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The simplest Klein-Gordon (KG) breather is a compacton on a string subject to the force of gravity in a
frictionless V-shaped trough. Its dynamics, spectrum, and energy are discussed and it is compared to sine-Gordon
breathers. A generalization of this problem consists of a charged string subject to the electrostatic force of two
semi-infinite coplanar charged planes separated by a gap of constant width. For motion in the midplane between
these planes, the string’s displacement u(x,t) satisfies the nonlinear KG equation (∂2

t − ∂2
x )u = −tan−1 u in

dimensionless form. Simulations of this equation reveal long-lived, breatherlike states, or “pseudobreathers,”
which preserve shape and speed to high accuracy when Lorentz-transformed to simulate collisions.
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I. INTRODUCTION

The theory of nonlinear waves rests largely upon the inverse
scattering transform (IST). ISTs allow exact solutions of the
three most naturally arising equations, the Korteweg-deVries
(KdV) [1], cubic Schroedinger [2], and sine-Gordon (SG) [3]
equations. ISTs are not simple, but they show why solitons and
breathers exist and have the remarkable particlelike property of
retaining their initial shape and speed after collisions. Among
all categories of nonlinear wave equations, Klein-Gordon (KG)
equations are uniquely interesting because of their Lorentz
invariance. Moreover, SG breathers and their variations arise
in widely diverse continuous and discrete physical systems [4],
including DNA [5] and Bose-Einstein condensates [6]. More
than 50 years after the IST was introduced, KG breathers re-
main the subject of intensive research. Most fields of theoretical
physics have a relatively simple set of examples, prototypes
that illustrate or exemplify their essential nature. Is there a
simplest KG breather?

This article presents the simplest KG breather, by which is
meant an exact solution of the simplest nonlinear KG equation
that possesses a self-trapped state. It is a compacton, meaning
it vanishes outside of some region.

Kruskal has shown that the only integrable Klein-Gordon
equations are those whose nonlinear term is sin or sinh [7].
The simplest breather therefore is not a true breather. It would
not preserve shape and speed exactly after a collision. It is
also noted that traveling waves for the equation governing the
simplest breather, Eq. (1) below, are necessarily oscillatory.
That is, Eq. (1) admits no localized, solitary traveling waves.

Scalar nonlinear KG equations in one spatial dimension
govern an idealized mechanical string subject to an external
nonlinear restoring force. This could be the force of gravity on
a string sliding without friction on the walls of a trough. The
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simplest breather may be thought of as a localized, self-trapped,
and nearly sinusoidal mode of a mechanical string subject to the
force of gravity in a frictionless V-shaped trough. It is explained
with elementary mechanics.

This suggests an intuitively natural extension of the simplest
breather to the electrostatic system discussed in Sec. III. In
this system, a charged string obeys the nonlinear KG Eq. (21)
below, reading (∂2

t − ∂2
x )u = −tan−1u. This appears to have

escaped attention in the literature. Simulations of approximate
breather-like solutions of this equation reveal long-lived states.
When “boosted” by Lorentz transforms, these behave very
much like true breathers in collisions, meaning those with an
associated IST, by preserving their initial shape and speed to
high accuracy. These states are called “pseudobreathers” in the
following.

A breather may be a bound soliton-antisoliton state cor-
responding to mirror-image complex eigenvalues in an asso-
ciated IST. This is the case for the KdV [1,8] and SG [3]
equations. Alternatively, a breather may be interpreted as a
kink-antikink resonance, as with the SG equation[7] and the
φ4 or Landau-Ginsburg equation [9–11], although it may be
noted that the latter does not admit a true breather [12].

For nonintegrable KG equations, nonlinear dispersion can
explain the self-trapping of a breather intuitively. If the poten-
tial energy function giving rise to the external restoring force
on the string has negative curvature asymptotically, analogous
to “softening on-site nonlinearity” in discrete systems, then
the cutoff or resonant frequency (at which the wave number
vanishes) of large-amplitude traveling waves is smaller than
that of linear, small-amplitude traveling waves.

In this case, the frequency of a large-amplitude breather is
smaller than the cutoff frequency for small-amplitude traveling
waves, and therefore the small-amplitude wings of a breather
act as mirrors. They are driven below the linear resonant
frequency. This view has been invoked for a hydrodynamic
breather [13]. It is also cited for an approximate breather
on a positively charged dielectric string whose equilibrium
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position is midway between identical, fixed, parallel, nega-
tively charged lines and which moves perpendicularly to their
plane [14]. A natural question is whether the self-trapping of
the simplest breather is explained similarly.

At first sight, the simplest breather should be trivial. It
involves only elementary mechanics and is only quadratic in
distance and time. Nevertheless, its shape, algebraic expres-
sion, mechanics, and spectrum are not self-evident. Although
not the only compacton arising in a continuous rather than
a discrete system [15], it is the large-amplitude limit of any
breather for a KG equation whose external restoring force
asymptotically approaches a constant, or “saturates.”

Saturable media are widespread. The density of ions satu-
rates in plasma cavitons [16–18] and many optical media have
saturable Kerr nonlinearities [19]. The liquid CS2 is an example
of the latter, having prolate spheroidal molecules whose “easy”
axis of polarization aligns increasingly with the electric field
of linearly polarized light at greater intensity. Other examples
include alkali metal vapors [20] and ferromagnetic materials
[21].

The governing Eq. (1) below is at the boundary between two
classes of nonlinear KG equations with conservative external
restoring forces, namely those for which the curvature of the
external potential energy function is asymptotically positive
and those for which it is asymptotically negative. The potential
in the latter case has the shape of seagull wings.

The charged string mentioned above [14] and Eq. (1) below
both have a saturable nonlinear restoring force and do not
possess solitary, shape-invariant traveling-wave solutions. A
stationary breather may be “boosted” to any speed less than the
speed of waves on a free string by a Lorentz transform in which
this speed replaces the speed of light in vacuum, allowing the
study of collisions.

Section II treats the algebraic form, mechanics, Fourier
representation, and energy of the simplest breather. Dispersion
relations for traveling and standing waves are derived, the latter
yielding the breather as a special case. Section III comments
on standing waves, compares the simplest KG breather with
the SG breather, notes the impossibility of simulating the sim-
plest breather, and introduces the electrostatic generalization
of the simplest breather. Simulations of collisions between
these pseudobreathers are shown, mainly to demonstrate their
existence.

II. THEORY

The subsections below treat, in order, the dimensionless
form of the nonlinear KG equation for the simplest breather,
its algebraic form, dynamics, spectrum, energy, and the disper-
sion relations for traveling and standing waves, the simplest
breather being a special case of the latter.

Let a gravitational field point down along the axis of
symmetry of a trough whose cross-section has the shape of
the letter “V.” A string of infinite length lies along the bottom
of the trough when at rest. Then the magnitude of the external
gravitational restoring force per unit length is independent of
the amplitude of the string’s displacement from the bottom of
the trough, save when it vanishes. The restoring force itself
changes sign when the string crosses the bottom of the trough.
The bottom of the trough may be assumed to have a very

small smooth region, making the restoring force a continuous
function, but without significant effect on the string’s motion
for amplitudes of interest. This region is ignored below.

A. Dimensionless form of the equation

Let u(x,t) be the string’s displacement, measured along the
wall itself, from the bottom of the trough described above. Let
the string have linear mass density ρ and tension τ . Then u(x,t)
obeys the nonlinear KG equation

ρ∂2
t u − τ∂2

xu = −ρg sgnu, (1)

where g is the acceleration of gravity projected onto the wall by
the factor sin α, where α is the angle of the wall with respect
to horizontal, and the “sign-function” is defined by sgnu =
−1,0,1, respectively, for u < 0, u = 0, u > 0.

Equation (1) has a natural scale for distance, namely the
tension divided by the force per unit length owing to gravity,
which we denote by d ≡ τ/ρg. Equation (1) has dimensionless
form with dimensionless displacement u/d, dimensionless
distance x/d, and dimensionless time

√
g/d t . On replacing u,

x, and t by their dimensionless counterparts, Eq. (1) becomes
(
∂2
t − ∂2

x

)
u = −sgnu. (2)

This equation has no free parameters, and hence its breathers
are scaled replicas of the unit-amplitude breather. The follow-
ing is limited primarily to the consideration of Eq. (2), but
Eq. (1) is revisited when it is helpful for discussing certain
aspects of the breather, such as its energy.

B. Description and algebraic form

The breather is first described and its algebraic form
presented. A derivation is given in Sec. IIC. In dimensionless
variables, let T denote its period, A its maximum amplitude,
and 2L its two-sided width. These obey

T = 4
√

A (3)

and

L = T/2 = 2
√

A. (4)

There is no small-amplitude, linear approximation. From
Eq. (2), the resonant frequency increases without bound as
A → 0. If we let k = π/L and ω = 2π/T , then Eqs. (3) and
(4) give k = ω, the linear dispersion relation for a free string.

Figure 1 shows the right-hand half of the breather, itself an
even function of x, for the case A = 1, corresponding to T = 4
and L = 2, at the times t = 0 (solid) and T/8 (dashed). The
breather is initialized at maximum displacement with speed
∂tu = 0.

For 0 < t < T/4, the first quarter-period, the breather has
three regions labeled 1, 2, and 3 in Fig. 1 with boundaries
at x1(t) = L/2 − t = √

A − t and x2(t) = L/2 + t = √
A +

t . Region 1 has constant curvature −1 and acceleration −2.
Region 2 is linear, and hence its acceleration is −1. Its slope ∂xu

varies linearly with t . Region 3 is motionless and has constant
curvature 1. Region 2 grows in length from 0 to L during the
first quarter-cycle.
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For x � 0, in the first quarter-cycle, the breather may be written

u(x,t) =

⎧⎪⎪⎨
⎪⎪⎩

A − t2 − x2/2, 0 � x � x1,

A/2 − t2/2 + (t − √
A)(x − √

A), x1 � x � x2,

(x − 2
√

A)2/2, x2 � x � 2
√

A,

0, x � 2
√

A.

(5)

The extension of the form of u(x,t) in Eq. (5) to other points
and times is straightforward and need not be shown. Equation
(5) agrees with the description of the breather. It may be shown
that Eq. (5) and its extensions satisfy Eq. (2) and that u, ∂xu,
and ∂tu are continuous at x = ±L = ±2

√
A, x1(t), and x2(t)

for all t .

C. Dynamics

The breather is the sum of two motions. One is a free-
falling overall oscillation of a straight string with slope 0,
amplitude A/2, acceleration ±1, and period T = 4

√
A. This

is the position of the center of mass (CM) of the breather and
identical to the motion of a point mass. It is a particular solution
of Eq. (2). In the first quarter-cycle, the CM displacement, say
uCM(t), is given by

uCM(t) = A/2 − t2/2. (6)

At t = T/4 = √
A, uCM = 0.

The other motion is a homogenous standing-wave solution
of Eq. (2), in phase with the CM motion at x = 0, equal to the
sum of identical counterpropagating parabolic traveling waves,
each with amplitude A/4, period T = 4

√
A, and wavelength

2L = T = 4
√

A. The standing wave and the CM displacement
both vanish at t = T/4. When they do not vanish, their sum
at any given instant is either positive or negative, that is, the
breather is entirely on one side of the trough or the other at any
instant.

FIG. 1. The breather is shown at t = 0 (solid) and t = T/8 = 0.5
(dashed) for amplitude A = 1, for which the period is T = 4 and
the half-width is L = 2. Dashed vertical lines are at boundaries x1(t)
and x2(t) between regions 1, 2, and 3 at t = 0.5, namely, x1(t) =
L/2 − t = 0.5 and x2(t) = L/2 + t = 1.5.

When added to the CM motion, the minima of the standing
wave at x = ±L vanish, touching the bottom of the trough.
The breather’s initial shape is such that, at the minima, and
only at the minima, the curvature of the standing wave alone
(more precisely, the upward force from the bottom of the
trough) gives an acceleration 1, canceling the free-fall CM
motion and leaving the minima undisturbed at the bottom of
the trough throughout a cycle. More precisely, the string at
x = ±L is indistinguishable from a free-hanging, static string
at the point where its displacement first vanishes. The force
from the bottom of the trough at this point replaces that from
the string’s positive curvature to balance the force of gravity.

To show that the breather has the decomposition claimed
above, consider the algebraic forms of the traveling waves.
Let X+ ≡ x − t and X− ≡ x + t , and let the forward and
backward parabolic traveling waves be denoted by u+(X+)
and u−(X−), respectively. Figure 2 shows either of these at
t = 0 near x = 0. The parabolic wave in Fig. 2, denoted by
f (x), is given near the origin by

f1(x) = (A/4)(1 − 4x2/L2), − L/2 � x � L/2,

f2(x) = (A/4)[−1 + 4(x − L)2/L2], L/2 � x � 3L/2.

(7)

Figure 3 shows regions 1, 2, and 3 and the values on the
characteristics near the origin in the plane (x, t). In region 1,
within triangle ABC, X+ and X− are both on (−L/2,L/2).
Therefore, u+ and u− both have the form of f1 in Eq. (7), that
is, u+ = f1(X+) and u− = f1(X−). Adding the standing wave

FIG. 2. Each of the two counterpropagating parabolic traveling
waves u+ and u− defined in the text is shown near x = 0 at t = 0.
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FIG. 3. Region 1 in Fig. 1 is bounded by A,B,C; 2 by B,C,D; and 3
by C,D,E. Values on characteristic lines X+ = x − t and X− = x + t

are shown. The breather extends from x = −L to x = L, so only the
left half of CDE is used.

and the CM displacement in Eq. (6) gives the expression in
Eq. (5) for region 1.

In region 2, within triangle BCD, −L/2 � X+ � L/2,
but L/2 � X− � 3L/2. Therefore, u+ = f1(X+) and u− =
f2(X−). These have opposite curvatures that cancel to leave
a linear function of x. Adding the standing wave and the CM
motion yields the expression in Eq. (5) in region 2.

In region 3, triangle CDE, both X+ and X− are on
(L/2,3L/2), so the form of f2 is used for both u+ and u−.
Summing the standing wave and the CM motion yields the
expression in Eq. (5) in region 3.

D. Fourier representation

We use the decomposition of the breather into a CM motion
and counterpropagating traveling waves to obtain its Fourier
series. It is convenient first to let A = 4, so that the amplitude
of the parabolic wave in Fig. 2 is unity. The coefficients fn in
its Fourier (cosine) series,

f (x) =
∞∑

n=1

fn cos(knx), (8)

where kn = πn/L, vanish if n is even and for odd n are given
by

fn = 32

(πn)3
sin

(nπ

2

)
. (9)

It follows that the contribution to u(x,t) from the nth harmonic
(for odd n) of the standing wave, say fn(x,t), is given by

fn(x,t) = (−1)(n−1)/2 32

π3n3
[cos(knx − ωnt) + cos(knx+ωnt)]

= (−1)(n−1)/2 64

π3n3
cos(knx) cos(wnt), (10)

where ωn = 2πn/T is the angular frequency of the nth
harmonic. The symbol f has been redefined here after being
introduced in Eq. (7), but the distinction between its different

meanings should be evident from the subscript of Fourier
coefficients and the explicit arguments for traveling waves.

The CM motion has the same shape as the curve in Fig. 2.
Hence, if it had unit amplitude, rather than amplitude A/2,
then the CM motion would have a Fourier series in which the
coefficient of cos(ωnt) were fn in Eq. (9). On multiplying the
sum of the traveling waves for unit amplitude in Eq. (10) by
A/4, multiplying the CM motion in Eq. (6) for unit amplitude
by A/2, and adding the products, one has

u(x,t) = 16A

π3

∞∑
n=1

1

n3
(−1)(n−1)/2[1 + cos(knx)] cos(ωnt),

|x| � L, (11)

with the index of summation odd here and below. This vanishes
at x = ±L because knL = nπ and n is odd.

The parabolic wave in Fig. 2 is nearly sinusoidal. As a
measure of this and to verify that Eqs. (7) and (9) are consistent,
consider Parseval’s theorem,∫ L

−L

f 2(x)dx = L
∑

n

f 2
n .

Evaluating the left-hand side of this equation using Eq. (7)
gives 16L/15. Substituting the coefficients fn in Eq. (9) into
the right-hand side gives

16L

15
= L

∞∑
n=1

(
32

π3n3

)2

.

This reduces to the identity [22]
∞∑

n=1

1

n6
= π6

960
� 1.0014,

showing that Eqs. (7) and (9) are consistent. It is interesting that
only about 0.14% of the “energy” in f (x) is in the harmonics,
and almost all of this is in the third harmonic.

E. Energy

The energy of the breather is 8ρg2A3/2/3c2, where c2 =
τ/ρ. By Eq. (3), the energy varies in proportion to 1/ω3. This
formula may be verified by calculating the energy at t = T/4,
when the energy is purely kinetic. It is then the integral of
ρ(∂tu)2/2 with respect to x on (−L,L). From Eq. (5), restored
to dimensional form, one has ∂tu = g(x − L)/c on (0,L) at
t = T/4. This says that the speed varies linearly with x when
the string crosses the bottom of the trough. On (0,L) the density
of kinetic energy at t = T/4 is ρg2(x − L)2/2c2. The density
of kinetic energy at t = T/4 increases quadratically with x

moving inwards, away from ±L and toward x = 0.
The potential energy per unit length owing to the slope

and resultant stretching of the string is τ (∂xu)2/2. From the
dimensional form of Eq. (5), it follows that at t = 0, when
the energy is entirely potential, this is equal to ρg2x2/2c2

on (0,L/2). It suffices to consider only one-quarter of the
breather’s length. Integrating this with respect to x on (0,L/2)
and multiplying by 4, one finds this potential energy is equal to
one-fourth of the total energy. By integrating the gravitational
potential energy per unit length, namely ρgu, by Eq. (5) again,
with respect to x at t = 0, one may show independently that
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the gravitational potential energy is three-fourths of the total
energy at maximum displacement.

F. Dispersion relationships

For traveling waves, let u = u(θ ), where θ = kx − ωt is a
dimensionless phase, for some constants k and ω, with x and t

being the dimensionless distance and time. Inserting this into
Eq. (2) gives

(ω2 − k2)u′′ = −sgnu, (12)

where a prime (′) denotes differentiation with respect to the
argument.

For ω2 > k2, the solution of Eq. (12) of interest is a periodic
series of linked parabolic half-cycles. If ω2 < k2, then Eq. (12)
has no physical solution. For a traveling wave with amplitude
A and peak at x = 0 at t = 0, the solution of Eq. (12) over the
first quarter-cycle is given by

u(θ ) = A − θ2

2(ω2 − k2)
. (13)

On letting u(π/2) = 0, which is equivalent to choosing a
spatial period of 2π/k and temporal period of 2π/ω, Eq. (13)
gives the dispersion relationship

k2 = ω2 − π2

8A
. (14)

Equation (14) implies that the cutoff or resonant frequency ωc

for traveling waves of amplitude A is

ωc = π

√
1

8A
. (15)

This is the same as the frequency-amplitude relationship for
the CM motion in Eq. (6), as is to be expected for k = 0, when
A is replaced by the amplitude A/2 of the CM motion.

By Eq. (3), the frequency of a breather of amplitude A, say
ωb, is

ωb = π

2
√

A
. (16)

This exceeds the cutoff frequency ωc for traveling waves with
amplitude A in Eq. (15). For the breather to decay, however,
the small-amplitude wings must emit traveling waves at the
frequency ωb. Note that the breather’s frequency for amplitude
A is equal to the cutoff frequency for traveling waves with
amplitude A/2. This is the amplitude of the CM motion. This
provides an intuitively satisfying explanation of self-trapping
for the simplest breather. It is just barely or precisely self-
trapped in that its center of mass oscillates at resonance.

For standing waves, let u(x,t) = u(x) cos ωt , ignoring har-
monics for the moment. Substituting this into Eq. (2) and taking
the Fourier (cosine) transform gives

−ω2u(x) − u′′(x) = − 2

T

∫ T

0
sgn[u(x) cos(ω t)] cos(ωt)dt,

(17)
where T = 2π/ω. Over one period T , the integral on the right-
hand side of Eq. (17) is four times the integral over a quarter-
cycle, which by inspection is sgn[u(x)]/ω. This leads to

u′′(x) = −ω2u(x) + 4

π
sgn[u(x)]. (18)

FIG. 4. (a) and (b) are, respectively, the linear restoring force F L

and its corresponding potential V L, as defined in the text and Eqs. (18)
and (19), for the classical mechanical particle analogous to a standing
wave; (c) and (d), respectively, the nonlinear force F NL and nonlinear
potential V NL; and (e) and (f), respectively, the total force F Tot and
total potential V Tot. Dashed lines in (f) at 0.2, 0, and −0.2 correspond
respectively to unbiased orbits, the breather, and biased orbits. Tick
marks at ±uc are the turning points for the breather given by Eq. (20).

Equation (18) is Newton’s equation of motion for a classical
mechanical particle at position u(x), with x analogous to time,
subject to two conservative forces, a linear restoring force
FL(u) = −ω2u and a nonlinear repulsive force FNL(u) =
(4/π )sgn(u). The corresponding potentials are respectively
V L = ω2u2/2 and V NL(u) = −4|u|/π . Their sum is the total
potential

V Tot(u) = 1

2
ω2u2 − 4

π
|u|. (19)

These forces and potentials are plotted in Fig. 4 for the choice
ω = π/2, corresponding to A = 1 in Eq. (3).

The total potential in Eq. (19) has two wells for any nonzero
value of ω. Hence, there are three classes of orbits for the
analogous classical mechanical particle for any value of ω.
Figure 5 shows these in the space (u,u′) for energies of
−0.2,0,0.2,and 0.4.

The energy of the particle is (u′)2/2 + V Tot(u). For positive
energy, such as the upper dashed line at 0.2 in Fig. 4(f), there
are unbiased oscillations with turning points symmetrically on
either side of u = 0 whose amplitudes exceed the critical value
uc given by

uc = 8

πω2
, (20)
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FIG. 5. Three types of orbits for the double-well potential in
Fig. 4(f) are shown in the (u,u′) plane, or phase-space in classical
mechanics, within a constant of proportionality. Positive energies of
0.4 and 0.2 give the two unbiased orbits. A negative energy of −0.2
gives the biased orbit. An energy of 0 gives the “separatrix” orbit
passing through (0,0) corresponding to the breather. Dashed lines are
at ±uc in Eq. (20). Points at (u = ±uc/2 � ±0.5, u′ = 0) (not shown)
would correspond to a stationary particle at the bottom of a well.

at which V Tot(u) = 0 by Eq. (19). For the parameters in Fig. 1,
we have uc = 8/π (π/2)2 = 32/π3 � 1.03.

For negative energy, such as the lower dashed line at −0.2
in Fig. 4(f), there are biased oscillations with turning points
symmetric about uc/2 and amplitude between uc/2 and uc. The
analogous particle executes simple harmonic motion because
the potential is a quadratic. The spatial period of these biased
oscillations therefore is independent of their amplitude. As
could have been noted earlier, these oscillations are linear
waves on a massive but weightless string in the eyes of the
free-falling CM frame.

The third class of orbit is for an energy 0, the middle
dashed line in Fig. 4(f), and corresponds to a breather. The
turning points of the analogous particle are at u = 0 and
u = uc. The approximate standing-wave theory says that the
amplitude of the breather is uc in Eq. (20). This differs from
the true amplitude, A = 1. For the choice ω = π/2, the ratio
of amplitudes is A/uc = 32/π3 � 1.03.

Similarly, Eq. (20) says that the amplitude of a biased
standing wave with constant displacement, when the string
is straight, is equal to uc/2 = 4/πω2, corresponding to the
minimum allowed energy in Fig. 4(f). The true amplitude at the
cutoff frequency for traveling waves from Eq. (15) for the case
of free-fall is A = π2/8ω2. These amplitudes have the same
ratio as the exact and approximate amplitudes of the breather.

An error of 3% for the amplitude in the standing-wave
approximation is reasonable. The potential energy density
owing to gravity is proportional to u(x,t). Equation (11) says
that the contribution to the gravitational potential energy from
the nth harmonic is proportional to 1/n3. An identity [22] reads

1 + 1

33
+ 1

53
+ 1

73
+ · · · = 7

8
ζ (3) � 1.0518,

where ζ is the Riemann ζ function, implying that the neglected
harmonics contain about 5% of the gravitational potential
energy, roughly the error in the predicted amplitude.

A similar calculation of the potential energy owing to slope
using an identity for the sum of the reciprocals of the fourth
powers of the consecutive odd integers [22] shows that the
harmonics contain about 1.5% of the total energy. Section IIE
noted that this potential energy is only one-fourth of the total
energy.

III. DISCUSSION

The approximate analytic technique for treating standing
waves above is the same as that used to derive exact solutions
of the Akhiezer-Polovin equations, that is, Maxwell’s equa-
tions for a relativistic cold collisionless plasma, for circularly
polarized standing waves [23]. As mentioned, the same method
was used in an approximate theory for a charged string [14].
The present case differs from those cases by the absence of a
small-amplitude, linear cutoff frequency.

In the other cases, the total potential for the analogous clas-
sical mechanical particle has a single well for sufficiently large
frequency. For sufficiently large frequency, the standing-wave
solutions in these cases are therefore unbiased. In contrast, the
total potential for the classical mechanical particle analogous
to the simplest breather, as mentioned, always has two wells,
and hence allows biased standing waves. The discontinuities
in Fig. 4(c) and 4(e) would be smoothed in a physical system.

The breathers in the other cases extend to x = ±∞ because
the analogous classical mechanical particle with energy 0
ascends a hill with a rounded summit. This causes the period
of oscillation to be infinite. More accurately, the half-period is
infinite when the analogous particle is released at its maximum
value uc at “time” x = 0. In contrast, the period of oscillation of
the classical mechanical particle corresponding to the simplest
breather is finite, making it a compacton.

The shapes of the simplest breather and the SG breather
behave differently when “boosted.” The Theory of Special
Relativity says that if frame S ′ moves to the right at speed
v relative to frame S, or the “laboratory frame,” then in the
eyes of frame S there is a difference of γβx/c, where β = v/c,
γ = 1/

√
1 − β2, and c is the speed of light in vacuum, between

clocks fixed in S ′ separated by a distance x in the eyes of
frame S along the direction of motion, with the right-hand
clock lagging the left-hand one.

Let 2L′ denote the full-width of a breather, as seen by S ′,
that is stationary in S ′. Its full-width in S is then 2L′/γ . Letting
x = 2L′/γ in the time-delay equation shows that the delay
between the two clocks at the edges of the breather is 2L′β/c,
where c now denotes the speed of waves on a free string and
in dimensionless variables is unity. As β → 1, this becomes
2L′. This is equal to the period of the breather in S ′ according
to Eq. (4). In this limit, the moving breather executes one
complete cycle along the x axis in the eyes of S at any instant.
It would appear to swim, with the trailing edge shaking the
blob ahead to move it along, at a frequency and length tending
to 0 as β → 1.

Consider the SG breather, which in dimensionless form may
be written [3]

u(x,t) = 4 tan−1

[
k cos(ωt)

ω cosh(kx)

]
,
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with 0 < ω < 1 and k = √
1 − ω2. As a measure of the one-

sided width W of the SG breather in its own rest-frame, we may
choose the value of x for which cosh(kx) = 4, corresponding
to kW � 2. The half-width is then W � 2/k in the breather’s
rest-frame. The full width in the laboratory frame is then about
4/γ k. The clocks at its edges differ by the amount 4β/k, which
gives a phase difference of 4βω/k. As β → 1, this becomes
4ω/k = 4ω/

√
1 − ω2, which becomes infinite as ω → 1.

The simplest breather and the SG breather also differ in
regard to the relationship between their amplitude and width.
By Eq. (4), the width L of the simplest breather increases
monotonically with amplitude A, whereas the width of the SG
breather decreases monotonically with amplitude. The details
of this are omitted since it follows straightforwardly from the
expression for the sine-Gordon breather above.

As noted, the simplest breather is not physically realizable,
but moreover the governing Eq. (1), or its dimensionless form
Eq. (2), cannot be solved numerically. The most straightfor-
ward finite-difference scheme [24] for solving a nonlinear KG
equation, the method of characteristics, uses finite-difference
equations for forward and backward waves defined as uf ≡
(∂t − ∂x)u and ub ≡ (∂t + ∂x)u. One writes the wave equation
as coupled first-order partial differential equations in hyper-
bolic or “normal” form, which for the simplest breather read

(∂t + ∂x)uf = −sgnu,

(∂t − ∂x)ub = −sgnu,

together with ∂tu = (uf + ub)/2. For the time-centered im-
plicit finite-difference system based on these equations to
be stable, the “source term” on the right-hand side of these
equations must be differentiable. The function sgn u is not
differentiable at u = 0.

The simplest breather has a natural extension that comes
from noting that Eq. (2) also governs a uniformly charged
string oscillating perpendicularly to a uniformly charged plane
through an infinitesimal slit in the plane, with the plane’s
charge opposite in sign to that on the string. This system is
likewise unphysical, but the slit may be replaced by a gap
of uniform width to obtain the realizable system shown in
Fig. 6. Two semi-infinite, coplanar, uniformly charged planes
with surface charge density −σ < 0 are separated by a gap
of width 2a. In practice, the planes would of course be plates
of finite thickness, but similarly to the small smooth region
at the bottom of the V-shaped trough, the finite thickness of
the plates and the associated edge-effects are assumed to have
no significant effect on the string’s motion at amplitudes of
interest.

The electric field in the xz plane in Fig. 6 lies along the
z axis by symmetry. Ignoring edge effects owing to the finite
thickness of the plane, one can verify that this electric field
is equal to −4σ tan−1(z/a) in cgs-esu. Letting λ denote the
linear charge density of the string, it follows that, in cgs-esu,
the electrostatic restoring force per unit length on the string is
given by −4σλ tan−1(z/a). In the limit of small amplitude,
the resonant angular frequency (squared) of this system is
4σλ/ρa, where ρ is the linear mass density of the string. In
dimensionless form, the displacement of the string obeys a
nonlinear KG equation that appears not to have been previously

FIG. 6. In this cut-away view, a positively charged string with
linear charge density λ > 0 lies along the x axis when at rest. It is
assumed to oscillate in the xz plane, midway between two semi-
infinite uniformly negatively charged coplanar planes with surface
charge density −σ < 0 separated by a gap of width 2a.

addressed,

(∂2
t − ∂2

x )u = −tan−1u. (21)

The prior analytic technique for treating standing waves
[14,23] and used here was used to approximate the shape
of breatherlike, self-trapped states, or pseudobreathers for
Eq. (21) [25]. That is, a standing-wave solution was approxi-
mated by u(x,t) = u(x) cos(ωt), ignoring harmonics. This was
substituted into Eq. (21) and the Fourier (cosine) transform was
taken. This gives Newton’s equation of motion for a classical
mechanical particle in a conservative double-well potential if
ω < 1, where x plays the role of time.

For a fixed value of ω, given the particle’s energy, its
trajectory or orbit can be found by numerical integration. For
a specific ω < 1, the trajectory of the particle when its energy
vanishes give the shape u(x) of the pseudobreather to a first
approximation. It may be mentioned that the width of the
pseudobreather as a function of amplitude has a single local
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FIG. 7. A simulated collision is shown between counterpropagat-
ing approximate breathers with amplitude 5 and speeds of ±0.5.
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FIG. 8. A simulated collision between counterpropagating ap-
proximate breathers with amplitudes 1 and 5 and speeds ±0.5 is
shown.

minimum, and approaches ∞ as its amplitude approaches 0
and ∞. The term “pseudobreather” is used since the nonlinear
KG Eq. (21), as noted above for Eqs. (1) and (2), does not
possess an IST [7].

Simulations of these approximate pseudobreathers (not
shown) reveal that they are long-lived. They were “boosted”
by Lorentz transforms to investigate collsions. The simulation
in Fig. 7 shows a symmetric collision between approximate
pseudobreathers with amplitude 5 and speeds ±0.5. The
amplitude of a breather is a Lorentz invariant since the string
oscillates perpendicularly to the velocity. Figure 8 shows
another collision, this between breathers with amplitudes of
1 and 5 and speeds of ±0.5. Both Figs. 7 and 8 show 20
snapshots of the shape of the string equally spaced in time.
These results show that the breathers’ initial shape and speed
are very nearly preserved. Few if any other nonintegrable KG
equations allow such effectively true breathers. In Fig. 8, it
seems as if the frequency of the smaller-amplitude right-going
breather is smaller than that of the larger-amplitude left-going
one. This results from “strobing.” That is, the period of a
breather with amplitude 1 is roughly equal to the time between
snapshots.

Simulations could study the creation and control of these
pseudobreathers by varying the gap-width 2a along the x

axis. Such simulations could be similar to simulations of
breatherlike states, akin to cavitons, found in overdense re-
gions of a cold, collisionless, inhomogeneous electron plasma
reflecting a linearly polarized narrowband planewave pulse at
normal incidence, taking into account relativistic electron mass
but ignoring the Lorentz force e(v x B)/c, where B denotes
the magnetic field [26]. Recall that the plasma or Langmuir
frequency (squared) is given by 4πne2/m, where n is the

number density of free electrons, e the electron’s charge, and m

the electron’s mass. An increase in m is equivalent to a decrease
in n.

Some work has addressed longitudinal inhomogeneities on
graphene nanotubes [27], but research on the creation or control
of breathers on nanotubes [28] seems not to have considered
the system in Fig. 6, nor does it seem to arise elsewhere.

IV. CONCLUSION

The above is far from a complete treatment of the simplest
breather. There is no discussion, for example, of the power flow
during one period, or the relative energy in the two forms of
potential energy for the simplest breather and the SG breather,
nor is there a comparison between the dispersion relations
for traveling waves for Eq. (2) and (21). These waves are
asymptotically identical as the amplitude increases.

Because it involves elementary mechanics and is thus
intuitively accessible, the simplest breather might suggest
new insights or techniques for analyzing self-attracting or
self-trapped entities or be a starting point for analyzing other
breathers. The treatment of the pseudobreather was only ap-
proximate. It would seem that the most interesting question is
whether it has an exact analytic expression. A natural question
is whether there is a next simplest breather.

The theory of the electrostatic pseudobreather is deferred
[25] and the results above are intended mainly to show simply
that they exist. A nonintegrable nonlinear KG equation, in
particular one with no localized solitary traveling-wave solu-
tions, may possess breatherlike solutions with the particlelike
properties of solitons and breathers for integrable equations to
high accuracy.

It may also be noted in passing that the electrostatic system
in Fig. 6 has an exact gravitational analog in which the charged
planes are simply planes of uniform mass density exerting
some force per unit length on a massive string.

These pseudobreathers pose a number of questions: Their
treatment above is only approximate. Can they be expressed
exactly in terms of standard analytic functions? Do they emerge
from arbitrary initial data in a fashion similar to solitons in
integrable systems? What theory might describe them? Do they
obey any simple rules in collisions? Are there any other closely
related pseudobreathers? Could they be realized on graphene
nanotubes for measurement, memory, or computation? Can
they be generalized to higher spatial dimensions? The shift of
the trajectory of the smaller breather in Fig. 8 might suggest
how a shift-register could be implemented, for example.

Another question is whether breather-like states arise if
the inverse tangent in Eq. (21) is replaced by the hyperbolic
tangent, a function whose shape is a smoothed step-function
similar to that of the inverse tangent. It might be interesting to
study the nonlinear KG equations that govern the string when
the surface charge density −σ on the planes varies with y.
The present theory could also be extended to take into account
emission or absorption of radiation by the pseudobreather.
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