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In linear time-invariant systems acoustic reciprocity holds by the Onsager-Casimir principle of microscopic
reversibility, and it can be broken only by odd external biases, nonlinearities, or time-dependent properties.
Recently it was shown that one-dimensional lattices composed of a finite number of identical nonlinear cells with
internal scale hierarchy and asymmetry exhibit nonreciprocity both locally and globally. Considering a single
cell composed of a large scale nonlinearly coupled to a small scale, local dynamic nonreciprocity corresponds
to vibration energy transfer from the large to the small scale, but absence of energy transfer (and localization)
from the small to the large scale. This has been recently proven both theoretically and experimentally. Then,
considering the entire lattice, global acoustic nonreciprocity has been recently proven theoretically, corresponding
to preferential energy transfer within the lattice under transient excitation applied at one of its boundaries, and
absence of similar energy transfer (and localization) when the excitation is applied at its other boundary. This
work provides experimental validation of the global acoustic nonreciprocity with a one-dimensional asymmetric
lattice composed of three cells, with each cell incorporating nonlinearly coupled large and small scales. Due to
the intentional asymmetry of the lattice, low impulsive excitations applied to one of its boundaries result in wave
transmission through the lattice, whereas when the same excitations are applied to the other end, they lead in energy
localization at the boundary and absence of wave transmission. This global nonreciprocity depends critically on
energy (i.e., the intensity of the applied impulses), and reduced-order models recover the nonreciprocal acoustics
and clarify the nonlinear mechanism generating nonreciprocity in this system.
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I. INTRODUCTION

Reciprocity is a basic property in linear time-invariant (LTI)
acoustic systems going back to the work of H. v. Helmholtz
[1] and J. W. Strutt (Lord Rayleigh) [2]. It is a fundamental
property of LTI acoustics and elastodynamics governed by self-
adjoint operators and symmetric Green’s functions [3]. Reci-
procity is directly related to time-reversal symmetry through
the Onsager-Casimir principle of microscopic reversibility
[4–6], and breaking of reciprocity is only possible by breaking
time reversal symmetry on the microlevel [7].

Recently, the study of the breaking of reciprocity in dynam-
ical and acoustical systems has attracted considerable interest
due to important potential applications, such as mechanical
diodes, acoustic logic, preferential and irreversible propagation
of sound, and targeted energy transfer in preferential directions
within complex systems. Basic ways to break reciprocity
(and time-reversal symmetry) in LTI systems is by applying
odd-symmetric external biases [8–10], inducing time-variant
properties [9,11,12], or incorporating nonlinearities [13–17].
Moreover, as shown in [18] breaking of reciprocity in nonlinear
elastodynamics depends on the boundary conditions, the sym-
metries of the governing nonlinear operators, and the choice of
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the spatial points where the nonreciprocity criterion is tested.
For a study of nonlinear nonreciprocal dynamics and acoustics
of a finite, geometrically nonlinear, planar lattice behaving as
a nonlinear “sonic vacuum” we refer to Zhang et al. [19].

In a recent study [20], a unit cell of two coupled oscillators
was considered. It was composed of a grounded, weakly
damped linear oscillator representing a large scale (LS) which
was nonlinearly coupled to an ungrounded oscillator of smaller
mass, representing a small scale (SS). Theoretical analysis and
experimental testing of this nonlinear unit cell under impulsive
excitation revealed that it exhibited nonreciprocity: When the
LS was excited there occurred irreversible energy transfer to
the SS, whereas when the SS was excited there occurred energy
localization and absence of similar energy transfer to the LS.
Since this nonreciprocal phenomenon occurred within a single
unit cell it was referred to as local dynamic nonreciprocity.
It was shown that the irreversibility and unidirectionality of
the energy transfer from the LS to the SS was caused by the
frequency-energy dependence of the strongly nonlinear (nearly
nonlinearizable) stiffness coupling the two scales, yielding
either early or delayed transient resonance captures in the
transient dynamics. Generalization of nonreciprocity to unit
cells composed of a LS coupled to multiple SSs was also
discussed [20].

A natural extension of the previous study was carried
out in another recent work [23] where the acoustics of a
lattice composed of a finite number of the aforementioned unit
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FIG. 1. The nonreciprocal lattice system composed of p linearly coupled unit cells; each unit cell is composed of a system of coupled
oscillators in series, and incorporates strong stiffness nonlinearity, high asymmetry, and large-to-small scale hierarchy; LS denotes the large
scale whereas SSk, k = 1, . . . ,n denotes the small scales with decreasing mass as k increases.

cells was theoretically studied. Global acoustic nonreciprocity
(By “acoustics” we refer to short-timescale, traveling waves
or pulses [21] in media with local or nonlocal boundary
effects [22], whereas by “dynamics” we denote long-timescale
oscillations (standing waves) in finite media with nonlocal
boundary effects.) was demonstrated in the lattice under both
broadband and narrowband excitations: When the LS at one
of the boundaries of the lattice was excited by a low-intensity
excitation, energy was transmitted through the lattice in the
form of traveling breathers, whereas when the same excitation
was applied to the LS at the other boundary of the lattice it
could not propagate through the lattice, but instead energy
localization in the end cell occurred. As the intensity (energy)
of the applied excitation increased, however, the acoustic non-
reciprocity diminished, and, eventually, for relatively strong
excitations wave transmission from both boundaries of the
lattice occurred. The nonlinear mechanisms governing this
global acoustic nonreciprocity were discussed in the same
work [23].

The aim of the present study is to experimentally verify
global acoustic nonreciprocity in a lattice of three identical
unit cells, with each cell composed of two scales coupled
by a strongly nonlinear stiffness. Asymmetry in the lattice is
introduced by linearly coupling the LS of each unit cell to
the SS of the unit cell to its right, and impulsive excitation
is considered. A reduced-order model derived from system
identification of the experimental lattice is used to reproduce
and theoretically study the nonlinear mechanism that governs
nonreciprocity in the lattice.

II. THEORETICAL OVERVIEW OF NONLINEAR
NONRECIPROCITY

In this section we provide an overview of nonlinear nonre-
ciprocity in a lattice incorporating nonlinearity, internal hier-
archy, and asymmetry. As shown in Fig. 1 we consider a lattice
system composed of p repeated, linearly coupled identical unit
cells with internal nonlinear hierarchical structure. Introducing
appropriate normalizations, each unit cell consists of a linear
oscillator with unit mass grounded through the linear stiffness
ω2

0 in parallel to the weak viscous damping ελ—representing
the large scale – (LS) of the system—which is nonlinearly
coupled to a series of n strongly nonlinear oscillators in series.
These oscillators have increasingly smaller mass (or finer
scale) and represent the small scales (SSs) of the unit cell

(labeled as SS1–SSn). The kth small oscillator, SSk, has mass
equal to εk � 1, with εn � εn−1 � . . . � εk � . . . � ε1 �
1 to enforce the internal hierarchy of small scales in the unit
cell. In addition, the SSs are coupled to each other and to the
LS by means of essentially nonlinear stiffness nonlinearities
with pure (or nearly pure) cubic characteristics with stiffness
constants C1, C2, . . . ,Cn, respectively, in parallel to the weak
viscous dampers ελ1, . . . ,ελn. As shown later a small linear
component in the nonlinear stiffness characteristics would
not significantly affect our results. Note that the weak linear
viscous dampers of each unit cell are scaled by the small
parameter 0 < ε � 1. Asymmetry in the lattice is introduced
through the coupling elements between cells; specifically, the
smallest scale of each unit cell, SSn, is coupled to the LS of
its adjacent LS of the unit cell on its right through the linear
stiffness a. Exception is the last unit cell p, where the smallest
scale lacks a coupling element.

Recently, nonreciprocity in the nonlinear lattice of Fig. 1
was theoretically established, both in a local and a global
sense. Considering first each unit cell in isolation, it was
shown both theoretically and experimentally [20] that local
dynamic nonreciprocity occurs. Specifically, when the LS of
the unit cell is forced by an impulsive excitation there is intense
transfer of energy from the LS to the internal SSs. On the
contrary, when the smallest scale (SSn) of the unit cell is
excited by the same impulse the resulting nonlinear response
is mainly localized to the smallest scale and the small scales
that neighbor it, but no energy transfer to the LS is realized. It
follows that nonreciprocal energy transfer from large to small
scales within each unit cell occurs. Key to the local dynamic
nonreciprocity is the strongly nonlinear coupling of the SSs, as
the SSs have no preferential resonance frequencies due to their
pure cubic stiffness; as such their oscillation frequencies are
fully tunable with energy [20]. Assuming for simplicity that
there is only a single SS, when the LS is impulsively excited a
1:1 transient resonance capture –(TRC) [24,25] occurs in the
initial, high-energy regime of the transient dynamics as the SS
tunes its instantaneous frequency to the (fixed linear) resonance
frequency ω0 of the LS, passively absorbing energy from it
[26]; in this case this is the only characteristic frequency where
resonance capture can occur in the system since the directly
excited LS has the fixed preferential resonance frequency ω0

(i.e., its frequency does not depend on the instantaneous energy
of the LS). However, a completely different dynamics occurs
where the small scale is impulsively excited, since in the initial,
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(a)

(b) (c)

Cell 1 Cell 2 Cell 3

FIG. 2. Experimental three-cell lattice: (a) top view, (b) unit cell, and (c) schematic of the unit cell—yellow parts constitute the large scale
(LS), red parts the small scale (SS), blue elements the linear coupling springs between cells, green parts the linear grounding stiffness of the
LS, and the two transverse wires suspend the (lightweight) SS and generate the strong nonlinear stiffness coupling the LS to the SS. The wires
are marked by blue arrows.

high-energy regime of the transient dynamics the instantaneous
oscillation frequency of the SS is relatively high (� ω0) since
its stiffening response is tunable with energy and its frequency
increases with increasing energy; in this case there is no
characteristic frequency for resonance capture in the initial
high-energy regime, and resonance capture at the characteristic
frequency ω0 can only occur after sufficient reduction of the
frequency of the SS occurs due to viscous damping dissipation.
In that case, no 1:1 TRC can occur in the initial highly energetic
regime of the response, but rather, only delayed 1:1 TRC with
the LS can be realized at a reduced-energy regime after the
instantaneous frequency of the SS decreases due to energy
viscous dissipation and becomes comparable to the linear
resonance frequency ω0. This restricts the amount of energy
that can be transferred from the SS to the LS at the regime
of the delayed 1:1 TRC and yields energy localization in
the SSs.

Considering then the lattice of Fig. 1 in its entirety it was
computationally proved [23] that global acoustic nonreciproc-
ity occurs. Hence, it was shown that strong nonreciprocity
in the scale of each unit cell and in the scale of all unit
cells in unison occurs. Note that the smallest scale (innermost
oscillator) of each hierarchical unit cell is coupled to the large
scale (outer oscillator) of the next unit cell on its right via a
linear stiffness in such a manner as to break left-to-right (L-R)
and right-to-left (R-L) symmetry. This asymmetry, combined
with the strong nonlinearity in each cell, leads to globally
nonreciprocal acoustics:

(1) L-R: Propagating waves transfer energy from the large
to the smaller scales (LS to SSs) via TRCs. The smallest
internal scale then transfers energy to the LS of the next
(right) cell via linear coupling; energy transfer and propagation
continue.

(2) R-L: Propagating waves arrive at the smallest scale of a
cell via linear coupling from the LS of the cell on its right, but
due to restricted SS to LS energy transfer, the wave is arrested.

Note that the internal nonlinear scale hierarchy (asymmetry)
of the cells also breaks time-reversal symmetry. In forward time
leftward propagating disturbances transfer energy from the LSs
to the inner SSs within a cell, and then across cells (to LSs)
via the linear coupling; this propagation is consistent with the
preferred energy transfer direction. Upon time reversal, this
propagation would violate the preferred small-to-large scale
energy transfer direction.

The aim of this work is to experimentally validate acoustic
nonreciprocity in a three-cell nonlinear lattice of the general
configuration of Fig. 1, incorporating two-scale internal hier-
archy (a LS and a SS in each unit cell) and linear coupling
between cells. Then, the experimental results will be matched
with a reduced-order model from system identification.

III. EXPERIMENTAL FIXTURE AND REDUCED-ORDER
MODELING THROUGH SYSTEM IDENTIFICATION

The experimental lattice composed of three unit cells
(labeled as cells 1–3) is depicted in Fig. 2, together with a
schematic representation of a unit cell indicating how strong
nonlinearity, internal scale hierarchy and linear coupling are
realized. Each unit cell is composed of a LS coupled to a SS,
both oscillating in the direction indicated by the double-sided
arrow in Fig. 2(c). Adjacent cells are coupled by linear springs.
All LSs and SSs were fabricated with acrylic and were laser
cut to shape. Each LS was grounded to an optical table using
80/20 T-slotted aluminum extrusions, aluminum L-brackets,
steel flexures, and bolts. The steel flexures served as the linear
grounding stiffnesses and were bolted to the 80/20 members.
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FIG. 3. The reduced-order model (ROM) of the unit cell of the
experimental fixture of Fig. 2.

To achieve strong nonlinearity, the (lightweight) SS in each
unit cell was suspended from the corresponding LS using
two parallel, initially untensioned, steel wires of 0.035 in.
thickness, with fixed ends; these were realized by clamping
the two wires to the LS using thin acrylic strips to obtain the
required cubic nonlinearity.

In theory, provided that the wires are initially untensioned
and obey the classic wave equation, under transverse deforma-
tion at their center they act as strongly nonlinear, nearly cubic
springs; that is, their force-displacement law is approximately
cubic with no linear component [27,28]. However, in practice,
due to their thickness, the wires always possess a small bending
stiffness, so they behave more like thin Euler-Bernoulli beams
instead of strings. This gives rise to a small linear stiffness in
addition to the strongly nonlinear stiffness, but this does not
affect the nonreciprocity. It follows that a small linear term in
the spring that couples the LS and SS is unavoidable in practice,
but this can be made small by reducing as much as possible
the thickness-to-length ratio of the clamped wires.

Prior to performing the experimental tests for acoustic
nonreciprocity, characterization of the experimental three-cell
lattice was conducted, and a six degree-of-freedom (DOF)
reduced-order model (ROM) was constructed. To this end,
the two-DOF ROM of each of the three experimental unit
cells is presented in Fig. 3, where M and m are the masses
of the LS and the SS, k1 and d1 are the linear stiffness and
linear viscous damper of the grounding connection of the
LS, k3 and d2 are the nonlinear (cubic) stiffness and linear
viscous damper connection between the LS and the SS, and
k4 is the linear stiffness coupling the SS of the ith unit cell
to the LS of the (i + 1)-th unit cell of the lattice. In addition,
a small linear part (due to a small wire pretension) has been
identified in the nonlinear connection between the LS and SS
of each unit cell, and this is denoted by the linear stiffness k2.
Accordingly, the ROM of the experimental lattice is governed
by the following set of ordinary differential equations with zero
initial conditions:

Mẍi + d1ẋi + d2(ẋi − ẋi+1) + k1xi + k2(xi − xi+1)

+ k3(xi − xi+1)3 + k4(xi − xi−1)(1 − δi1) = Fi(t)

mẍi+1 − d2(ẋi − ẋi+1) − k2(xi − xi+1)

− k3(xi − xi+1)3 + k4(xi+1 − xi+2)(1 − δi5) = 0

xi(0) = ẋi(0) = xi+1(0) = ẋi+1(0) = 0, i = 1,3,5, (1)

where δij is the Kronecker delta symbol, indicating that the LS
of unit cell 1 and the SS of unit cell 3 are not coupled to a SS
and LS, respectively. As mentioned previously the coupling
configuration between the LSs and SSs of the unit cells is

the source of asymmetry in the lattice which is one of basic
prerequisites for the realization of acoustic nonreciprocity [23].
Moreover, for generality we account for excitation of each of
the LSs of the unit cells, as indicated by the forcing functions
Fi(t), i = 1,3,5.

The characterization of the experimental lattice was per-
formed by nonlinear system identification [29–33]. The aim
of the identification exercise was to estimate the parameters of
the two-DOF ROM of each of the three unit cells (cf. Fig. 3)
so that the overall six-DOF ROM of the experimental lattice
reproduces (predicts) as close as possible the experimental
measurements under varying impulsive forcing conditions.
Then, after its validation the mathematical ROM could be
used (i) to confirm that the experimental results indeed re-
produced the theoretically predicted nonlinear acoustics, and
(ii) to perform predictive design, i.e., for parametric studies
and optimization of the nonlinear acoustic nonreciprocity. To
achieve this we optimized the system parameters of the model
of Fig. 3 of each unit cell so that the simulation transient
responses matched as closely as possible the experimental
measurements.

First, the system parameters of each unit cell were identified
by decoupling it from the lattice [i.e., by setting k4 = 0 in
the ROM (1)] and characterizing it separately. The masses of
the LS and SS of each unit cell of the experimental lattice
were directly measured. Then, an impulsive load of small
magnitude (to excite mainly the linearized dynamics of the
unit cell) was applied to the LS of each decoupled unit
cell by means of a modal hammer, and the corresponding
transient accelerations of the LS and the SS were measured
by means of accelerometers. In the next step, the accelerations
were numerically integrated and the resulting velocities were
high-pass filtered using a third-order Butterworth filter with
a cutoff frequency of 20 Hz. By performing a fast Fourier
transform (FFT) to the velocity time series two linearized
natural frequencies (peaks) were identified in the FFT plot
corresponding to two linearized modes of the cell. One of these
frequencies was due to the linear grounding spring (k1) of the
LS. The other was caused by a linear component in the coupling
spring between the LS and the SS (k2). System identification
analysis of the FFT results yielded good initial estimates of the
linear components of the grounding and coupling stiffnesses
of each unit cell.

The final identification of the system parameters of the ROM
of each decoupled unit cell was performed by optimally match-
ing the simulated ROM and the experimentally measured tran-
sient responses. To accomplish this, the response of the ROM
of each decoupled unit cell subject to the actual experimental
impulsive force (which was interpolated in the time domain)
was simulated using MATLAB’S ODE45, and the optimization
was carried out using MATLAB’s PATTERNSEARCH algorithm
with the objective to minimize the following ratio,

P =
∑

tk
[uexpt(tk) − usim(tk)]2

∑
tk

[uexpt(tk) − ūsim(tk)]2 +
∑

tk
[vexpt(tk) − vsim(tk)]2

∑
tk

[vexpt(tk) − v̄sim(tk)]2 ,

(2)

where the overbar denotes temporal mean; tk the discrete time
instants where the responses are computed; the superscripts
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“expt” and “sim” refer to experimental and simulated time
series, respectively; and u, v refer to the transient velocity
responses of the LS and the SS of the decoupled unit cell,
respectively. We note that the minimization of the ratio P is
equivalent to the maximization of the R-squared fit between the
simulated and experimentally measured velocity time series
simultaneously for the both the LS and SS of the unit cell.

As a second step, the linear springs coupling adjacent unit
cells were identified by removing the SSs and the nonlinear
stiffness elements from the cells of the lattice, and coupling
pairs of the resulting linear LSs through the coupling springs.
Applying the restoring force method [29,30] to the resulting
linear fixture of two coupled LSs yields accurate identification
of the linear coupling springs, and, in addition, verification
of the absence of any dissipative effects. This completed the
characterization of the experimental lattice.

The identified system parameters of the unit cells of the
experimental lattice are listed in Table I. We note that the
unit cells are not identical, but rather small variations of
the system parameters are estimated; this is inevitable due
to manufacturing, material and geometrical imperfections, as
well as uncertainties and unmodeled effects in the system
identification procedure. Yet, as shown in a later section
these small imperfections do not affect in any significant way
the realization of acoustic nonreciprocity in the experimental
lattice.

As an example of the efficacy of the nonlinear system identi-
fication, in Fig. 4 we depict the comparison between the exper-
imentally measured velocity time series and the corresponding
predicted simulated results of the ROM of the uncoupled unit
cell 2 for impulsive excitation of the LS of the unit cell with
maximum magnitude equaling 17.3 N. These experimental
responses were used for identifying the ROM of the uncoupled
unit cell 2. The responses of the LS and the SS of the unit cell
are considered separately in Figs. 4(a) and 4(b), respectively,
and comparisons of the velocity time series, the corresponding
modulus of their continuous wavelet transform spectra, and the
corresponding FFTs are provided in each case. We note that
the identified ROM accurately reproduces the experimental
measurements, validating the system identification procedure.
As a further test of the accuracy and robustness of the identified
ROM, in Fig. 5 we depict the analogous comparisons for the
case of a higher magnitude impulse applied to the LS where it
is anticipated that the nonlinear effects are more profound.
For the comparisons shown in Fig. 5 the ROMs identified

TABLE I. Identified system parameters of the ROM of the
experimental lattice.

Parameter Unit cell 1 Unit cell 2 Unit cell 3

M (kg) 0.4349 0.4385 0.4325
m (kg) 0.0204 0.0206 0.0202
k1 (N/m) 30166 35014 31306
k2 (N/m) 1598.2 1571.8 1756.6
k3 (N/m3) 5 × 108 1 × 108 3 × 108

d1 (Ns/m) 4.5 4.5 4.25
d2 (Ns/m) 0.18 0.18 0.15
k4 (N/m) 3753.75 3753.75 3753.75

from the experimental time series of Fig. 4 were used. Yet,
the responses of the ROM accurately capture the nonlinear
measured responses even for this higher-energy (and stronger
nonlinear) case, which validates the identified ROM.

IV. EXPERIMENTAL MEASUREMENT OF NONLINEAR
ACOUSTIC NONRECIPROCITY IN THE LATTICE

In the experimental study, the three-cell lattice was forced
by impulsive excitations applied sequentially to the LSs of the
unit cells at its left and right boundaries. Specifically, impulsive
excitations of varying intensity were applied first to the LS of
unit cell 1 [cf. Fig. 2(a)], and then to the LS of unit cell 3 by
means of a modal impact hammer. The acceleration time series
of the LSs of all three unit cells of the lattice were measured
by attached accelerometers, and from these measurements
the velocity and displacement time series could be obtained
using numerical integration and high-pass filtering. In [23], it
was theoretically predicted that for sufficiently low-intensity
impulsive loads strong acoustic nonreciprocity occurs, in the
sense that waves generated due to excitation of (the left) unit
cell 1 propagated through the lattice (i.e., there occurred L-R
wave propagation); on the contrary, when (the right) unit cell
3 was forced by similar low-intensity impulsive loads there
occurred localization of the response in that cell and absence of
R-L wave propagation. However, for sufficiently high-intensity
impulsive excitations, although the acoustic nonreciprocity
persisted, localization was eliminated and both L-R and R-L
wave propagation in the lattice occurred.

The theoretically predicted global acoustic nonreciprocity
phenomena were fully confirmed experimentally with the
three-cell lattice of Fig. 2. Our study involved numerous
experimental tests corresponding to impulsive excitations of
varying intensity, but in this work, we present only three
representative experimental cases corresponding to impulsive
excitations of low (cf. Fig. 6), intermediate (cf. Fig. 7), and
high intensity (cf. Fig. 8). In each case we forced the lattice
by impulsive excitations applied separately at cells 1 and 3;
we note that, whereas exact replication of the left and right
impulsive loads was not possible experimentally, the applied
excitations ended up being nearly similar (in each case we
report the maximum magnitudes of the impulsive excitations
applied to cells 1 and 3). For each case of impulse excitation,
we depict plots showing the spatiotemporal variation of the
normalized (with respect to the total input impulsive energy)
instantaneous energies of the three cells of the lattice; these
plots were constructed by computing the potential and kinetic
energy of each unit cell, depicting them in contour plots in
space and time, and interpolating the results to get continuous
graphs. In addition, we depict the temporal variations of
the non-normalized total energy of the lattice following the
application of the impulsive load, together with the temporal
variations of the non-normalized energies of each of the
three cells. These plots show the overall energy decay in the
experimental lattice following the impulsive excitation, as well
as interesting energy exchanges between unit cells. Finally, as a
direct measure of global acoustic nonreciprocity in the lattice,
we compare the response of the LS of cell 1 when the impulsive
excitation is applied to the LS of cell 3, to the response of the
LS of cell 3 when a similar impulse excitation is applied to

052211-5



JONATHAN BUNYAN et al. PHYSICAL REVIEW E 97, 052211 (2018)

(b)

(a)

FIG. 4. Comparison of experimental and identified ROM responses for the uncoupled unit cell 2, impulse of maximum magnitude 17.3 N
applied to the LS: (a) LS, and (b) SS responses; this experimental test was used to identify the ROM of the unit cell.

the LS of cell 1. These experimental plots depict clearly the
propagating or localized nature of the lattice response when
excited at the LSs on its left or right boundary cells.

Considering first the case of low-intensity impulsive loads
depicted in Fig. 6 we clearly deduce the realization of nonre-
ciprocal acoustics in the lattice. Specifically, considering the
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(a)

(b)

FIG. 5. Comparison of experimental and identified ROM responses for the uncoupled unit cell 2, of maximum magnitude 281.6 N s applied
to the LS: (a) LS, and (b) SS responses; the ROM of the unit cell was identified based on the experimental test depicted in Fig. 4.

spatiotemporal normalized energy variations in Figs. 6(a) and
6(b) we note wave transmission and response localization when
unit cells 1 and 3 are excited, respectively. The global acoustic
nonreciprocity in this case is further confirmed by the plots of

energy variations, where for excitation applied to the left cell
1 energy exchanges (beats) occur between all three unit cells,
whereas for similar excitation applied to the right end cell 3 we
deduce energy localization in that cell. Moreover, judging from
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(a) (b) 

FIG. 6. Small impulsive intensity: (a) impulsive magnitude
15.28 N applied to cell 1, (b) impulsive magnitude 18.01 N applied
to cell 3: spatiotemporal variation of normalized energy (with respect
to input energy) for each cell (top), temporal variations of the lattice
energy and the non-normalized energy of each cell (middle), and LS
response of cell 3 (cell 1) when the LS of cell 1 (cell 3) is excited
(bottom).

the decay of the overall energy of the lattice in these two plots,
it is interesting to note that for excitation applied to cell 3 the
overall energy decay in the lattice is faster, which indicates that
response localization in cell 3 results in more efficient overall
energy dissipation in the lattice. Finally, we note that for this
low-intensity excitation the response of the LS of cell 1 when
the impulse is applied to cell 3 is similar to the response of the
LS of cell 3 when a similar impulse is applied to cell 1, with
their difference being of O(10−6 m).

Considering the case of intermediate-intensity impulsive
loads (∼100 N) depicted in Fig. 7 we note similar nonlinear
acoustic nonreciprocity in the lattice, with L-R wave trans-
mission when unit cell 1 is excited, and response localization
when the impulsive excitation is applied to unit cell 3. In
this case the global acoustic nonreciprocity is more profound

(a) (b) 

FIG. 7. Intermediate impulsive intensity: (a) impulsive magni-
tude 102.04 N applied to cell 1, (b) impulsive magnitude 96.19 N
applied to cell 3: spatiotemporal variation of normalized energy (with
respect to input energy) for each cell (top), temporal variations of the
lattice energy and the non-normalized energy of each cell (middle),
and LS response of cell 3 (cell 1) when the LS of cell 1 (cell 3) is
excited (bottom).

compared to the previous low-intensity load case, as indicated
by the relatively large difference in the time series of the
cell responses, which now is on the order of O(10−5 m). In
addition, for impulsive excitation applied to cell 1 the energy
exchanges between cells are more pronounced, as can be
deduced from the temporal energy variations in Figs. 7(a)
and 7(b). From the same plots we note much more efficient
overall energy dissipation when cell 3 is excited (case of
localization), compared to when cell 1 is excited (case of L-R
wave propagation).

Finally, the case of high-intensity applied loads (∼800 N)
is depicted in Fig. 8, where qualitatively different nonlinear
acoustics are noted in the lattice. As the time series compar-
isons of Fig. 8 indicate there is strong acoustic nonreciprocity
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(a) (b) 

FIG. 8. Intermediate impulsive intensity: (a) impulsive magni-
tude 856.99 N applied to cell 1, (b) impulsive magnitude 835.72 N
applied to cell 3: spatiotemporal variation of normalized energy (with
respect to input energy) for each cell (top), temporal variations of the
lattice energy and the non-normalized energy of each cell (middle),
and LS response of cell 3 (cell 1) when the LS of cell 1 (cell 3) is
excited (bottom).

in this case, but both L-R and R-L wave propagation is realized
and there is absence of response localization when the unit
cell 3 is excited by the impulsive load (as in the previous
two cases); this result is in full agreement with the theoretical
predictions of Fronk et al. [23]. Another qualitative difference
of the nonlinear acoustics in this case compared to the low-
and intermediate-intensity impulse cases, is that the response
of cell 1 when cell 3 is impulsively excited is now much higher
than the response of cell 3 when cell 1 is excited. This result,
which correlates with the spatiotemporal normalized energy
plots of Figs. 8(a) and 8(b), reveals that for high-intensity
impulse excitation R-L wave propagation is much stronger
than L-R wave propagation; this result contrasts with the
results of Figs. 6 and 7, where only L-R wave propagation
occurred. Finally, similar to the previous cases there is much

stronger overall energy dissipation in the lattice when cell 3
is impulsively excited, compared to when cell 1 is excited.
This can be clearly deduced by the overall energy decay
plots shown in Figs. 8(a) and 8(b). From these plots we note
that for high-intensity impulsive excitation there occur energy
exchanges between cells for both left- and right-applied loads,
confirming L-R and R-L wave propagation in this case.

At this point, we comment on the possible origin of
nonreciprocity in the lattice. The asymmetric localization
in the system response seems to be caused by the specific
arrangement and coupling of the cells. In the studied con-
figuration the “free” SS of the right-end cell 3 is activated
briefly after the application of the impulse to the LS of cell 3,
and, in essence, behaves as a nonlinear energy sink (NES) in
resonance, absorbing and dissipating a considerable amount
of the input energy; as a result, motion localization occurs in
cell 3. On the contrary, when the LS of the left-end cell 1
is excited by an impulse, the corresponding SS of that cell
is not “free” to act as a NES since it is linearly coupled to
the LS of the neighboring cell 2. As a result, there is absence
of localization when the left cell 1 is excited by the impulse,
so wave propagation through the lattice occurs. Comparing
the L-R and R-L excitation cases we conclude that the “free”
SS mass in cell 3 should play a significant role in the energy
localization, acting as a NES. Moreover, it has been shown
that the effectiveness of a NES to dissipate energy strongly
depends on the input energy; at low input energy levels the
NES is not activated to its full capacity, but at intermediate
input energy levels the energy dissipated by the NES grows
and reaches a peak value [26]. As the input energy further
increases the effectiveness of the NES to absorb and dissipate
input energy diminishes [26]. It is conjectured at this time
that the same mechanism holds for the hierarchical lattice: In
the R-L configuration at low to intermediate energy levels the
NES dissipates a significant portion of the input energy which
leads to localization of energy at the right side of the system;
however, as the input energy increases and the maximum
dissipative capacity of the NES is exceeded, a smaller fraction
of the input energy is dissipated locally by the NES in cell 3,
and the remaining energy is released to propagate through the
lattice.

Summarizing, the experimental tests confirm fully the theo-
retical predictions of Fronk et al. [23] and prove experimentally
the realization of strong nonlinear acoustic nonreciprocity in
the three-cell lattice of Fig. 2. For low- and intermediate-
intensity applied impulsive loads there occurs only L-R wave
propagation in the lattice, and strong response localization
when the right cell was excited. Increasing the impulse in-
tensity eliminates the localization phenomenon and both L-R
and R-L wave propagation occurs in the lattice. In all cases,
however, strong global acoustic nonreciprocity occurs in this
nonlinear, asymmetric, hierarchical lattice. This nonreciproc-
ity affects drastically the dissipative capacity of the lattice,
with impulsive excitations applied to cell 3 yielding much
stronger dissipation of energy. Additional experimental tests
with different magnitudes of impulsive excitations confirmed
these findings.

We attempt to describe the nonreciprocity more quantita-
tively. We note at this point that, while the spatiotemporal
energy plots are a good way to assess energy distribution,
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(a) (b) (c) 

FIG. 9. Nonreciprocity measure δ based on the responses of the LSs of the three cells of the lattice: (a) LSs in cells 1 and 3, (b) LSs in cells
2 and 3, and (c) LSs in cells 1 and 2; both experimental data (grey) and simulated data (black) are considered at various impulse intensities.

and distinguish between the different types of nonreciprocal
responses (i.e., localization versus wave propagation when the
system is forced from the left or the right), the normalization at
each time step in the plots with respect to the total instantaneous
energy in the system does not help to assess quantitatively the
nonreciprocity in the system. As a result, the spatiotemporal
energy plots of Fig. 6–8 cannot be used directly to assess
quantitatively the degree of nonreciprocity in the system,
and should only be used to distinguish between the regimes
of energy localization or transmission. Instead, to measure
quantitatively the degree of acoustic nonreciprocity in the
system and its evolution as energy increases, another measure
is considered as follows. Based on the adopted forcing protocol
of this study, i.e., sequential excitation of the system at two
different points of the lattice using the same force, say, i and j ,
a measure of the normalized difference of the corresponding
responses at these points is computed, and a “global” measure
of nonreciprocity, δ[xi,xj ], in the lattice is calculated following
the scheme used by Blanchard et al. [18] and Herrera et al. [34],

δ[xi,xj ] =
1
T

∫T
0 (xi − xj )2dt√

1
T

∫T
0 (xi)2dt

√
1
T

∫T
0 (xj )2dt

, (3)

where T is the time window of the data record based on which
the measure is computed, and xi and xj are the corresponding
responses at the reciprocal points i and j . Based on its
definition, δ[xi,xj ] provides a direct quantitative measure to
assess nonreciprocity in the lattice. In the following results
we considered the LSs of each of the three cells as the mea-
surement points, and assembled them in pairs to compute the
nonreciprocity measure (3) based on the recorded responses.
In Fig. 9 the resulting measure δ for various impulse intensities
is depicted. Note that in a fully reciprocal system the measure
should vanish, i.e., δ = 0, for any combination of reciprocal
points i and j , and at any excitation level. The results for the
nonlinear lattice of our study are rather interesting.

First, nonreciprocity in the lattice only manifests when the
end cell 3 is considered as one of the measurement points
indicating the important role that the “free” SS of the right-end
cell 3 plays in nonreciprocity.

Second, nonreciprocity appears to increase with increasing
force intensity, in spite of the fact that there are different
response regimes in the lattice with increasing energy, i.e.,
motion localization at cell 3 versus wave propagation for
increasing energy. Indeed, at the lower impulse intensities the

apparent nonreciprocity observed at all measurement points
is small even though the distribution of energy throughout
the system is fundamentally different (cf. Fig. 6). However,
at larger impulse intensities strong nonreciprocity is still
maintained even though the localization phenomenon is lost
(cf. Fig. 8), indicating that the nonreciprocity and localization
phenomenon are distinct phenomena. Interestingly, a global

FIG. 10. Numerical simulation results of the ROM for small
impulsive intensity, impulsive magnitude 15.28 N applied to cell 1,
and impulsive magnitude 18.01 N applied to cell 3: (a) spatiotemporal
variation of normalized energy (with respect to input energy) for each
cell, and (b) and temporal variations of the lattice energy and the
non-normalized energy of each cell; these plots correspond to the
experimental results of Fig. 6.
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FIG. 11. Numerical simulation results of the ROM for interme-
diate impulsive intensity, impulsive magnitude 102.04 N applied
to cell 1, and impulsive magnitude 96.19 N applied to cell 3: (a)
spatiotemporal variation of normalized energy (with respect to input
energy) for each cell, and (b) and temporal variations of the lattice
energy and the non-normalized energy of each cell; these plots
correspond to the experimental results of Fig. 7.

maximum value of δ occurs experimentally at an impulse
intensity of ∼250 N.

Third, we note good agreement between the experimental
and computational nonreciprocity measures, with the ex-
ception of very large force intensities. In similarity to the
experimental results, for the reduced-order model the corre-
sponding measure of nonreciprocity δ is calculated using as
measurement points the LSs of each cell. The experimental and
simulated trends are in good agreement for low-to-intermediate
impulse excitations but diverge for very large impulse exci-
tations for measurement points involving cell 3. In addition,
in contrast to the experimental results, no global maximum is
predicted by the ROM simulation. Nonetheless, the satisfactory
agreement between experiment and ROM simulations provides
a first confirmation of the efficacy of the ROM to accurately
predict and model the nonlinear nonreciprocal acoustics of the
lattice up to intermediate impulse intensities.

As a final task of our study we study in detail the six-DOF
mathematical ROM of the three-cell lattice discussed in Sec. II
(with system parameters listed in Table I), with the aim to show
that it accurately reproduces the experimental results. This
provides confidence in the interpretation of the experimental
results, but also validates the ROM as an accurate and reliable

FIG. 12. Numerical simulation results of the ROM for large im-
pulsive intensity, impulsive magnitude 856.99 N applied to cell 1, and
impulsive magnitude 835.72 N applied to cell 3: (a) spatiotemporal
variation of normalized energy (with respect to input energy) for each
cell, and (b) and temporal variations of the lattice energy and the
non-normalized energy of each cell; these plots correspond to the
experimental results of Fig. 8.

tool for predictive design of the lattice, e.g., for optimization
of global acoustic nonreciprocity according to certain criteria.

In Fig. 10 we depict the results of the numerical simulations
of the ROM for the case of low-intensity impulsive excitation
corresponding to the results of Fig. 6. To perform these
simulations we considered two separate impulsive excitations,
first applied to unit cell 1 and then to unit cell 3, respectively.
Moreover, the actual experimentally measured impulsive leads
corresponding to the plots of Fig. 6 were used in each of
these simulations, in order to get a direct comparison be-
tween simulation and experiment. These results agree with the
corresponding experimental results of Fig. 6 both qualitatively
and quantitatively. The ROM accurately predicts L-R wave
propagation and response localization depending on the point
of application of the excitation. In addition, the nonlinear
energy exchanges or beats between cells during L-R wave
propagation [cf. the left plot of Fig. 10(b)] are accurately
reproduced by the ROM.

Similar conclusions are drawn from the ROM results de-
picted in Figs. 11 and 12, corresponding to the experimental re-
sults of Figs. 7 and 8, respectively. For intermediate impulsive
excitation (cf. Fig. 11) the ROM simulations confirm L-R wave
propagation for cell 1 excitation and response localization
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for cell 3 excitation. For strong impulsive excitation (cf.
Fig. 12), the ROM accurately predicts both L-R and R-L wave
propagation, in accordance to the experiments (cf. Fig. 8); also
the energy exchanges between cells are recovered. The ROM
simulation, however, predicts that a portion of the impulse
energy remains localized while the same is not observed in the
experiment. This might explain the divergence between com-
putation and experiment of the nonreciprocity measure δ for
high impulse intensities that is observed in the plots of Fig. 9.

V. CONCLUDING REMARKS

Following the theoretical and experimental study of local
dynamic nonreciprocity in a hierarchical nonlinear unit cell
[20], and the theoretical study of global acoustic nonreciprocity
in a lattice of coupled unit cells [23], in this work we presented
the experimental validation of global acoustic nonreciprocity
in a three-cell lattice with unit cells incorporating a large scale
(LS) and a small scale (SS).

The experimental results confirmed the theoretical predic-
tions: For sufficiently small-to-intermediate applied impulsive
loads there occurred L-R wave propagation in the hierarchical
lattice, but nonlinear localization prevented an analogous R-L
wave propagation. For strong applied impulses, however, both
L-R and R-L wave propagation occurred in the lattice, although
strong nonreciprocity still persisted in the lattice. A reduced-
order model (ROM) derived from system identification and
characterization of the unit cells accurately reproduced the
experimental findings, and was validated as a useful computa-
tional tool for parametrically studying and optimizing global
acoustic nonreciprocity in the lattice.

Such an optimization study is closely tied to building an
understanding of the nonlinear mechanism that gives rise
and governs global acoustic nonreciprocity in the nonlinear,
asymmetric, and hierarchical lattice. As proven in [20] the
nonlinear mechanism governing local nonreciprocity in each

unit cell is 1:1 resonance capture between the LS and SS
dynamics. Accordingly, it is logical to assume that a similar
resonance capture mechanism would be responsible for the
global acoustic nonreciprocity in the lattice. This conjecture
agrees with the numerical observation that wave propagation
in the lattice is in the form of traveling breathers possessing
a dominant “fast” frequency. In addition, the generation of
nonlinear localization in the rightmost unit cell for sufficiently
small impulsive loads needs to be examined, together with the
bifurcations that cause its elimination as the applied impulse
increases and R-L wave propagation commences in the lattice.
Such a study can be performed by asymptotic analysis of the
acoustics of the derived ROM. Moreover, the effect on acoustic
nonreciprocity of the adding of more internal scales (i.e., more
SSs of increasingly smaller mass—cf. Fig. 1) in the hierarchical
structure of each unit cell needs to be studied.

In synopsis, the presented experimental results validate the
existence of nonlinear acoustic nonreciprocity in the proposed
lattice. As such, they promote an alternative passive paradigm
for realizing acoustic nonreciprocity in a broad class of non-
linear hierarchical lattice systems, without requiring external
sources of energy (e.g., external biases or time-varying system
properties) as current applications do. However, the role and
interplay of internal hierarchy, asymmetry, and nonlinearity in
such nonreciprocity need to be more closely investigated.
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