c) for the Laplacian with 0 as dominating
eigenvalue.

Last, we vary the input properties and examine the resulting
flow. In Fig. 5(e), we adjust the distribution of the input
variances on the diagonal of � to reproduce the structure of the
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dominating left eigenvector umax (0 means identical variances
and larger coefficients indicate stronger colinearity). This
confirms that the asymptotic diversity comes from the structure
of the dominating left eigenvectors umax in Eq. (22). A similar
tuning of � with respect to vmax does not affect the diversity.
Moreover, positive input cross-correlations between nodes in-
crease the total flow S , as depicted for the example in Fig. 4(c);
we observe in Fig. 5(f) that they also increase the asymptotic
level of diversity. From all results in Fig. 5. In conclusion, con-
nectivity properties that leave the mean input weight per node
unchanged do not modify the convergence speed of the diver-
sity D. The latter is not affected by the input properties either.

B. Interplay between local connectivity, long-range connectivity,
and inputs in ring lattices

Now we focus on a particular network topology for which
there is an implicit notion of distance between nodes, a ring
lattice. For the left network in Fig. 6(a), all nodes have the same
connectivity and input properties, so that the corresponding
flow is homogeneous. From this original configuration, we
alter the connectivity by rewiring a number of connections,
resulting in long-range connections that increase the “small-
world” property of the network. For configuration “R” in
Fig. 6(a), node 8 has an additional incoming connection, which
corresponds to an expected increase of input flow in Fig. 6(b)
(top panel). In contrast, weakened local connectivity (with
missing links between nodes 9 and 10) results in smaller input
communicability for all neighbors (nodes 4 to 11), as compared
to the initial ring. The input and output flows thus provide a
proper quantification for the roles of the nodes in broadcasting
and listening to the rest of the network, which combines the
local and long-range connections. Note that all nodes have
identical inputs, so the flow is equal to communicability.

Rewiring does not affect the mean feedback, which leaves
the total communicability SC(t) unchanged [left panel in
Fig. 6(d)]. Changing the network size has no effect either [left
panel in Fig. 6(c)]. However, the right panels in Figs. 6(c)
and 6(d) show the opposing effects of the ring size and
rewiring probability upon the diversity DC(t): Larger rings
take more time to homogenize (unlike random networks),
but enhancing the “small-world” property by rewiring fas-
tens the homogenization. These properties also slightly affect
the asymptotic value of D. In the rewired ring lattices, the
input communicability is determined by the input degree
(Pearson coefficient of 0.95 with p value ∼0), unlike the
output communicability (Pearson coefficient around 0 with
p value >0.1).

We also change the properties of the inputs [as indicated by
the node sizes in the two right panels of Fig. 6(a)] to investigate
the combined effects on the flow. The rows in Fig. 6(b) compare
the deformations of the input and output flows induced by the
three network modifications. With original ring connectivity,
it is possible to adjust the inputs � to obtain a very similar
output flow to that for rewiring, as can be seen by comparing
configurations “R” and “U” in Fig. 6(b). The procedure consists
in constructing a diagonal � such that

√
� has the desired

nodal profile of output communicability evaluated at the peak
of the total communicability S to mimic. Nevertheless, the
input flows of the corresponding left panels differ strongly.

In the bottom row “R+R,” we use the same trick of tuning
the inputs � such that the output flow of the rewired network
resembles the output flow of the original homogeneous ring
“ref.” Interestingly, nodes 5, 7, and 9 exhibit an initial increase
followed by a decrease for the input flow, indicating multiple
timescales. These examples show the increased complexity
of the dynamics resulting from the combined heterogeneous
inputs and heterogeneous connectivity. Finally, Fig. 6(e) illus-
trates the influence of the unbalanced and rebalanced inputs
upon D for the three reconfigurations in Fig. 6(a) performed
on 20 networks: In one case, they weaken the homogenization
(green versus black) or conversely strengthen it (blue versus
red). This shows that the input properties determine the
asymptotic values, but only weakly affect the convergence
speed.

C. Community merging in hierarchical networks

Here we examine the flow in hierarchical modular networks,
which are commonly used to test community detection. We
consider a network of five random groups of 20 nodes each
with random connections between them [diagonal blocks in
Fig. 7(a)]. These groups are connected to form a unidirectional
loop (off-diagonal blocks in lighter color). By setting the ratio
of the between- and within-group connectivity strength, we
regulate the “expression” of the groups with respect to the
global dynamics. Figure 7(b) shows a faster homogenization
for stronger between-group connectivity in addition to larger
communicability, in line with the trend for the mean feedback
in random networks [Fig. 5(c)].

In the following we rely on Newman’s greedy algorithm
that was originally proposed to detect communities from the
weight modularity in a graph [41]. Adapting it to the flow F(t)
at a given time t instead, we seek flow-based communities, in
which nodes have strong bidirectional interactions. Practically,
we evaluate a null model of connectivity:

Anull = ainaout†

SA
. (23)

This gives a matrix containing the deviations from the
expected strengths for each connection, given the original input
and output strengths for each node (ain and aout, respectively),
as well the total sumSA. Then, we evaluate a null model for the
flow Fnull using the expression in Eq. (14) with Anull instead
of A. Then we aggregate nodes—starting from a partition
where each node is a singleton community—to form a partition
of K communities denoted by Sk that maximize the quality
function 
,


 =
∑

1�k�K

∑
i,j∈Sk

[F(t) − Fnull(t)]ij + [F(t) − Fnull(t)]ji .

(24)

At each step of the greedy algorithm, two communities
are fused such that 
 maximally increases. The frequency
rate for each pair of nodes to be in the same community
is displayed in Fig. 7(c) at four time snapshots t and four
network configurations. Results are averages over 10 numerical
experiments. We observe a similar merging of communities
over time to that observed for the map equation [32]. Here the
between-group connection strength determines the timescale
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FIG. 8. Flow in a balanced excitatory-inhibitory network. (a) The network comprises 40 excitatory nodes whose outgoing connections have
positive (top red circles with purple arrows) and 10 inhibitory nodes with negative outgoing weights (bottom blue circles with blue arrows).
The connectivity matrix (right panel) corresponds to a density of 20% for both types and the negative weights are four times larger than the
positive weights to implement a global balance. (b) Input and output communicability for the 50 nodes (41 to 50 are inhibitory). (c) Total
communicability (top panel) and its standard deviation (bottom panel) over time. The mean is indicated by the solid black curve, while the
dashed red and dotted blue curves correspond to the outgoing interactions from the excitatory and inhibitory nodes, respectively. (d) Three
examples for the change in input flow due to positive cross-correlations between the same excitatory node and three distinct inhibitory nodes
(one per panel).

of the merging (strongest in the top row for the largest weight),
as also captured by the diversity in Fig. 7(b) (right panel).

With input correlations applied to nodes in groups 1 and 2
[bottom row in Fig. 7(c)], these groups are detected as a single
community. Moreover, the binding clearly persists up to t =
15. This means that functional communities—in the sense of
mixing input information in the noise-diffusion network—can
be evaluated quantitatively from the flow with usual methods
of community analysis [32,41] to partition the matrix F(t).

D. Multiple timescales and path selection in globally balanced
excitatory-inhibitory network

In this section we discuss a case study that combines
the aforementioned observations with mixed excitatory and
inhibitory connections. We present a situation that does not
usually occur in graphs, where only excitatory connections
are considered; nevertheless, it can be analyzed as graphs
using our framework. Balanced excitation and inhibition can
generate extreme cases of network responses, as described
by the concept of balanced amplification [42]. Our purpose
is to examine the heterogeneity of the communicability and
flow profiles in the example network whose connectivity is
represented by the matrix in Fig. 8(a). Note that the balance is

global here: The positive and negative incoming weights do not
exactly compensate each other for each nodes (i.e., there is no
“mass conservation” locally), but the whole network preserves
a global homogeneous steady state close to zero activity.

The balanced regime can be seen by contrasting the weak
input communicability to the strong (and diverse) output
communicability in Fig. 8(b). It is especially striking for
inhibitory nodes. Here we have set the weights such as to
obtain the dominating eigenvalue close to zero, which induces
network dynamics close to the critical point where the network
response diverges. The approximative balance between the
responses from the two types of nodes is further illustrated
by the total communicability S in Fig. 8(c) (top panel). The
bottom panel confirms the larger diversity for the inhibitory
nodes. Note that D cannot be used here because the total
communicability becomes zero at several points in time.

Last, we examine the flow to study the effect of correlated
inputs in the balanced network. As said earlier, the outgoing
flow is only changed for the affected nodes, but the input flow
may exhibit global modifications. As an example, Fig. 8(d)
displays three combinations of the same excitatory node with
three inhibitory nodes (one per panel): Not only are the
responses of all nodes impacted, but the three situations differ
vastly. Extrapolating, combining more than two nodes can
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lead to the selection of specific responses where the inputs
propagate. These configurations may be quantitatively sought
in a similar way as the output adjustments in Fig. 6(b) for the
ring network.

IV. DISCUSSION

Measures derived from graph theory have been increasingly
used to study and compare networks estimated from real
data [1–7]. A usual approach is to collapse the topological
information of graphs into a handful of average values (or
distributions), such as the degree or clustering coefficient
[8,9], as well as make comparison with reference networks
[37,43]. In parallel, much effort has been dedicated to ex-
tract topological information from the emerging collective
dynamics when applying specific dynamics to networks, for
example, based on synchrony [12,13] and random walkers [44].
However, because many networks are estimated or associated
with dynamic systems in real data, they should be interpreted
as part of the original dynamic system, taking time into
account. To overcome this limitation, we have introduced a
formalism based on the Green function, which allows for the
analysis of the network response embodied by the interactions
between nodes across time. Although we constrain ourselves
with the multivariate Ornstein-Uhlenbeck (MOU) process,
corresponding to dynamics with linear feedback [22], any
network dynamics with a known or estimated Green function
can be analyzed using the proposed formalism.

Our study also defines a comprehensive framework to study
and compare directed and weighted networks. A motivation
of our study is to derive a canonical mathematical object
that completely describes the effect of the network topol-
ogy on which all subsequent analyses are based, such as
interactions between nodes and community detection. In our
theory, this role is played by the dynamic communicability.
We have shown that many properties of the connectivity are
captured by the temporal evolution of this multivariate measure
[Figs. 5(a)–5(c), 6(c) 6(d), and 7(b)]. An important aspect of
our theory is that the same mathematical object is the basis of
analyses at various levels (connections, communities or glob-
ally). In particular, this allows for a quantitative comparison
between various network topologies. Several time-dependent
measures can also be derived to describe the roles of the
nodes—feeders or receivers—as previously done with graph
communicability [34]. When considering a graph without dy-
namics, the corresponding dynamics for various leakage time
constants (τ ) can be examined, which is reminiscent of the tem-
perature in the approach proposed by Estrada [34]. In contrast
to previous studies that use collective dynamics on networks
to uncover their topological properties [16–21,31,32,34], the
link between these measures and the network dynamics is more
natural here: Our analysis examines the dynamic system itself,
instead of dynamics artificially applied to the network.

Another important aspect of our study is the explicit
description of the propagation of external inputs to characterize
the interactions between nodes, as measured by the (extrinsic)
flow. To illustrate this point, we have revisited phenomena
commonly studied in graph theory—the small-world prop-
erty in ring lattices and community merging in hierarchical
modular networks—to show the influence of inputs on them

[Figs. 5(e), 5(f), 6(e), and 7(c)]. In fact, dynamic communica-
bility is a particular case of the flow when the inputs are all iden-
tical. In essence, the viewpoint taken on the MOU process here
is that of a noise-diffusion network, where each node receives
a noisy input that propagates via the network connectivity [23].
This should be conceptually distinguished from the classical
approach of the MOU process for linear regression: Here the
local variabilities play the role of input variables. The focus is
thus on the second-order statistics in a stable linear-feedback
system, considering the network connectivity as a transition
matrix. The concept of flow is thus important for applications
in which the MOU parameters are estimated from experimental
data, for both connectivity and inputs [28,29]. In contrast, the
equilibrium distribution for static graphs only depends on the
connectivity via the Laplacian; see Eq. (A4) in Appendix A 2
for the characterization of x̃.

In the application examples we have focused on the
temporal evolution of the total flow S (sum of interactions)
and of the corresponding diversity D defined as a coefficient
of variation of the interactions in the network. The total flow
measures how the inputs circulate over time in the network,
reflecting both the global network feedback (relatively to the
leakage time constant τ ) and the inputs (including spatially
correlated noise). In contrast, the stabilization of the flow
diversity indicates the temporal horizon when the network
interactions homogenize the inputs. It is worth noting that
the flow diversity is independent of τ and can thus be used
to compare the homogenization in distinct network graphs:
As shown in our results, its asymptotic value reflects the
heterogeneity of both the inputs and the network topology,
while the speed of convergence relates to properties like small-
worldness or hierarchical segregation. Further analysis of the
flow as a space-space-time tensor should be done alongside
redefining and adapting classical concepts from graph theory,
as was done previously when redefining graph centrality using
the exponential of adjacency matrix [30]. Another interesting
direction concerns refinements of the definition of communi-
ties, moving from nonoverlapping groups with strong internal
and reciprocal flow [14] to possibly nonoverlapping groups
[45].
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APPENDIX

1. Communicability for static graph

Communicability is a graph measure introduced by Estrada
and Hatano [14] that evaluates the influence between nodes in
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a network and is defined as C := eA for an adjacency matrix A.
Using a cascade of activity in a network of propagator nodes
that send a unit of activity to all connected target nodes for
each unit received [38], the network activity in continuous time
obeys

ẋi =
∑

1�j�N

Aijxj . (A1)

Note that Aij is the weight from node j to node i. This linear
cascade process obtains the solution x(t) = eAt x(0), where
x(0) is the initial condition. Therefore, eA quantifies the growth
rate of the activity per unit of time t . The dynamic system
in Eq. (A1) diverges for large t with “exploding” activity
because a nontrivial A has at least a strictly positive eigenvalue.
The original definition [14] has been used with directed and
weighted matrices for applications with multivariate autore-
gressive models [34].

2. Exponential of graph Laplacian to describe multiscale
structure

The map equation was first defined for discrete-time random
walks in a network [18]. Later, it was formalized using the
continuous-time Laplacian dynamics to describe the probabil-
ity transition from node to node [32]. From the adjacency ma-
trix A, one can define the Laplacian matrix L = (A − D)D−1,
where D is the degree matrix (a diagonal matrix containing the
number of links di of each node i). The activity xi of the node
i corresponds to the ratio of random walkers in this node and

follows the dynamics

ẋi = −xi +
∑
j 	=i

Aij

dj

xj =
N∑

j=1

Lijxj . (A2)

The solution for this linear system is given by

x(t) = eLtx(0), (A3)

for t � 0, which describes the (abstract) time evolution of the
activity vector x. This system is deterministic and conservative
as the sum of the presence ratios is always

∑
i xi = 1. Note

that the Laplacian L is not symmetric in general, even for
a symmetric A. The stationary distribution x̃ is the right
eigenvector associated with the eigenvalue 0:

x̃ = Lx̃, (A4)

which only depends on the connectivity via the Laplacian L.
The corresponding left eigenvector is the unit vector e†.

Now we assume that L is diagonalizable and perform the
same decomposition as in Eq. (17) for the exponential matrix
of the Laplacian. In other words, L = P	P −1 where the right
eigenvectors vk are the columns of P and the left eigenvectors
uk† the rows of P −1. The Laplacian exponential can thus be
written as

eLt = Pe	tP −1 =
∑

k

eλktvkuk†, (A5)

where vk and uk† are related to the eigenvalue λk; the su-
perscript † denotes the conjugate transpose of a matrix. This
explains why eLt converges toward the row matrix x̃e† as t

increases in Fig. 1(c). Note that this also implies that, for any
initial condition x(0), the activity eLtx(0) becomes very close
to the stationary distribution x̃.
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