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Strange nonchaotic attractors for computation
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We investigate the response of quasiperiodically driven nonlinear systems exhibiting strange nonchaotic
attractors (SNAs) to deterministic input signals. We show that if one uses two square waves in an aperiodic manner
as input to a quasiperiodically driven double-well Duffing oscillator system, the response of the system can produce
logical output controlled by such a forcing. Changing the threshold or biasing of the system changes the output to
another logic operation and memory latch. The interplay of nonlinearity and quasiperiodic forcing yields logical
behavior, and the emergent outcome of such a system is a logic gate. It is further shown that the logical behaviors
persist even for an experimental noise floor. Thus the SNA turns out to be an efficient tool for computation.

DOI: 10.1103/PhysRevE.97.052212

I. INTRODUCTION

Strange nonchaotic attractors (SNAs) are attractors which
possess fractal geometry but exhibit no sensitive dependence
on initial conditions. SNAs occur in all dissipative dynamical
systems when the attractors formed at the accumulation points
of period-doubling cascades are fractal sets with a zero Lya-
punov exponent. Such attractors, however, are not physically
observable because the set of parameter values for them to arise
has Lebesgue measure zero in the parameter space. Situations
where SNAs can arise typically were described by Grebogi
et al. [1], who found that quasiperiodically driven dynamical
systems admit SNAs in parameter regions of positive Lebesgue
measure. Since then, there have been many studies of SNAs
in quasiperiodically forced systems [2–14]. Experimental ob-
servations of SNAs have been reported in a quasiperiodically
driven magnetoelastic ribbon system [2], in electronic circuits
[3], in a plasma system [4], in an electrochemical cell [5], and
in a system near the torus-doubling critical point [6].

Physically, SNAs are relevant to situations such as localiza-
tion of quantum particles in spatially quasiperiodic potential
systems [7]. These exotic attractors are also important for
biological systems [8], and they may be useful for nonlinear
dynamics-based communication as well [9]. Recently evidence
for strange nonchaotic behavior has been identified in the
pulsation of stars like KIC 5520878 [10]. Most of the works in
the literature considered the process by which an SNA can
be created from a regular attractor or its disappearance in
the transition to a chaotic attractor [11–14]. SNAs can also
be quantitatively characterized by a variety of measures and
methods including Lyapunov exponents, fractal dimensions,
and spectral properties as well as examination of time series
[10–15]. The geometric strangeness of the attractor can be mea-
sured through indices such as the phase-sensitivity exponent,
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while the chaoticity property can be checked by examining
the finite-time Lyapunov exponents [15]. Mathematical issues
concerning the generation and properties of SNAs have also
been addressed [16]. In this regard, if an SNA can persist
under small perturbations, it is said to be robust [17]. So far
robust SNAs have been identified and studied extensively in
quasiperiodically driven dynamical systems [16,17].

It is well known that the approaching of physical limits using
Moore’s law has led to the development of alternative methods
to perform more computations out of a limited number of
hardware [18–27]. In this direction, in 1998 the important work
of Sinha and Ditto paved a new avenue of using chaos for com-
putation [18]. They proposed a chaos-computing scheme based
on the thresholding method to achieve a controlled response
from a chaotic system. Simultaneously, Prusha and Lindner
emphasized the importance of nonlinearity over chaos using
a nonlinear paramaterized map and illustrated why chaos and
computation require nonlinearity [19]. Munakata et al. realized
various logic operations by employing a single chaotic ele-
ment, especially a one-dimensional chaotic dynamical system
(logistic map) [23]. Murali et al. reported experimental real-
ization of a fundamental NOR gate using chaotic systems [20].

Further, Murali et al. proposed different schemes to obtain
key logic structures by using synchronization [24,25] and
stochastic resonance [22] of nonlinear systems. Following this,
Kohar et al. have enhanced our understanding of nonlinear
computing by adding either additional positive or negative
asymmetric biasing to a bistable system driven by two input
signals which yield a logic function of two signals in an optimal
window of moderate noise [27]. The phenomenon of logical
stochastic resonance (LSR) has been realized theoretically
and experimentally in diverse systems, such as a nanoscale
device [28], resonant tunnel diodes [29], a vertical cavity
surface-emitting laser [30], a polarization bistable laser [31],
a chemical system [32], synthetic gene networks [33], and so
on. Recently, two of the present authors along with Venkatesh
employed coupled dynamical systems to build dynamical logic
gates by altering the value of the logic inputs [34].
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From a different point of view, Kia et al. demonstrated
how unstable periodic orbits can be exploited to model chaos
computing [35]. Later Kia et al. also showed how the inherent
noise reduction properties in coupled systems can be used for
computation [36]. Further Wang and Roychowdhury showed
that self-sustaining oscillators of any type can function as
latches and registers if Boolean logic states are represented
as the phase of oscillatory signals [37]. Borresen and Lynch
have demonstrated how coupled threshold oscillators may be
used as the principle components of computers [38]. It has
also been pointed out that heteroclinic computing offers a
paradigm for computation with a collective system of nonlinear
oscillators [21].

These approaches have been used to implement different
types of logic operations in a single set of nonlinear systems
rather than needing multiple types of hardware for different
types of computations [18–22,34]. Although a nonlinear dy-
namical system can be a processor of a flexibly configured
and reconfigured device to emulate different logic gates, it was
shown that the manufacturing nonidealities and ambient noise
make it difficult to obtain different logic functions in these
systems [39]. In fact, chaotic systems are highly sensitive to
initial perturbations, and thus a small amount of noise can
completely change the system dynamics. As a result, special
attention needs to be paid in choosing the appropriate nonlinear
dynamics-based computing systems which are robust against
noise [35].

In the present paper, we propose a simple approach to
encapsulate computations and noise robustness at the dynamics
level. In particular, we present a route to logical SNAs in
quasiperiodically driven nonlinear oscillator systems. We show
that if we use two square waves in an aperiodic manner
as input to a quasiperiodically driven double-well Duffing
oscillator, the response of the oscillator can produce logical
output controlled by such a forcing. Changing the threshold
or biasing of the system changes the output to another logic
operation and memory latch. We also show how by using
such robust SNAs, including even noise, one can emulate
different logic functions and thereby provide a sound nonlinear
dynamics basis for computation.

The plan of the paper is as follows. In Sec. II we analyze the
dynamics of a quasiperiodically forced double-well Duffing
oscillator. In Sec. III we discuss the effect of three-level
square waves on quasiperiodically driven Duffing oscillator,
the mechanism of logical SNAs, and the characterization of
logical SNAs. In Sec. IV we discuss implementation of other
logic gates and Set-Reset flip-flop. We also analyze the effect
of noise on the logic gates. Finally in Sec. V we present our
conclusions.

II. DYNAMICS OF A QUASIPERIODICALLY FORCED
DOUBLE-WELL DUFFING OSCILLATOR

To illustrate our findings, we consider the quasiperiodically
driven Duffing oscillator:

ẋ = y,

ẏ = −αẋ − β(x3 − x) + A(sin θ + sin φ) + I + ε +
√

Dξ (t),

θ̇ = ω1, φ̇ = ω2. (1)
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FIG. 1. Projection of the numerically simulated attractors of
Eq. (1) in the (φ-x) plane for various values of A: (a) torus for
A = 0.3110 (b) wrinkled torus for A = 0.31120, (c) SNA for A =
0.311227, (d) chaos for A = 0.31124 and ε=0.05, when I = 0 and
D = 0.0

The simplest experimental realization of (1), namely, a mag-
netoelastic ribbon [2], has been studied extensively for SNAs
[12,40]. The quantities A, ω1, and ω2 in (1) correspond to
the amplitude and frequencies of the external two-frequency
forcing; ε is an asymmetric bias input; I is the low-amplitude
input square wave signal; and ξ (t) is a Gaussian white noise
of intensity D.

The existence of logical behavior observed in Eq. (1)
suggests that there may be experimental realization of dif-
ferent types of logic functions which deserves further study.
For this purpose, we first study the dynamics of (1) in the
absence of noise and input square waves. For our numerical
calculation, we fix the parameters as α = 0.5,β = 1.0,ω1 =
1.0,ω2 = 1

2 (
√

5 − 1), and ε = 0.05 and vary A. To visualize
the attractor, it is convenient to use a Poincaré surface of section
technique. Specifically, we sample the system at time inter-
vals corresponding to the variable θn = ω1tn = 2πn, where
n = 0,1,2, . . .. We then examine the dynamical variables
φn(mod2π ) and xn on the surface of the section. This is shown
in Fig. 1, which clearly portrays the transition from torus to
SNA as a function of A. For A = 0.311, the attractor is a torus
and can be seen as a single smooth strand in the Poincaré
surface of section plot in its (φ-x) plane [Fig. 1(a)]. As A

is increased further to A = 0.3112, one obtains the strand
shown in Fig. 1(b), which loses its smoothness and becomes
a wrinkled attractor. On increasing A to A = 0.311227, the
nature of the attractor becomes fractal and a SNA as shown
in Fig. 1(c). Finally for A = 0.31124, the attractor becomes a
chaotic one [see Fig. 1(d)].

Now we examine the dynamical transition to SNA by using
specific quantities, namely, Lyapunov exponents [13], a phase
sensitivity exponent, and a singular continuous spectrum [15].
Fig. 2 indicates the transition of the SNA into a chaotic
attractor corresponding to a change in the largest Lyapunov
exponent from negative to positive values at A = 0.31124. To
provide further evidence, we compute the phase sensitivity
function ΓN , which is bounded for a torus region, which
grows with N as a power-law relation for SNAs and increases
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FIG. 2. Maximal Lyapunov exponent � vs control parameter A,

in the absence of inputs I1 and I2 with bias ε = 0.05 and with no noise
(D = 0.0).

exponentially with N for chaotic oscillations, as shown in
Fig. 3(a). Here, the phase sensitivity function is defined as

ΓN = minx0,φ0 (max0�n�N | dxn

dφ
|). In addition, from the time-

dependent Fourier transform X(,N ) = ∑N
n=1 xne

i2πn, for

 =
√

5−1
2 , the spectrum |X(,N )|2 ∼ Nβ holds, and for

SNAs this scaling exponent takes the value 1 < β < 2. This
behavior is shown in Fig. 3(b) for SNAs, where we observe
a relatively robust power-law behavior with β = 1.21. It was
also suggested that for SNAs, the spectral trajectory in the
complex plane (ReX, ImX) should exhibit a fractal behavior.
This is indeed observed for the SNA attractor in this system as
shown in the inset of Fig. 3(b).
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FIG. 3. (a) Phase sensitivity exponent ΓN vs N showing (1) torus
for A = 0.3111, (2) wrinkled torus for A = 0.3112, (3) SNA for A =
0.311227, and (4) chaos for A = 0.31124. (b) Finite-time Fourier
spectrum |X(,N )|2 vs N on logarithmic scale for SNA for A =
0.311227 with the exponent β = 1.21. The inset in (b) shows fractal
walk in the complex plane (ReX,ImX) for the SNA attractor.

TABLE I. Truth table of the basic logic operations.

Input Set I1, I2 OR AND NOR NAND

(0,0) 0 0 1 1
(0,1)/(1,0) 1 0 0 1
(1,1) 1 1 0 0

III. EFFECT OF THREE-LEVEL SQUARE WAVES ON THE
QUASIPERIODICALLY DRIVEN DUFFING OSCILLATOR

Next, we analyze the response of the quasiperiodically
driven nonlinear system (1) to deterministic logic input signal
I , consisting of two square waves in the absence of noise.
Specifically, for two logic inputs, we drive the system (1) with a
low or moderate amplitude signal I = I1 + I2 with two square
waves of strengths I1 and I2 encoding two logic inputs. The
inputs can be either 0 or 1, giving rise to four distinct logic input
sets (I1,I2): (0,0),(0,1),(1,0), and (1,1). For a logical 0, we set
I1 = I2 = −δ, whereas for a 1, we set I1 = I2 = +δ, where δ

represents a small or moderate intensity input signal. Now the
input sets (0,1) and (1,0) give rise to the same input signal I .
As a result, the four distinct input combinations (I1,I2) reduce
to three distinct values of I , −2δ,0, + 2δ, corresponding to the
logic input (0,0),(0,1), or (1,0),(1,1), respectively. The output
of the system is determined by the state x(t) of system (1);
for example, if the output can be considered as logical 1 if
it is one particular state, and logical 0 if it is in a different
state. Specifically, the output corresponding to this two-input
set (I1,I2) for a system with the state values x > 0 is taken to
be 1, and with x < 0, it is taken to be 0. So, when the system
switches between these two states, the output toggles from
logical 0 to logical 1 and vice versa.

Here we will explicitly show that one indeed observes for
a given set of inputs (I1,I2) a logical output from the above
quasiperiodically driven nonlinear system (1) in accordance
with the truth table of the basic logic operations as given in
Table I.

A. Transition to logical SNA

To be concrete, we consider the dynamics of (1) where both
inputs I1 and I2 take the values −0.05 when the logic input is
0, and value 0.05 when it is 1. The input signal I = I1 + I2 is
thus a three-level square wave form: −0.1 corresponding to the
input set (0,0), 0 corresponding to the input set (0,1) or (1,0),
and 0.1 corresponding to the input set (1,1). In our numerical
experiments, we choose A as the bifurcation parameter and
fix the other parameters at α = 0.5,β = 1.0,ω1 = 1.0,ω2 =
1
2 (

√
5 − 1), and ε = 0.05. Figure 4 shows that with increasing

forcing amplitude A in (1), the maximal Lyapunov exponent
also grows and that it changes sign (solid curve) at A = 0.383.
As the parameter A is increased, we find that the transition
from quasiperiodic orbit to chaos takes place in four distinct
phases. In the first phase, a wrinkled torus becomes a fractal
torus. The second phase corresponds to a transition from
the fractal torus to the logical SNA, where the basic logic
operations become valid. The third phase is a transition from
the logical SNA to standard SNA, which does not exhibit logic
operations. Finally a transition from SNA to a geometrically
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FIG. 4. Maximal Lyapunov exponent � vs the control parameter

A: Solid curve corresponds to the system (1) after giving the inputs
I1, I2 with bias ε = 0.05, without noise (D = 0.0).

similar chaotic attractor occurs. These transitions are clearly
seen in the numerical plots in the (φ-x) plane as shown in
Fig. 5.

To confirm further, as the value of A varies, a three-
quasiperiodic torus is observed due to the effect of three-level
square waves and hence can be seen as three smooth branches in
the Poincaré surface of section plot in the (φ-x) plane as shown
in Fig. 5(a). This torus is in either a x > 0 well or x < 0 well
depending on the initial conditions we choose. In Fig. 5(a) we
select the initial conditions such that the torus lies within the
x > 0 well. On increasing further the value of A to A = 0.2232
the torus begins to wrinkle. Figure 5(b) reveals that among
the three strands, one of the strands loses its smoothness and
begins to wrinkle while other two stands are in the same well
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FIG. 5. Projection of the numerically simulated attractors of
Eq. (1) in the (φ -x) plane for various values of A (a) Period-3 torus
for A = 0.22, (b) wrinkled torus for A = 0.23, (c) fractal torus for
A = 0.2318, (d) logical SNA for A = 0.27, (e) standard SNA for
A = 0.32, (f) chaos for A = 0.392 and ε = 0.05.

(x > 0). These bends tend to become actual discontinuities at
A = 0.2312. At such values, the attractor loses its smoothness
and becomes an SNA as the maximum Lyapunov exponent
works out to be λ = −0.032. For such values of A, it is found
that instead of the attractor bounded to a single well, it switches
between the two wells and can be seen in the Poincaré surface
section as two strands in the x > 0 well and one strand in the
x < 0 well as shown in Fig. 5(c).

In particular, it is observed that the fractal torus involves a
kind of sudden widening of the attractor similar to the crisis
phenomenon that occurs in chaotic systems. It is seen in the
(φ-x) plane, as shown in Fig. 5(d) for A = 0.27, that the orbit
in the attractor spends long stretches of time in the region at
which the attractor is confined to a particular well (x > 0). At
the end of these long stretches, the orbit switches out of the
well and spends time around the other well (x < 0) due to a
crisis. It then returns to the old region for another stretch of
time, followed by a burst, and so on. This kind of widening of
the attractor usually occurs in a chaotic system at a crisis.

However, in the present case, we have shown the existence
of such a possibility in a quasiperiodically forced system by
creating SNAs. It is very clear from these transitions that the
SNA created via fractalization becomes a logical SNA through
the widening crisis. This kind of SNA is due to the aperiodic in-
put signals. That is, in an optimal range of A, 0.23 < A < 0.31,
the output of the system synchronizes with the aperiodic input
signal. If the aperiodic input signal follows any kind of logic
behavior, the response of the system also follows the same.
Therefore this kind of attractor can be called a logical SNA.
On further increase in the value of A, 0.311 < A < 0.3823,
the logical SNA loses its synchrony with the input signal and
becomes the standard SNA. This can be seen in the (φ-x) plane
when all the strands lose their continuity as shown in Fig. 5(e).
Increasing the value further,A > 0.3824, the attractor becomes
chaotic with a geometry similar to SNA [see Fig. 5(f)].

Specifically, we note that when the input signals (I1,I2) are
in the (1,1) or (0,1)/(1,0) states the attractor resides in the
x > 0 well, and when the input signal is in the (0,0) state, the
attractor is in the x < 0 well. We observe that under optimal
quasiperiodic forcing strength 0.23 < A < 0.31, the state x <

0 as logic output 0 and the state x > 0 as logic output 1 yield
a clean stable logical OR gate SNA with ε = 0.05 (see Fig. 6
for full details). In a completely analogous way if we interpret
the state x < 0 as logic output 1 and the state x > 0 as logic
output 0, one realizes a stable logic NOR gate. Similarly, AND
and NAND gates can be identified for a different value of bias
ε as shown in the next section.

On further increase in the value of A > 0.311 the orbits
due to the (0,0) state and due to the (1,0)/(0,1) state cause the
attractor to wrinkle as seen in Fig. 5(e) and become standard
SNA, where the logic no longer works. Here both the logical
SNA and standard SNA are confirmed by computation of the
largest Lyapunov exponents, which show that these attractors
[Figs. 5(d), 5(e), 6(d), and 6(e)] are strange and nonchaotic.

B. Mechanism for logical strange nonchaotic attractor

Let us now point out the mechanism of logical strange
nonchaotic attractors. When a weak or moderate aperiodic
three-level square wave signal is applied to a bistable system,
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FIG. 6. From top to bottom panels: (a)–(c) show a stream of input
signals I1, I2 with I1 = I2 = −0.05 when the logic input is 0 and
I1 = I2 = 0.05 when the logic input is 1. The three-level square waves
with −0.1 corresponding to the input set (0,0), 0 for the (0,1)/(1,0) set
and 0.1 for (1,1) input set. Panels (d) and (e) represent the dynamical
response of the system under quasiperiodic forcing for (1) A = 0.27
and (2) A = 0.32, respectively. Note that the quasiperiodic forcing is
optimum when A = 0.27 (d) where one obtains the desired OR logic
outputs for ε = 0.05 (see Table I).

it serves to aperiodically modulate the potential by raising and
lowering the wells. Essentially, the additive forcing changes
erratically the relative depth of potential wells, thereby in-
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FIG. 7. (a) Phase-sensitivity exponent for ΓN vs N logical SNA
for A = 0.27 (continuous line) and standard SNA for A = 0.32
(dashed line), (b) Finite-time Lyapunov exponents for quasiperiod-
ically driven Duffing oscillator including the effect of two aperiodic
square waves: (1) logical SNA for A = 0.27, (2) standard SNA
for A = 0.32. Finite-time Fourier spectra |X(,N )|2 vs Nβ on a
logarithmic scale for (c) logical SNA for A = 0.27 with β = 1.3,
(d) standard SNA for A = 0.32 with β = 1.6. The insets in (c) and
(d) show a fractal walk in the complex plane (ReX,ImX).

creasing the probability of jumps between wells. At a critical
value of the quasiperiodic forcing, the particle in a well arrives
at the neighboring of the barrier so that the quasiperiodic
forcing is able to push it to the other well. At this junction, the
system output x(t) [see Fig. 6(d)] attains the same behavior
as the three-level square waves [see Fig. 6(c)]. The essential
ingredients for this behavior consists of a nonlinear system,
a three-level square wave, and a source of quasiperiodic
forcing. Further increase of quasiperiodic forcing produces
a loss of coherence between x(t) and I [see Fig. 6(e)]. For
sufficiently large value of A, the motion is strongly dominated
by the quasiperiodic forcing. In this the intermittent dynamics
disappears, and the trajectory jumps erratically between the
wells [see Fig. 5(e)] and the dynamics still persists as strange
nonchaotic.

C. Characterization of logical SNA

The phase sensitivity exponent ΓN for the quasiperiodic
force for A = 0.27 and A = 0.32 is obtained for logical and
standard SNAs as shown in Fig. 7(a). It grows with N with a
kind of power-law relation for the SNA. The distributions of
finite-time Lyapunov exponents for logical SNA and standard
SNA are shown in Fig. 7(b). Both cases exhibit stretched
exponential tails. From the spectral properties it is evident that
for both logical SNA and standard SNA, the power spectrum
varies as |X(,N )|2 ∼ Nβ , where β = 1.3 for logical SNA
and β = 1.6 for standard SNA [Figs. 7(c) and 7(d), respec-
tively]. The insets in these figures also demonstrate the fractal
walk of the trajectories in the complex (ReX, ImX) plane, as
required for SNAs.

D. Transition to logical SNA: Nature of physical relationship
between input and output responses

Next, the parameter space of the strength of external
quasiperiodically forcing A and the amplitude of the square
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waves δ is scanned numerically in the range A ∈ (0.0,0.4)
and δ ∈ (0.0,1.0) to pinpoint different dynamical behaviours,
and more specifically the occurrence of logical SNA, where
the above discussed binary logic is valid. To start, we de-
marcate the parameter space (A,δ) by numerically integrating
Eq. (1) into quasiperiodic attractor, logical SNA, standard
SNA, and chaotic attractor by using Lyapunov exponents,
phase-sensitivity exponents, and power spectral measures.

A two-parameter numerical phase diagram is shown in
Fig. 8 for A ∈ (0.0,0.4) and δ ∈ (0.0,1.0). The various dy-
namical behaviours indicated in the phase diagram and the
interesting dynamical transitions are elucidated in the follow-
ing. For low A and low δ values in the chosen range, the
system exhibits quasiperiodic oscillations in one well, while
for higher values of δ (and same low A values) it exhibits a
torus behavior encompassing both wells. When the value of
A exceeds a critical value, the quasiperiodic oscillations lose
their smoothness and the attractor becomes a fractal torus or
SNA. In specific ranges of parameter values of A, the system
exhibits logical SNA and standard SNA for almost all δ values.
However, for sufficiently large A and low values of δ, the
system is forced to behave chaotically as shown in Fig. 8.
When considering the effect of δ, it is observed that there are
two types of transitions which are predominant here as A is
increased:

Transition 1: One-well quasiperiodic oscillations → logical
SNA → standard SNA → chaos.

Transition 2: Two-well quasiperiodic oscillations → logical
SNA → standard SNA.

Now considering the logical SNA regions, we have already
seen from Fig. 6 how a-low amplitude δ is sufficient to realize
the logic OR gate as well as AND gate (see the following
section). However from Fig. 9 it is observed that for different
δ values of the input square wave, we can get the logical SNA
region in a rather wide range of the parameter space. In digital
electronics, the physical nature of the input and output signals
and values of logical gates are expected to have the same ranges
of values. To test the validity that the logic gates emerge in our
system irrespective of the strength of the amplitude δ of the
input signals (low or moderate), we vary the amplitudes of
the input square waves (I1,I2) to 0.5 and 1.0, and we observe
that the outputs of the system exhibit the same logical output
values irrespective of the input values (Fig. 9). In fact we do
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x(
t)

-1.00
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1.00

 150000  160000  170000

(c)

x(
t)

Time

FIG. 9. Panel (a) shows two different streams of input signals of
three-level square waves. The input set for the solid line shows I =
I1 + I2 = −1.0 when the logic input is 0 and if I = I1 + I2 = 1.0
when the logic input is 1, while the dashed line shows I = I1 + I2=-
2.0 when the logic input is 0 and I = I1 + I2 = 2.0 when the logic
input is 1. Panels (b) and (c) represent the dynamical response of
the system for different inputs, namely, dashed and solid lines in
(a), respectively, under quasiperiodic forcing for A = 0.27 when one
obtains the desired OR logic outputs for ε = 0.05 (see Table I).

find that the logic gates emerge almost in the entire region of
δ ∈ [0.03,1.0]. This confirms that our study is suitable for de-
signing logic gates irrespective of the input values in the given
logical SNA range as long as they are of low or moderate value.

IV. IMPLEMENTATION OF OTHER LOGIC
GATES AND EFFECT OF NOISE

Finally in this section, we point out how the remaining
logic gates, AND and NAND, can be identified. Also we show
how the system (1) can be used as a Set-Reset (SR) flip-flop.
We further point out the reliability of obtaining logic gates
in a quantitative way and the persistence of gates even in the
presence of noise.

A. AND and NAND gates

We now study the effect of a different constant input bias
ε in (1). The results are displayed in Fig. 10. We observe that
as the value of bias changes from ε = 0.05 to ε = −0.05 the
response of the system morphs from OR gate SNA to AND
gate SNA logic behavior as shown in Fig. 10(c). Here we
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FIG. 10. From top to bottom: panel (a) shows a stream of three-
level square waves with −0.1 corresponding to the input set (0,0), 0
for the (0,1)/(1,0) set and 0.1 for the (1,1) input set. Panel (b) shows
the asymmetric bias ε = 0.05 leads to the desired OR logic and ε =
−0.05 gives AND logic output. Panel (c) represents the dynamical
response of the system under quasiperiodic forcing for A = 0.27.
Note that the quasiperiodic forcing is optimum when A = 0.27 (c)
where one obtains the desired OR/AND logic outputs for ε = 0.05/

− 0.05 (see Table I).

notice that changing ε causes an alternation in the symmetry
of potential wells, which leads us to emulate different logical
SNA responses. Similarly, we note that when the NOR gate bias
is changed from ε = 0.05 to ε = −0.05 the NAND gate logic
emerges (the figures of which we do not specifically display
here for brevity).

B. Set-Reset (SR) flip-flop

Next, to use this system as a Set-Reset (SR) flip-flop, we
need to modify the encoding of input values. From the SR
flip-flop truth table given in Table II, it is very obvious that
two states (0,1) and (1,0) yield different outputs. This may

TABLE II. Truth table of Set-Reset (SR) flip-flop.

Set(I1) Reset (I2) Latch

0 0 No change
0 1 0
1 0 1
1 1 Restricted set
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(b)

I 2
-0.10
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I

-1.00
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(d)

x(
t)

Time

FIG. 11. Panels (a) and (b) show the stream of input signals I1,I2.
Panel (c) shows the three-level square wave, while panel (d) shows the
desired SR latch when ε = 0.0 with corresponding forcing A = 0.32.

be accomplished by encoding in a different way so that the
first input I1 takes the value −I when the logic is 0 and +I

when the logic is +1. Similarly the second input I2 takes the
value +I when the logic input is 0 and −I when the logic is
+1. This will be implemented by applying a NOT operation
to the second input I2. As a result for the four-set of binary
inputs (I1,I2): (0,0),(0,1),(1,0),(1,1), the input signal I takes
the value 0,−1,1, and 0, respectively. Out of these four sets,
(1,1) set is a restricted one. Hence one has only a three-set
input signal, thereby a three-state level signal will be given to
input [Fig. 11(c)]. A logic response for output can be obtained
as in the case of logic operations: x > 0, the logic output is
taken as 1, 0 for x < 0. It is clearly evident from Fig. 11(d)
that low or moderate quasiperiodic forcing consistently fields
the SR latch input-output operations.

C. Quantification of reliability of obtaining logic gates

We can quantify the consistency and reliability of obtaining
a given logic output by calculating the probability of obtaining
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FIG. 12. (a) Probability of obtaining the OR/AND operation for
different values of quasiperiodic forcing A with ε = 0.05/ − 0.05;
(b) probability of obtaining OR/AND logic behavior for different
values of noise strength D with fixed A = 0.27.

the desired logic output for different sets of inputs, that is, the
ratio of the number of successful runs to the total number of
runs. Thus we define P (logic) to be 1, when the logic operation
is completely obtained for all given input sets, otherwise it is
0. In the present case the system (1) was simulated by keeping
the value of one input set constant over 1000 time steps, and it
is continued for a sequence of 500 such sets. It is evident from
Fig. 12(a) where we obtain a window for the quasiperiodic
forcing for which our system consistently gives the desired
logic responses as output.

D. Effect of noise in the logic gates

Finally, we consider the behavior of system (1) in the
presence of noise. For the sake of definiteness, we choose the
noise intensity to be comparable to that of a weak internal
noise which originates in electronic components that may
model the system (1). Such noise essentially originates in
the analog components and is usually ∼1 μV [41,42]. It is
observed that the behavior of the largest Lyapunov exponent of
the forcing amplitude A in the presence of noise is found to be
practically coincident with that of the noise-free case. Hence,
in the presence of noise, the logical SNA in the system retains

its negative Lyapunov exponents and the fractal structure and
that the behavior of OR-AND logic is possible for D < 0.005
[see Fig. 12(b)]. Our study confirms that the logic behavior
remains when the noise strength is below the mV range. Hence
the logic nature in our system persists even when the noise
originates due to analog electronic components of the system.

V. CONCLUSION

In this paper, we have studied the response of a quasiperi-
odically driven double-well Duffing oscillator to deterministic
input signals. We have shown that if one uses two square
waves in an aperiodic manner as input signals to the oscillator
system, the response of the oscillator can produce logical SNA
output controlled by the quasiperiodic forcing. Changing the
threshold or biasing the oscillator changes the OR logical
SNA output to AND logical SNA output (and similarly NOR
to NAND) and SR flip-flop. We have also shown that the
two distinct dynamical phenomena, SNA and computation,
commonly thought of as arising under very different contexts in
the study of nonlinear systems can actually be closely related.
We have shown that with a low or moderate quasiperiodic
forcing, logic operations can be obtained in nonlinear dynamics
subjected to two aperiodic square waves. The dynamical
behavior in the logic operation region is SNA. Consequently
the dynamics is robust under weak noise. Therefore an efficient
computational process can be designed.
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