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Dark-bright solitons and semirational rogue waves for the coupled Sasa-Satsuma equations
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In this paper, we investigate the coupled Sasa-Satsuma equations, which describe the simultaneous propagation
of two ultrashort pulses in the birefringent or two-mode fiber with the third-order dispersion, self-steepening,
and stimulated Raman scattering effects. Darboux-dressing transformation is applied to obtain the dark-bright
soliton and semirational rogue-wave solutions. Dark-bright one solitons with the single-hump, double-hump, and
even breather-like structures are presented. Interactions between the double-peak breather and different kinds
of dark-bright solitons are studied. We show that the double-peak (or single-peak) rogue wave can coexist and
interact with different kinds of dark-bright solitons. Coexistence of the solitons with different velocities and rogue
waves is also found. Numerical stabilities of the dark-bright solitons and semirational rogue waves are exhibited. It
is expected that those localized wave phenomena can be experimentally observed and have potential applications.
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I. INTRODUCTION

The scalar nonlinear Schrödinger (NLS) equations in the fo-
cusing and defocusing regimes have been applied in such phys-
ical fields as nonlinear optics, plasma physics, hydrodynamics,
and Bose-Einstein condensation [1–4]. Localized waves for
the scalar NLS equations, including bright solitons, dark
solitons, breathers, and rogue waves, have been studied through
experimental realization and theoretical analysis [1,5–10].
Moreover, researchers have focused their attention on some
coupled equations due to applications in the multimode or
wavelength-division multiplexing fibers, as well as multicom-
ponent Bose-Einstein condensates [1,11–14]. Coupled NLS
equations have been theoretically shown to support some vec-
tor solitons, rogue waves, and semirational rogue waves, which
have more complicated features than the localized waves for
the scalar NLS equations [11–15]. Those investigations have
been claimed to contribute to understanding and controlling
the behaviors of nonlinear waves [13–15].

In the nonlinear optics, for the intensive and short light
pulses with the widths less than 100 fs, in addition to the
group velocity dispersion and self-phase modulation, several
higher-order linear and nonlinear effects have been considered,
including the third-order dispersion (TOD), self-steepening
(SS), and stimulated Raman scattering (SRS) [1,16,17]. With
the simultaneous propagation of two ultrashort pulses in the
birefringent or two-mode fiber, the coupled Sasa-Satsuma
equations, which are the integrable extensions of the coupled
NLS equations with the effects of TOD, SS, and SRS, have
been presented [18–23]:

iq1z + 1
2q1t t + (|q1|2 + |q2|2)q1 + iε[q1t t t

+ 6(|q1|2 + |q2|2)q1t + 3q1(|q1|2 + |q2|2)t ] = 0, (1a)
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iq2z + 1
2q2t t + (|q1|2 + |q2|2)q2 + iε[q2t t t

+ 6(|q1|2 + |q2|2)q2t + 3q2(|q1|2 + |q2|2)t ] = 0, (1b)

whereq1 andq2 are the complex envelope amplitudes of the two
field components, the subscripts z and t are the partial deriva-
tives with respect to the normalized distance along the direction
of propagation and retarded time, respectively, and the real
constant ε (>0) scales a real perturbation parameter. If ε = 0,
Eqs. (1) can be reduced to the coupled NLS equations [11].
Painlevé integrability for Eqs. (1) has been demonstrated [18].
Lax pair and bright-bright single-hump solitons for Eqs. (1)
have been studied [19]. Bright-dark single- and double-hump
solitons for Eqs. (1) have been presented via the Hirota method
[20]. Certain vector W-shaped solitons for Eqs. (1) have
been investigated through the Darboux transformations [21].
Through the binary Darboux transformations, bright-bright
breather-like and vector antidark solitons for Eqs. (1) have
been obtained [22]. Interactions between the bright-bright two
solitons for Eqs. (1) have been exhibited [23].

Because of the existence of the SRS effect, Eqs. (1) under
q2 = 0, or the scalar Sasa-Satsuma equation, have been shown
to support the richer localized wave phenomena than those
from the scalar NLS equation [24–30]. For example, in addition
to the bright single-hump solitons, the scalar Sasa-Satsuma
equation has been shown to admit the bright double-hump
and breather-like solitons [24], antidark and W-shaped solitons
[25], breathers in a nonzero background and rogue waves with
one-peak and double-peak structures [26–28], bright soliton
interactions with six different cases [29], and higher-order and
semirational rogue waves [30].

However, to our knowledge, there is still some work to
be studied for Eqs. (1) besides Refs. [18–23]. Do Eqs. (1)
admit the dark-bright breather-like solitons?1 Do rogue waves

1This is different from the Akhmediev breather and Kuznetsov-Ma
soliton for the NLS equation [7,9]; the dark breather-like soliton
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FIG. 1. Dark-bright one solitons via solutions (10), with k = 1, �4 = 0, and �3 = 1, (a) and (b) λ1 = 1.2 + 2.2i (single-hump); (c) and (d)
λ1 = 0.2 + 1.6i (double-hump).

coexist with the double-hump even breather-like solitons for
Eqs. (1)? Based on the above motivation, in this paper, we will
investigate the dark-bright one soliton, soliton interactions,
and semirational rogue waves for Eqs. (1) via the Darboux-
dressing transformation [31–33]. In Sec. II, the first-iterated
Darboux-dressing transformation formulas for Eqs. (1) will be
given. We will respectively construct the dark-bright soliton
and semirational rogue-wave solutions for Eqs. (1) through the
two different vector solutions for the Lax pair. In Sec. III, by
analyzing different parameters, we will find some abundant and
complicated dark-bright soliton and semirational rogue wave
features for Eqs. (1). In Sec. IV, numerical simulations will be
used to investigate the dark-bright solitons and semirational
rogue waves for Eqs. (1). Our summary and discussion will be
presented in Sec. V.

II. DARK-BRIGHT SOLITON AND SEMIRATIONAL
ROGUE-WAVE SOLUTIONS FOR EQS. (1)

By means of the Ablowitz-Kaup-Newell-Segur scheme
[34], the Lax pair for Eqs. (1) can be obtained as

�t = U�, �z = V �, (2)

has internal oscillations and multihump structures in a nonzero
background, which characteristics correspond to the bright breather-
like soliton [24].

where the vector eigenfunction � = (ψ1,ψ2,ψ3,ψ4,ψ5)T , the
superscript T signifies the transpose of a vector or matrix, ψι

(ι = 1,2,3,4,5) are the complex functions of z and t , and the
matrices U and V have the forms of

U = λU0 + U1, V = λ3V0 + λ2V1 + λV2 + V3, (3)

with

U0 = i

6ε

(−2 0T

0 I4

)
, U1 =

(
0 Q

−Q† O

)
,

Q = (−e−iϑq1, − eiϑq∗
1 , − e−iϑq2, − eiϑq∗

2 ),

V0 = 1

4ε
U0, V1 = 1

4ε
U1,

V2 = − 1

12ε
U0 + ε[U1t ,U0] + εU1[U1,U0],

V3 = − 1

12ε
U1 + ε[U1t ,U1] − εU1t t + 2εU 3

1 ,

where ϑ = t
6ε

− z
108ε2 , [X,Y ] = XY − YX (both X and Y are

the matrices), λ is the complex spectral parameter, I4 is the
4 × 4 identity matrix, O is the 4 × 4 zero matrix, 0 is the
1 × 4 zero vector, † denotes the conjugate transpose, and *
means the complex conjugate. It can be verified that Eqs. (1)
are equivalent to the compatibility condition Uz − Vt + UV −
V U = 0.

Based on the analysis in Ref. [33], the first-iterated
Darboux-dressing transformation formulas for Eqs. (1) are

(a) (b) (c) (d)

FIG. 2. Dark-bright breather-like one soliton via solutions (10), with k = 1, �3 = �4 = 1, and λ1 = 0.5 + 2.3i. Panels (b) and (d) show
corresponding trajectories of (a) and (c) at z = −0.6 (solid line) and z = 0.6 (dashed line), respectively.
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(a) (b) (c) (d)

FIG. 3. Dark-bright breather-like one soliton via solutions (10), with the same parameters as in Fig. 2 except that λ1 = 0.3−1.8i. Panels
(b) and (d) show corresponding trajectories of (a) and (c) at z = −3 (solid line) and z = 3 (dashed line), respectively.

given as

q1 = q1s + i(λ1 − λ∗
1)eiϑ

2ε(α2 − |β|2)
[(αv1 + βv∗

1 )v∗
2

+ (αv∗
1 + β∗v1)v3], (4a)

q2 = q2s + i(λ1 − λ∗
1)eiϑ

2ε(α2 − |β|2)
[(αv1 + βv∗

1 )v∗
4

+ (αv∗
1 + β∗v1)v5], (4b)

where q1s and q2s denote the seed solutions for Eqs. (1), q1

and q2 denote the new solutions for Eqs. (1), λ1 is a fixed value
of the spectral parameter, the vector (v1,v2,v3,v4,v5)T is the
solution for Lax pair (2) with λ = λ1, vl are all the complex
functions of z and t , and

α =
5∑

ι=1

|vι|2, β = λ∗
1 − λ1

2λ1

(
v2

1 + 2v2v3 + 2v4v5
)
.

To study the dark-bright soliton and semirational rogue
wave, we choose the seed solutions as

q1s = c

2ε
exp

[
− i

2ε

(
kt − ω

4ε
z
)]

, q2s = 0, (5)

with

ω = 2c2K − k2 − k3,

where the amplitude parameter c and wave number k are both
real constants, and K ≡ 1 + 3k. We need to notice that q1s is
in the nonzero background and q2s is in the zero background.
Then, for the different vector solution (v1,v2,v3,v4,v5)T , we

have the results as follows. The details of the mathematical
derivation are given in the Appendix.

(i) Solutions (4) are the dark-bright soliton solutions under

v1 = eiξ1 + �1e
iξ2 + �2e

iξ3 , (6a)

v2 = exp

[
iϑ + i

2ε

(
kt − ω

4ε
z
)]

× (r11e
iξ1 + �1r12e

iξ2 + �2r13e
iξ3 ), (6b)

v3 = exp

[
−iϑ − i

2ε

(
kt − ω

4ε
z
)]

× (r21e
iξ1 + �1r22e

iξ2 + �2r23e
iξ3 ), (6c)

v4 = �3e
iξ4 , v5 = �4e

iξ4 , (6d)

with

rjl = −3ic

ml − (−1)jK − λ1
, ξl = 1

6ε
(mlt + nlz), (7a)

nl = − 1

36ε

[
3λ1m

2
l + (

3 + 36c2 − K2 − 6λ2
1

)
ml

− 2λ1
(
3λ2

1 + 18c2 + K2
)]

, (7b)

ξ4 = 1

6ε

[
λ1t + 3λ3

1 − λ1

12ε
z

]
, j = 1,2, l = 1,2,3, (7c)

where ml is defined in Eqs. (A9) of the
Appendix and �τ (τ = 1,2,3,4) are all the complex constants.
Note that here λ1 is independent of k and c.

FIG. 4. Bound states between the breather and dark-bright soliton via Eqs. (4) and (6), with ε = 0.5, c = k = 1, �2 = 0, �1 = �3 = 1, and
λ1 = 1.2 + 2.4102i, (a) and (b) �4 = 0 (single-hump soliton); (c) and (d) �4 = 1 (breather-like soliton).
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(a) (b) (c) (d)

FIG. 5. Interaction between the breather and dark-bright soliton via Eqs. (4) and (6), with ε = 0.5, c = k = 1, λ1 = 0.9 − 1.8i, �1 = 1,
�3 = 0.5 and �2 = �4 = 0. Panels (b) and (d) show corresponding trajectories of (a) and (c) at z = −4 (solid line) and z = 4 (dashed line),
respectively.

(ii) Solutions (4) are the semirational rogue-wave solutions
under

v1 = eiξ1 + �1p1e
iξ1 + �2e

iξ3 , (8a)

v2 = exp

[
iϑ + i

2ε

(
kt − ω

4ε
z
)]

× (r11e
iξ1 + �1p2e

iξ1 + �2r13e
iξ3 ), (8b)

v3 = exp

[
−iϑ − i

2ε

(
kt − ω

4ε
z
)]

× (r21e
iξ1 + �1p3e

iξ1 + �2r23e
iξ3 ), (8c)

v4 = �3e
iξ4 , v5 = �4e

iξ4 , (8d)

with

p1 = iμ

216ε2

[
36εt + (

6λ2
1 − 6λ1m1 − 36c2 + K2 − 3

)
z
]
,

(9a)

p2 = cμ
[
36εt + (

6λ2
1 − 6λ1m1 − 36c2 + K2 − 3

)
z
]

72ε2(m1 + K − λ1)

+ 3icμ

(m1 + K − λ1)2
, (9b)

p3 = cμ
[
36εt + (

6λ2
1 − 6λ1m1 − 36c2 + K2 − 3

)
z
]

72ε2(m1 − K − λ1)

+ 3icμ

(m1 − K − λ1)2
, (9c)

λ1 = ± i
√

18c2(9c2 + 10K2) − 4K4 + 6c(9c2 − 4K2)3/2

6K
,

(9d)

where ξτ and rjl are defined in Eqs. (7), m1 and m3 are defined
in Eqs. (A14) of the Appendix.

III. DARK-BRIGHT SOLITON AND SEMIRATIONAL
ROGUE-WAVE PHENOMENA

Based on the analysis in Sec. II, we will discuss those soliton
and rogue-wave phenomena, which are different from those in
the coupled NLS equations [12–15]. In this section, without
loss of generality, we keep parameters ε = 0.5 and c = 1 in all
discussion below, namely, the background remains constant 1.

For the dark-bright soliton and semirational rogue-wave
solutions for Eqs. (1), it is noticed that in addition to the spectral
parameter λ1 and wave number k, the four complex constants
�1, �2, �3, and �4 also play a role in the wave structures and
nonlinear superpositions of waves. Hereby, we require that �3

and �4 are not both zero, or else q2 = 0 and q1 is reduced to a

(a) (b) (c) (d)

FIG. 6. Same as Fig. 5 except that λ1 = 0.4 − 1.8i.
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FIG. 7. Interactions between the breathers and dark-bright solitons via Eqs. (4) and (6), with ε = 0.5, c = k = 1, λ1 = 1.2 − 1.8i, �1 =
�3 = 1, and �4 = 4, (a) and (b) �2 = 0; (c) and (d) �2 = 1. Panels (e)–(h) show corresponding contour plots of (a)–(d), respectively.

solution of the scalar Sasa-Satsuma equation, which has been
well studied in the previously reported [24–30].

A. Dark-bright solitons

Based on Eqs. (4) and (6), if setting �1 = �2 = 0, we can
rewrite the dark-bright soliton solutions as

q1 = exp

[
− i

2ε

(
kt − ω

4ε
z
)][

1 + i(λ1 − λ∗
1)eiϑ G2

G1

]
,

q2 = i(λ1 − λ∗
1)eiϑ G3

G1
, (10)

with

G1 = 2|λ1|2
[
(|�3|2 + |�4|2) + ei(ξ1−ξ4)−i(ξ∗

1 −ξ∗
4 )

× (1 + |r11|2 + |r21|2)
]2 + 1

2 (λ1 − λ∗
1)2

× ∣∣2�3�4 + e2i(ξ1−ξ4)(1 + 2r11r21)
∣∣2

, (11a)

G2 = e2i(ξ1−ξ4)−2i(ξ∗
1 −ξ∗

4 )h1 + 2ei(ξ1−ξ4)−i(ξ∗
1 −ξ∗

4 )

× (|�3|2 + |�4|2)|λ1|2(r∗
11 + r21) + 2(λ1 − λ∗

1)

× [
e2i(ξ1−ξ4)λ1�

∗
3�

∗
4r21 − e−2i(ξ∗

1 −ξ∗
4 )λ∗

1�3�4r
∗
11

]
, (11b)

G3 = �∗
3λ

∗
1e

2i(ξ1−ξ4)−i(ξ∗
1 −ξ∗

4 )h2 + �4λ1e
i(ξ1−ξ4)−2i(ξ∗

1 −ξ∗
4 )h∗

2

+ 2
[
�∗

3λ1e
i(ξ1−ξ4) + �4λ

∗
1e

−i(ξ∗
1 −ξ∗

4 )
]

× (|�3|2λ∗
1 + |�4|2λ1), (11c)

h1 = (λ1 + λ∗
1)(λ1r21 + λ∗

1r
∗
11) + 2(λ1|r21|2

+ λ∗
1|r11|2)(λ1r

∗
11 + λ∗

1r21), (11d)

h2 = [1 + 2(|r11|2 − r11r21 + |r21|2)]λ1

+ (1 + 2r11r21)λ∗
1. (11e)

From solutions (10) and (11), we know that the soliton
velocities are measured by the relative factor ei(ξ1−ξ4)−i(ξ∗

1 −ξ∗
4 ).

We say that such solutions are the vector one-soliton solutions.
The soliton velocities in the q1 and q2 components are the same

(a) (b) (c) (d)

FIG. 8. Vector semirational rogue wave via solutions (13), with μ = 1, k = 1.2, �1 = 4, �3 = 1, and �2 = �4 = 0. Panels (b) and (d) show
corresponding trajectories of (a) and (c) at z = −4 (solid line) and z = 4 (dashed line), respectively.
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(a) (b) (c) (d)

FIG. 9. Same as Fig. 8 except that k = 0.35.

and are expressed as

Vs1 = 39 − K2

18

+ λ1(m1 − λ1)2 − λ∗
1(m∗

1 − λ∗
1)2 − K2(λ1 − λ∗

1)

6[(m1 − m∗
1) − (λ1 − λ∗

1)]
,

(12)

where m1 is defined in Eqs. (A9) by parameters λ1 and K .
Therefore, we can see that the velocity of the dark-bright
soliton is related to spectral parameter λ1 and wave number k.
Besides, because the soliton solutions may exhibit multihump
structures, the expressions of soliton average amplitudes are
rather cumbersome and are not discussed in this paper. Even
so, we can still see that the soliton amplitudes in the q1

and q2 components depend on all parameters λ1, k, �3,
and �4.

When �3 = 0 (or �4 = 0), we observe the dark-bright
one soliton with single-hump or double-hump structure for
Eqs. (1), as shown in Fig. 1. For the different spectral parameter
λ1, the dark-bright one soliton maybe exhibit one or two
maximum amplitudes. In Ref. [20], those vector solitons have
also been obtained through the Hirota method.

However, when �3�4 �= 0, we observe two types of the
dark-bright breather-like one soliton for different λ1. In Fig. 2,
the dark and bright contributions in the q1 and q2 components
have internal oscillations and multihump structures. Although
the scalar Sasa-Satsuma equation supports the bright breather-
like soliton [24], the dark breather-like soliton is still difficult
to be obtained for the scalar Sasa-Satsuma equation in both
focusing and defocusing [35]. In Figs. 3, the q1 component

shows the superposition of the dark and bright contributions
and gives rise to a breather-like soliton which is different from
that in Fig. 2(a), and the q2 component still exhibits multihump
structures with oscillation. In fact, the coexistence of factors
ei(ξ1−ξ4)−i(ξ∗

1 −ξ∗
4 ) and e2i(ξ1−ξ4)−2i(ξ∗

1 −ξ∗
4 ) in solutions (10) causes

the intensities of |q1| and |q2| to possess possible double-hump
structures, and on that basis, factors ei(ξ1−ξ4) and e−i(ξ∗

1 −ξ∗
4 )

cause the intensities of |q1| and |q2| to possess some oscillating
structures. Furthermore, the double-hump and multihump
vector solitons have been said to have potential applications in
the higher bit-rate transmission for multilevel communication
[36,37].

On the other hand, from Eqs. (6), we can see that if �1

or �2 is not zero, there are more relative factors, such as
ei(ξ2−ξ4)−i(ξ∗

2 −ξ∗
4 ) and ei(ξ3−ξ4)−i(ξ∗

3 −ξ∗
4 ). Therefore, the solutions

will have more than one branch, that is, we can observe the
interactions and coexistence phenomena between breathers
and dark-bright solitons. Such solutions can be represented
by Eqs. (4) and (6), but we will not present those due to the
complication.

We consider �2 = 0 and �1�3 �= 0 in Eqs. (6). We assume
that the breather and dark-bright soliton have the same velocity,
that is, the parameters satisfy the following constraint:

λ1(m1 − λ1)2 − λ∗
1(m∗

1 − λ∗
1)2 − K2(λ1 − λ∗

1)

(m1 − m∗
1) − (λ1 − λ∗

1)

= λ1(m2 − λ1)2 − λ∗
1(m∗

2 − λ∗
1)2 − K2(λ1 − λ∗

1)

(m2 − m∗
2) − (λ1 − λ∗

1)
.

For this purpose, choosing λ1 ≈ 1.2 + 2.4102i and k = 1 (i.e.,
K = 4), we obtain the bound states between the breather and

(a) (b) (c) (d)

FIG. 10. Same as Fig. 8 except that k = 0.19.
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FIG. 11. Vector semirational rogue waves via solutions (13), with μ = 1, �1 = 10, �2 = 0, �3 = 1, and �4 = 0.5, (a) and (b) k = 1.2;
(c) and (d) k = 2. Panels (e)–(h) show corresponding contour plots of (a)–(d), respectively.

dark-bright soliton, as shown in Fig. 4. Under the constraint,
the velocity of both the breather and dark-bright soliton is ap-
proximately 1.04. As seen in Figs. 4(a) and 4(b), when �4 = 0,
the breather with double-peak structure coexists with the dark-
bright single-hump soliton. When �4 �= 0, the double-peak
breather coexists with the dark-bright breather-like soliton, as
seen in Figs. 4(c) and 4(d).

When the breathers and dark-bright solitons have different
velocities, reflecting interactions between breathers and dark-
bright solitons will occur. Instead of the asymptotic analysis,
we show such behaviors in Figs. 5–7. If �4 = 0, as seen
in Figs. 5(a) and 5(b), the single-hump dark-bright soliton
changes its velocity after the interaction with the double-peak
breather. It seems that the dark-bright soliton is reflected when
it interacts with the breather. In addition to the change of
velocities, in Figs. 5(b) and 5(d), we see that the amplitudes of
the single-hump soliton in the q1 and q2 components slightly
decrease after such interaction. In Fig. 6, we see that the single-
hump soliton converts into the double-hump soliton after the
interaction. And both amplitudes and velocities of the soliton
in the q1 and q2 components are changed after such interaction.
However, when choosing �4 �= 0, we see that the dark-bright
solitons possess some oscillating structures, as shown in Fig. 7.
In particular, Figs. 7(c) and 7(d) exhibit the interaction under
�2�4 �= 0. To clearly show the effect of the parameter �2,
we use the corresponding contour plots in Figs. 7(e)–7(h).
Compared with Figs. 7(a) and 7(b), Figs. 7(c) and 7(d) show
more complicated oscillation before and after the interaction,
while when z → ±∞, such dark-bright solitons seem to be
unaffected. Namely, the parameter �2 does not affect the
asymptotic behavior of the dark-bright soliton except for some
oscillation in the interaction domains. Similar phenomena can
also apply to the cases of Figs. 5 and 6. All of those reflecting
interactions are inelastic.

B. Semirational rogue waves

Via Eqs. (4) and (8) and under �2 = 0, the semirational
rogue-wave solutions are rewritten as

q1 = exp

[
− i

2ε

(
kt − ω

4ε
z
)][

1 + i(λ1 − λ∗
1)eiϑ F2

F1

]
,

q2 = i(λ1 − λ∗
1)eiϑ F3

F1
, (13)

FIG. 12. Vector semirational rogue waves via Eqs. (4) and (8),
with ε = 0.5, c = μ = 1, k = 1.2, �1 = 10, �2 = 0.1, and �3 = 1,
(a) and (b) �4 = 0; (c) and (d) �4 = 0.5.
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FIG. 13. Numerical simulations of the dark-bright soliton via solutions (10), with k = 1, �3 = 1, �4 = 0, and λ1 = 1.2 + 2.2i. (a) and (b)
the unperturbed initial pulses; (c) and (d) the perturbed initial pulses by white noise.

with

F1 = 2|λ1|2
[
(|�3|2 + |�4|2) + ei(ξ1−ξ4)−i(ξ∗

1 −ξ∗
4 )(1 + |r11|2 + |r21|2 + w1)

]2

+ 1
2 (λ1 − λ∗

1)2|2�3�4 + e2i(ξ1−ξ4)(1 + 2r11r21 + w2)|2, (14a)

F2 = e2i(ξ1−ξ4)−2i(ξ∗
1 −ξ∗

4 )w3 + 2ei(ξ1−ξ4)−i(ξ∗
1 −ξ∗

4 )(|�3|2 + |�4|2)|λ1|2w4 + 2(λ1 − λ∗
1)

× [
e2i(ξ1−ξ4)λ1�

∗
3�

∗
4 (1 + �1p1)(r21 + �1p3) − e−2i(ξ∗

1 −ξ∗
4 )λ∗

1�3�4(1 + �∗
1p

∗
1)(r∗

11 + �∗
1p

∗
2)

]
, (14b)

F3 = �∗
3λ

∗
1e

2i(ξ1−ξ4)−i(ξ∗
1 −ξ∗

4 )w5 + �4λ1e
i(ξ1−ξ4)−2i(ξ∗

1 −ξ∗
4 )w∗

5

+ 2
[
�∗

3λ1(1 + �1p1)ei(ξ1−ξ4) + �4λ
∗
1(1 + �∗

1p
∗
1)e−i(ξ∗

1 −ξ∗
4 )

]
(|�3|2λ∗

1 + |�4|2λ1), (14c)

w1 = �1(p1 + p2r
∗
11 + p3r

∗
21) + �∗

1 (p∗
1 + p∗

2r11 + p∗
3r21) + |�1|2(|p1|2 + |p2|2 + |p3|2), (14d)

w2 = 2�1(p1 + p3r11 + p2r21) + �2
1

(
p2

1 + 2p2p3
)
, (14e)

w3 = |1 + �1p1|2(λ1 + λ∗
1)

[
λ1(r21 + �1p3)(1 + �∗

1p
∗
1) + λ∗

1(r∗
11 + �∗

1p
∗
2)(1 + �1p1)

]

+ 2(λ1|r21 + �1p3|2 + λ∗
1|r11 + �1p2|2)

[
λ1(r∗

11 + �∗
1p

∗
2)(1 + �1p1) + λ∗

1(r21 + �1p3)(1 + �∗
1p

∗
1)

]
, (14f)

w4 = r∗
11 + r21 + �1(p3 + p1r

∗
11) + �∗

1 (p∗
2 + p∗

1r21) + |�1|2(p1p
∗
2 + p∗

1p3), (14g)

w5 = [1 + 2(|r11|2 − r11r21 + |r21|2) + �1 + �2]λ1 + (1 + 2r11r21 + w2)(1 + �∗
1p

∗
1)λ∗

1, (14h)

�1 = 2�1p1(|r11|2 + |r21|2) + �∗
1p

∗
1(1 − 2r11r21) + �1(1 + p∗

1�
∗
1 )

[
2p1 − 2p2r21 − 2p3r11 + �1

(
p2

1 − 2p2p3
)]

, (14i)

�2 = 2(1 + p1�1)[�1(p2r
∗
11 + p3r

∗
21) + �∗

1 (p∗
2r11 + p∗

3r21) + |�1|2(|p2|2 + |p3|2)]. (14j)

We can see that if �1 = 0, solutions (13) are reduced to
the dark-bright soliton solutions. Only if �1 �= 0, solutions
(13) contain polynomial functions; that is, vector semirational
rogue-wave solutions can be obtained. It is noted that λ1 in
solutions (13) is not a free parameter, but is determined by
Eq. (A15), which is different from solutions (10).

Semirational rogue-wave solutions (13) show that the rogue
wave coexists and interacts with dark-bright soliton. When
�4 = 0 (or �3 = 0), based on the analysis of the relative
exponential factors, we know that the dark-bright soliton
constituents only appear with single-hump or double-hump
structures. When we change the parameter k (here λ1 is also
changed), several different interactions will be generated.

For example, when k = 1.2, Figs. 8(a) and 8(c) show a
single-hump dark-bright soliton together with a double-peak
rogue wave. As seen in Figs. 8(b) and 8(d), the soliton ampli-
tudes in the q1 and q2 components are changed during such

interaction [in Fig. 8(d), the amplitude also changes slightly].
Decreasing the value of k, we see that the double-hump
dark-bright soliton converts into to the single-hump dark-bright
soliton after the interaction with a double-peak rogue wave, as
shown in Fig. 9. When k = 0.19, Fig. 10 shows a double-hump
dark-bright soliton coexisting with a single-peak rogue wave.
We can see that the rogue wave and dark-bright solitons almost
merge together. From the trajectories in Figs. 9 and 10, we see
that the dark-bright solitons change their shapes during the
interaction with the rogue waves. In such interaction domains,
there are obvious changes for the velocities of solitons. With
the decrease of k, the velocities of solitons in the asymptotic
behaviors gradually become larger along the positive direction
[the velocity expression of the soliton is the same as Eq. (12)
despite the difference of λ1 and m1]. It is noted that the
double-hump solitons in Figs. 9 and 10 are not symmetric
for the smaller |z| due to the effect of interactions. However,
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FIG. 14. Same as Fig. 13 except that �4 = 1.

when the value of |z| becomes larger, such solitons will present
symmetric double-hump structures.

Similarly, when �3�4 �= 0, factors ei(ξ1−ξ4) and e−i(ξ∗
1 −ξ∗

4 )

in solutions (13) cause the dark-bright soliton constituents
to possess some oscillating structures. As shown in Fig. 11,
we observe that the rogue waves coexist and interact with the
dark-bright breather-like solitons. Because the component q2

is in zero background, those phenomena are different from
the vector breather solitons in the coupled NLS equations
[13]. When k = 1.2, the rogue wave exhibits a double-peak
structure, and the velocity of the soliton for the larger |z| is
approximately 0, as shown in Figs. 11(a) and 11(b). Increasing
the value of k, we find that the rogue wave changes its structure
to a single peak, and the velocity of the soliton for the lager
|z| is changed to a negative value, as shown in Figs. 11(c) and
11(d). From Figs. 11(e)–11(h), we see that the interactions also
change the shapes of the dark-bright solitons.

Finally, we consider a complicated case, i.e., �2 �= 0.
Under this case, a nonlinear superposition of solitons with
different velocities and a rogue wave will occur. Because of the
complication of the solutions, we just discuss the properties
via the graphical analysis. In Fig. 12, we observe that the
dark-bright solitons and rogue waves coexist. When �4 = 0,
we see that a dark-bright single-hump soliton diverges into
another dark-bright single-hump soliton and a breather-like
soliton after the interaction with the double-peak rogue wave,
as shown in Figs. 11(a) and 11(b). When�4 �= 0, all dark-bright
soliton constituents exhibit the breather-like structures, as
seen in Figs. 11(c) and 11(d). Additionally, in Fig. 11, some
oscillations always appear near the rogue waves in the q1 and
q2 components, whether �4 = 0 or �4 �= 0.

IV. NUMERICAL SIMULATIONS

In this section, we use numerical simulations to investigate
the stability of the dark-bright soliton and semirational rogue-

wave solutions. Here, we used a split-step Fourier method to
solve the linear part and a fourth-order Runge-Kutta method
to deal with the nonlinear part for Eqs. (1). With or without
exerting white noise perturbation, numerical results of the
dark-bright soliton and semirational rogue-wave solutions are
demonstrated in Figs. 13–16. Here, we mimic the initial pulses
perturbed with 5% white noise of small amplitudes. Namely,
we multiply the q1 and q2 by the factors [1 + 0.05fj (t)]
(j = 1,2), respectively, where fj (t) are uncorrelated random
functions uniformly distributed in the interval [−1,1].

We choose the initial pulse inputs via solutions (10) at z = 0.
The initial pulse parameters in Fig. 13 are the same as those
in Figs. 1(a) and 1(b). We see that the unperturbed numerical
solutions in Figs. 13 and 14 reproduce the dark-bright solitons
with the single-hump and breather-like structures, which agree
with the analytical solutions of dark-bright soliton for Eqs. (1).
Due to the fact that the modulation instability tends to interfere
strongly with the trailing edge of the localized solutions [14],
the unstable backgrounds when z > 1.6 are presented for
the dark components in Figs. 13 and 14. Under the white
noise perturbation, Figs. 13(c) and 13(d) present the stability
of the dark-bright soliton with the single-hump structure. In
Figs. 14(c) and 14(d), the dark component of the dark-bright
soliton with the breather-like structure exhibits instability,
while the bright one seems to be stable.

Then, we consider solutions (13) at z = −1 as the initial
pulses. The initial pulse parameters in Fig. 15 are the same
as those in Fig. 8. The unperturbed numerical solutions in
Figs. 15 and 16 reproduce the coexistence of the double-peak
rogue wave and dark-bright solitons with the single-hump and
breather-like structures, which agree with the analytical solu-
tions of the semirational rogue waves for Eqs. (1). Similarly,
for the q1 component, we see that the modulation instability
tends to interfere strongly with the trailing edge of the localized
solutions when z > 1. Under the white noise perturbation of
the semirational rogue waves, Figs. 15 and 16 reveal that the

FIG. 15. Numerical simulations of the semirational rogue wave via solutions (13), with μ = 1, k = 1.2, �1 = 4, �3 = 1, and �4 = 0. (a)
and (b) the unperturbed initial pulses; (c) and (d) the perturbed initial pulses by white noise.
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FIG. 16. Same as Figs. 15 except that �4 = 0.5.

double-peak rogue wave constituents seem to be stable on an
unstable background, while the dark-bright soliton constituents
exhibit instability.

V. SUMMARY AND DISCUSSION

In summary, we have studied the coupled Sasa-Satsuma
equations, i.e., Eqs. (1), which describe the simultaneous
propagation of two ultrashort pulses in the birefringent or
two-mode fiber with the TOD, SS, and SRS effects. Based
on Lax pair (2), we have respectively derived two different
vector solutions, i.e., solutions (6) and (8). With the help of
the first-iterated Darboux-dressing transformation formulas,
i.e., Eqs. (4), we have obtained the dark-bright soliton and
semirational rogue-wave solutions for Eqs. (1).

We have observed the dark-bright one solitons with single-
hump, double-hump, and breather-like structures, as shown in
Figs. 1–3. Figs. 2 and 3 have shown two types of the breather-
like one soliton. Figure 4 has shown the bound states between
the breather and dark-bright soliton. Figures 5–7 have shown
the different interactions between the double-peak breather
and dark-bright solitons. In Figs. 8–11, we have seen that
the rogue waves coexist and interact with dark-bright solitons.
As shown in Fig. 9, the single-hump soliton maybe convert
into the double-hump soliton after such interaction. Figure 11
has demonstrated that the single-peak and double-peak rogue
waves coexist and interact with the dark-bright breather-like
solitons. Figure 12 has shown the coexistence of the solitons
with different velocities and rogue waves. Moreover, we use
numerical simulations to study the stabilities of the dark-bright
solitons and semirational rogue waves in a short propagation
distance z, as shown in Figs. 13–16.

In nonlinear fiber optics, local wave phenomena have been
confirmed in some experiments [9,10,38–41]. For instance,
some interactions between the optical spatial solitons have
been demonstrated through the experiments [38]. Breathers
and rogue waves for the scalar NLS equation have been
observed in the optical fiber experiments [9,10]. For vec-
tor solitons, the experiments of the incoherently coupled

photorefractive spatial-soliton pairs (including the dark-bright
solitons) have been shown [39]. Bright-dark soliton pairs with
the orthogonal polarization have been generated in a passively
mode-locked fiber laser with a large-angle tilted fiber grating
[40]. Optical vector solitons with double-hump structures
in optical Kerr media have been experimentally observed
[41]. Vector dark rogue waves have also been investigated
experimentally using standard fiber telecom equipment [42].
For the ultrashort pulses in the subpicosecond or femtosecond
regime, setups proposed in Refs. [9,10,38–42] have given
some possible experimental conditions about the observation
of vector semirational rogue waves and interactions between
breathers and dark-bright solitons. Therefore, we expect that
the results in this paper may be useful for gaining further
knowledge of solitons, breathers, and rogue waves.
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APPENDIX: DERIVATION OF THE VECTOR SOLUTIONS
OF LAX PAIR (2)

To obtain the vector solutions of Lax pair (2) under seed
solutions (5), we need to consider the new vector eigenfunction

�̂ = G−1�, (A1)

with

G =

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
0 exp

[
iϑ + i

2ε

(
kt − ω

4ε
z
)]

0 0 0
0 0 exp

[−iϑ − i
2ε

(
kt − ω

4ε
z
)]

0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠. (A2)

Then Lax pair (2) can be rewritten as

�̂t = Û (λ)�̂, �̂z = V̂ (λ)�̂, (A3)
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where

Û (λ) = i

6ε

⎛
⎜⎜⎜⎝

−2λ 3ic 3ic 0 0
−3ic −K + λ 0 0 0
−3ic 0 K + λ 0 0

0 0 0 λ 0
0 0 0 0 λ

⎞
⎟⎟⎟⎠, (A4a)

V̂ (λ) = iλ

2
Û 2(λ) − 3 + 36c2 − K2 − 6λ2

36ε
Û (λ) + iλ(3λ2 + 18c2 + K2)

108ε2
I5 + iK2λ

72ε2
A, (A4b)

with

A =

⎛
⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎠, K = 1 + 3k.

Consequently, we can obtain the vector solutions of Lax pair
(2) as

(v1,v2,v3,v4,v5)T = G exp[Û (λ1)t + V̂ (λ1)z]Z0, (A5)

where Z0 is a constant five-dimensional column vector. With-
out loss of generality, we set Z0 = (1,�1,�2,�3,�4)T , where
�1, �2, �3, and �4 are the complex constants.

We know that if Û and V̂ are similar to the diagonal matrix,
(v1,v2,v3,v4,v5)T is a linear combination of exponential vector
functions of z and t , and q1 and q2 are exponential forms. If Û

and V̂ are similar to the Jordan matrix, (v1,v2,v3,v4,v5)T is a
combination of exponential and polynomial vector functions
of z and t , and q1 and q2 are semirational forms. Therefore,
we focus on the matrix −6iεÛ (λ1) and its characteristic
polynomial

det[m + 6iεÛ (λ1)] = [
m3 − (

3λ2
1 + 18c2 + K2

)
m

+ 2λ1
(
λ2

1 + 9c2 − K2
)]

(m − λ1)2.

It is noted that the equation det[m + 6iεÛ (λ1)] = 0 has two
known roots m4 = m5 = λ1. To investigate whether Û can be
diagonalized, we consider the three roots m1, m2, and m3 of
the cubic equation

m3 − (
3λ2

1 + 18c2 + K2
)
m + 2λ1

(
λ2

1 + 9c2 − K2
) = 0,

(A6)

Each solution ml (l = 1,2,3) depends on λ1, c, and k.
There will be three cases of the roots for Eq. (A6), i.e.,

(i) the three roots are not equal to each other; (ii) there are
a single root and a double root; (iii) there is a triple root.
Since the seed solution q1s is in nonzero background, similar
to the scalar Sasa-Satsuma equation [33], we require spectral
parameter λ2

1 �∈ R. Thus, case (iii) cannot be satisfied, and we
only discuss two different cases in the following.

Case (i): m1, m2, and m3 are not equal to each other

Under this case, Û can be diagonalized. Setting the trans-
formation matrix

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 0
−3ic

m1+K−λ1

−3ic
m2+K−λ1

−3ic
m3+K−λ1

0 0
−3ic

m1−K−λ1

−3ic
m2−K−λ1

−3ic
m3−K−λ1

0 0

0 0 0 1 0

0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (A7)

we have

T −1Û (λ1)T = i

6ε

⎛
⎜⎜⎜⎝

m1 0 0 0 0
0 m2 0 0 0
0 0 m3 0 0
0 0 0 λ1 0
0 0 0 0 λ1

⎞
⎟⎟⎟⎠, (A8)

where

m1 = −
√

ρ(� + �−1)

6
− i

√
3ρ(� + �−1)

6
, (A9a)

m2 = −
√

ρ(� + �−1)

6
+ i

√
3ρ(� + �−1)

6
, (A9b)

m3 =
√

ρ(� + �−1)

3
, (A9c)

with

ρ = 3
(
3λ2

1 + 18c2 + K2
)
,

χ = −27λ1
(
λ2

1 + 9c2 − K2
)

(
√

ρ)3
,

� = 3

√
χ +

√
χ2 − 1.

Via Eq. (A4b), V̂ (λ1) can also be reduced to a diagonal matrix
by T −1V̂ (λ1)T . Then based on Eq. (A5), we derive

v1 = eiξ1 + �1e
iξ2 + �2e

iξ3 , (A10a)

v2 = exp

[
iϑ + i

2ε

(
kt − ω

4ε
z
)]

× (
r11e

iξ1 + �1r12e
iξ2 + �2r13e

iξ3
)
, (A10b)

v3 = exp

[
−iϑ − i

2ε

(
kt − ω

4ε
z
)]

× (
r21e

iξ1 + �1r22e
iξ2 + �2r23e

iξ3
)
, (A10c)

v4 = �3e
iξ4 , v5 = �4e

iξ4 , (A10d)
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with

rjl = −3ic

ml − (−1)jK − λ1
, ξl = 1

6ε
(mlt + nlz), (A11a)

nl = − 1

36ε

[
3λ1m

2
l + (

3 + 36c2 − K2 − 6λ2
1

)
ml

− 2λ1
(
3λ2

1 + 18c2 + K2
)]

, (A11b)

ξ4 = 1

6ε

[
λ1t + 3λ3

1 − λ1

12ε
z

]
, j = 1,2, l = 1,2,3.

(A11c)

Substituting Eqs. (A10) into Eqs. (4), we obtain the dark-
bright soliton solutions for Eqs. (1).

Case(ii): m1 = m2 = − 1
2m3

When m1 = m2 = − 1
2m3, Û is similar to a Jordan matrix.

Setting the transformation matrix

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 0 0
−3ic

m1+K−λ1

3iμc

(m1+K−λ1)2
−3ic

m3+K−λ1
0 0

−3ic
m1−K−λ1

3iμc

(m1−K−λ1)2
−3ic

m3−K−λ1
0 0

0 0 0 1 0

0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (A12)

we have

T −1Û (λ1)T = i

6ε

⎛
⎜⎜⎜⎝

m1 μ 0 0 0
0 m1 0 0 0
0 0 m3 0 0
0 0 0 λ1 0
0 0 0 0 λ1

⎞
⎟⎟⎟⎠, (A13)

where μ is the complex constant and

m1 = 3λ1
(
λ2

1 + 9c2 − K2
)

3λ2
1 + 18c2 + K2

, (A14a)

m3 = −6λ1
(
λ2

1 + 9c2 − K2
)

3λ2
1 + 18c2 + K2

, (A14b)

with

λ1 = ± i
√

18c2(9c2 + 10K2) − 4K4 + 6c(9c2 − 4K2)3/2

6K
.

(A15)

In this case, we assume 9c2 − 4K2 < 0, which follows from
the requirement of λ2

1 �∈ R. Similarly, V̂ (λ1) can be also
reduced to a Jordan matrix. Via Eq. (A5), we derive

v1 = eiξ1 + �1p1e
iξ1 + �2e

iξ3 , (A16a)

v2 = exp

[
iϑ + i

2ε

(
kt − ω

4ε
z
)]

× (
r11e

iξ1 + �1p2e
iξ1 + �2r13e

iξ3
)
, (A16b)

v3 = exp

[
−iϑ − i

2ε

(
kt − ω

4ε
z
)]

× (
r21e

iξ1 + �1p3e
iξ1 + �2r23e

iξ3
)
, (A16c)

v4 = �3e
iξ4 , v5 = �4e

iξ4 , (A16d)

with

p1 = iμ

216ε2

[
36εt + (

6λ2
1 − 6λ1m1 − 36c2 + K2 − 3

)
z
]
,

(A17a)

p2 = cμ
[
36εt + (

6λ2
1 − 6λ1m1 − 36c2 + K2 − 3

)
z
]

72ε2(m1 + K − λ1)

+ 3icμ

(m1 + K − λ1)2
, (A17b)

p3 = cμ
[
36εt + (

6λ2
1 − 6λ1m1 − 36c2 + K2 − 3

)
z
]

72ε2(m1 − K − λ1)

+ 3icμ

(m1 − K − λ1)2
, (A17c)

where ξτ and rjl are defined in Eqs. (A11). Via Eqs. (4), we
obtain the semirational rogue-wave solutions for Eqs. (1).
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