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Quantum-classical correspondence in the vicinity of periodic orbits
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Quantum-classical correspondence in chaotic systems is a long-standing problem. We describe a method to
quantify Bohr’s correspondence principle and calculate the size of quantum numbers for which we can expect
to observe quantum-classical correspondence near periodic orbits of Floquet systems. Our method shows how
the stability of classical periodic orbits affects quantum dynamics. We demonstrate our method by analyzing
quantum-classical correspondence in the quantum kicked top (QKT), which exhibits both regular and chaotic
behavior. We use our correspondence conditions to identify signatures of classical bifurcations even in a deep
quantum regime. Our method can be used to explain the breakdown of quantum-classical correspondence in
chaotic systems.
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I. INTRODUCTION

Quantum-classical correspondence and the quantum-to-
classical transition have been topics of fundamental interest
since the birth of quantum theory in the early 20th Century.
The connection between quantum and classical mechanics
remains a partially understood subject, particularly in chaotic
systems. According to the correspondence principle, the pre-
dictions of quantum physics should agree with the predictions
of classical physics in appropriate limits wherever classical
physics is applicable. There are multiple ways in which the
correspondence principle has been formulated. These include
Bohr’s correspondence principle [1], Ehrenfest’s theorem [2],
and Liouville correspondence [3,4], with each having its own
subtleties [5–7]. According to Bohr, quantum-classical corre-
spondence is attained in the limit of large quantum numbers
(or when h̄ → 0 relative to the phase space of the dynamics).
According to Ehrenfest’s theorem, the evolution of expectation
values of observables in a quantum system should coincide
with the corresponding classical evolution until a time known
as Ehrenfest’s time (tEH) that depends on the system dynamics.
While tEH is large for regular systems in the semiclassical
limit, it can be very small for chaotic systems even in the
semiclassical limit [8–10].

Since Bohr’s correspondence principle involves large quan-
tum numbers, a natural question that arises is how large is large
enough to see correspondence. Another important question
is why correspondence breaks down in chaotic systems. In
this paper, we address both these questions by analyzing the
effect of stability and bifurcations of classical periodic orbits
on quantum dynamics. We explore quantum-classical corre-
spondence in the quantum kicked top (QKT)—a multiqubit
time-periodic system that is a standard paradigm for exploring
chaos [11]. This system is of particular interest because it
displays bifurcations, regular behavior as well as chaotic
behavior in the classical limit, and is one of the few chaotic

systems that has been experimentally realized in the quantum
regime [12,13]. Furthermore, since it is finite-dimensional,
there are no truncation errors in the study of this system.

Our study is based on an analysis of classical periodic
orbits and their stability. We thus first present a classical
periodic orbit analysis and bifurcation study of the kicked
top. We then provide criteria for calculating the quantum
number (in this case, the collective qubit spin j ) for which the
quantum dynamics of a state localized on a periodic orbit will
correspond to the classical dynamics. Our criteria are based on
the orthogonality of quantum states centered on the different
points of the periodic orbits. When the criteria are satisfied,
signatures of the classical bifurcations are clearly reflected in
the quantum dynamics, even in a deep quantum regime. These
signatures become more pronounced in a semiclassical regime.
Furthermore, we show that in chaotic systems, the existence
of orbits of very high periodicity can lead to a violation of our
criteria and thus result in a short Ehrenfest break time. Studies
of quantum-classical correspondence for systems with a mixed
phase space of periodic islands and chaotic regions are more
challenging compared to purely regular or chaotic systems.
Our approach is thus particularly useful in the analysis of such
mixed systems.

The paper is organized as follows. In Sec. II, we briefly
describe the quantum kicked top model. Section III includes a
classical analysis of the kicked top with explicit calculations
of periodic orbits and bifurcations. In Sec. IV, we describe
our criteria for the quantification of Bohr’s correspondence
principle in periodic Floquet systems. In Sec. V, we apply our
criteria to the QKT. We show that when the criteria are satisfied,
quantum-classical correspondence is evident even in a deep
quantum regime. We also illustrate the effect of instability of
classical periodic orbits on the quantum dynamics. In Sec. VI,
we use our criteria to identify new quantum signatures of
classical bifurcations in the kicked top dynamics, in a deep
quantum regime as well as in the semiclassical regime. In
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Sec. VII, we discuss how our criteria can be used to explain
the divergence of quantum and classical dynamics in chaotic
systems. Finally, we present a summary of our results in
Sec. VIII.

II. BACKGROUND

A. The quantum kicked top

The quantum kicked top is a time-dependent periodic
system governed by the Hamiltonian [11],

H = h̄
κ

2jτ
J 2

z + h̄pJy

∞∑
n=−∞

δ(t − nτ ), (1)

where Jx,Jy , and Jz are angular momentum operators. Since
the square of the angular momentum operator commutes with
the Hamiltonian ([H,J 2] = 0), its eigenvalue j (j + 1)h̄2, and
thus j , is a constant of motion. The Floquet time evolution
operator for one time period, τ , is

U = exp

(
−i

κ

2jτ
J 2

z

)
exp (−ipJy). (2)

Each time period consists of a linear rotation by angle p about
they axis and a nonlinear rotation about the z axis. The classical
dynamics can be obtained by writing the Heisenberg equations
of motion for the angular momentum operators and then
taking the limit j → ∞ [11]. Setting X = Jx/j , Y = Jy/j , and
Z = Jz/j , the classical equations of motion for p = π/2 are

X((n + 1)τ ) = Z(nτ ) cos [κX(nτ )] + Y (nτ ) sin [κX(nτ )],

Y ((n + 1)τ ) = −Z(nτ ) sin [κX(nτ )] + Y (nτ ) cos [κX(nτ )],

Z((n + 1)τ ) = −X(nτ ). (3)

As the chaoticity parameter, κ , is varied from 0 to 7, the
classical dynamics ranges from fully regular motion (for
κ � 2.1) to a mixture of regular and chaotic behavior for
different initial conditions (for 2.1 � κ � 4.4) to fully chaotic
motion (for κ � 4.4). The classical stroboscopic map (in polar
co-ordinates) for a range of initial conditions with κ = 3 is
shown in Fig. 1.

Quantum mechanically, we can view the quantum kicked
top as a multiqubit system of N = 2j qubits. The symmetric
subspace of the 2j qubits has constant angular momentum j ,
and the kicked top evolves in this subspace spanned by the
eigenstates of J 2 and Jz, |j,m〉,m = {−j, − j − 1,....j}.

B. Spin coherent states (SCS)

Coherent states are minimum uncertainty states and are
thus the closest quantum analog of classical states. For
spin systems, these are the so-called spin coherent states
(SCS) [14]. Given any point (θ,φ) in the classical phase
space, we can construct SCS states |θ,φ〉 by applying the
rotation operator R(θ,φ) = exp [iθ (Jx sin φ − Jy cos φ)] on
the state |j,j 〉, |θ,φ〉 = R(θ,φ)|j,j 〉. This yields a minimum
uncertainty state centered on the point (θ,φ), that is, the
expectation value of the angular momentum of this state
is (j sin θ cos φ,j sin θ sin φ,j cos θ ). The uncertainty of this
state is (〈J2〉 − 〈J〉2)/j 2 = 1/j . Thus, for larger j values, the

FIG. 1. Classical stroboscopic phase space of the kicked top for
parameter values κ = 3.0, τ = 1.0,p = π

2 . θ and φ are plotted after
each kick for 1360 initial conditions, each evolved for 150 kicks.

SCS becomes highly localized at the point (θ,φ) in phase space
and better approximates the classical states.

C. Husimi phase space distribution

We study the quantum evolution of the kicked top in phase
space using the Husimi phase space distribution function [15].
Given any angular momentum quantum state ρ, the Husimi
distribution is given by

Q(θ,φ) = 2J + 1

4π
〈θ,φ|ρ|θ,φ〉, (4)

which is equal to 2J+1
4π

|〈θ,φ|ψ〉|2 for pure states.

III. CLASSICAL ANALYSIS OF THE KICKED TOP:
PERIODIC ORBITS AND BIFURCATIONS

We begin by analyzing the existence and stability of classi-
cal fixed points and some 2-periodic and 4-periodic orbits as
the parameter κ is varied with p = π/2. To study the stability
of a period-n orbit, we calculate eigenvalues of the Jacobian
of Fn at the period-n point, where {X[(n + 1)τ ],Y [(n + 1)τ ],
Z[(n + 1)τ ]} = F [X(nτ ),Y (nτ ),Z(nτ )]. If |λ| � 1 ∀λ, then
the period-n orbit is stable, otherwise it is unstable. Table I
lists a few interesting fixed points and periodic orbits of the
kicked top. The variable x0 in FP1, FP2, and P 2A in Table I
is obtained from the normalization condition,

2x2
0 + [x0 sin (κx0)]2

[1 − cos (κx0)]2
= 1. (5)

FP1 and FP2 are fixed points for all values of κ . The eigen-
values of the Jacobian at (0,1,0) are (1, κ+√

κ2−4
2 , κ−√

κ2−4
2 ).

Clearly, for κ > 2, the eigenvalue, κ+√
κ2−4
2 > 1. Thus, this

fixed point loses stability at κ = 2, which implies that κ = 2
is a bifurcation point.

At κ = 2, FP1 gives rise to two fixed points: FP3 and
FP4. FP2 becomes a period-2 orbit, P 2A. FP3, FP4, and
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TABLE I. Fixed points and periodic orbits of kicked top [in the
form (X,Y,Z)].

FP1 = (0,1,0)

FP2 = (0,−1,0)

FP3 =
(

x0,
x0 sin (κx0)

(1 − cos (κx0))
,−x0

)

FP4 =
(

−x0,
x0 sin (κx0)

(1 − cos (κx0))
,x0

)

P 2A =
(

x0,− x0 sin (κx0)

(1−cos (κx0))
,x0

)
↔

(
−x0,− x0 sin (κx0)

(1−cos (κx0))
,−x0

)
P 4 = (1,0,0) → (0,0,−1) → (−1,0,0) → (0,0,1) → (1,0,0)

P 2B =
(

π

κ
,

√
1 − 2

(π

κ

)2
,
π

κ

)
↔

(
−π

κ
,−

√
1 − 2

(π

κ

)2
,−π

κ

)

P 2C =
(

−π

κ
,

√
1 − 2

(π

κ

)2
,
π

κ

)
↔

(
−π

κ
,−

√
1 − 2

(π

κ

)2
,
π

κ

)

P 2D =
(

π

κ
,

√
1 − 2

(π

κ

)2
,−π

κ

)
↔

(
π

κ
,−

√
1 − 2

(π

κ

)2
,−π

κ

)

P 2E =
(

π

κ
,−

√
1 − 2

(π

κ

)2
,
π

κ

)
↔

(
−π

κ
,

√
1 − 2

(π

κ

)2
,−π

κ

)

P 2A lose stability at κ = √
2π (Fig. 2) and give rise to four

stable period-2 orbits: P 2B,P 2C,P 2D, and P 2E . These four
period-2 orbits lose stability at κ ≈ 4.8725 (Fig. 2). There
exists a period-4 orbit, P 4, at all values of κ . It loses its
stability at κ = π (Fig. 2). Figure 3 shows the bifurcation
diagram for the mentioned periodic orbits, explicitly showing
the bifurcation points κ = 2,π,

√
2π,4.8725.
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FIG. 2. (a) Largest eigenvalue of the Jacobian matrix of F at FP1

as a function of κ showing loss of stability of FP1 at κ = 2. (b) Largest
eigenvalue of the Jacobian matrix of F at FP3 as a function of κ

showing loss of stability of FP3 at κ = √
2π . (c) Largest eigenvalue

of the Jacobian matrix of F 2 at P 2B as a function of κ showing loss of
stability of P 2B at κ ≈ 4.8725. (d) Largest eigenvalue of the Jacobian
matrix of F 4 at P 4 as a function of κ showing loss of stability of P 4 at
κ = π . Vertical dashed lines in the four plots represent the parameter
value at which loss of stability occurs.
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FIG. 3. Classical bifurcation diagram (a) θ vs. κ , (b) φ vs. κ . All
solid lines represent stable fixed points and periodic orbits. Dashed
lines represent unstable fixed points and periodic orbits. Dashed dotted
vertical lines represent bifurcation parameter values.

IV. QUANTIFYING BOHR’S
CORRESPONDENCE PRINCIPLE

Bohr’s correspondence principle broadly states that quan-
tum dynamics will approach classical dynamics in the limit of
large quantum numbers. Our goal is to quantify how large the
quantum numbers need to be to observe similarity in classical
and quantum dynamics. Here, we provide a quantification
method based on periodic orbits for Floquet systems, which
are periodically driven systems. We propose that the quantum
dynamics in the vicinity of any classical period-n orbit for such
systems will be similar to the classical dynamics when:

(1) the coherent states centered on all the n points in the
period-n orbit are orthogonal to each other.

(2) the coherent states centered on multiple periodic orbits
that are related by the symmetries of the system are orthogonal
to each other.

We note that the existence of symmetries in the system may
lead to quantum mechanical phenomena between the periodic
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orbits related by these symmetries, such as, for example, dy-
namical tunneling [16,17]. If so, then the conditions described
above will not be sufficient to ensure correspondence in a
deeply quantum regime.

The two conjectured criteria above can be understood in
the following way. In the limit where the classical states are
distinguishable points in phase space, the classical dynamics
evolves in a localized manner among these classical states
in the phase space. At the quantum level, distinguishability
is associated with orthogonality of quantum states. Consider
the quantum dynamics of the same system with the initial
state being a coherent state localized at one of the points in a
stable period-n orbit. We would expect the quantum dynamics
to be similar to the classical dynamics if the quantum state
evolves in a localized manner similar to the classical evolution.
This localized evolution could occur if at any time in the
evolution the quantum state has high overlap with a coherent
state centered at one of the classical points of the period-n orbit
and negligible overlap with coherent states centered on the rest
of the points. This can be assured if the set of coherent states
centered at the points of a period-n orbit form an orthogonal set.
However, if this set is a nonorthogonal set, then high survival
probability at any classical point may still allow a significant
amount of survival probability at other classical points in the
period-n orbit as well and thus may generally cause a departure
from classical dynamics.

The richness of the classical phase space determines the
quantum number (or the effective Planck’s constant value) at
which there will be a correspondence between classical and
quantum dynamics. For lower quantum numbers, the size of
the Hilbert space restricts the dimension of any set that consists
of states orthogonal to each other. Therefore, in systems whose
classical phase space has only fixed points and period-n orbits
with small n, correspondence in the deep quantum regime is
more likely to occur. We will illustrate our conjecture in the
kicked top in the next section.

The overlap between any two spin coherent states, |θ,φ〉
and |θ0,φ0〉, is given by [18]

|〈θ,φ|θ0,φ0〉| =
{

cos

[
χ (θφ,θ0φ0)

2

]}2J

, (6)

where χ (θφ,θ0φ0) is the angle between the direction vectors,
(θ,φ) and (θ0,φ0), on the unit sphere, S2. Thus, Eq. (6) is a
handy tool to calculate the orthogonality of the spin coherent
states for our quantification criteria.

V. QUANTUM VERSUS CLASSICAL DYNAMICS
OF THE KICKED TOP

In Sec. III, we showed that in the QKT, the number of fixed
points and periodic orbits increases as the chaoticity parameter,
κ , is increased (keeping the parameter p = π/2 fixed), owing
to the many bifurcations. In this section, we illustrate our
quantification criteria in the kicked top.

A. κ < 2

For κ < 2, the only periodic orbits in the classical phase
space are FP1, FP2, and P 4. FP1 and FP2 are isolated fixed

points with no other periodic orbit in their vicinity in the phase
space. The spin coherent states centered on FP1 and FP2 are
orthogonal to each other for all j values. Thus, we observe
correspondence between the classical and quantum dynamics
at these fixed points,FP1 andFP2, even for a very low quantum
number, j = 1, as illustrated in Fig. 4. However, in this deep
quantum regime, there is the possibility of dynamical tunneling
since FP1 and FP2 are related by a symmetry of the square
of the kicked top map for p = π

2 , that is rotation by angle π

around the x axis [11,19]. This dynamical tunneling between
the two fixed points can be observed for some small values of j

(for example j = 2 in Fig. 4) but as the value of j is increased
further, the correspondence is recovered.

In contrast, the spin coherent states centered on the four
points in the P 4 orbit are not orthogonal to each other for very
small j values. From Eq. (6), the overlap between the spin
coherent states at any two consecutive points in this period-4
orbit is given by ( 1√

2
)
2j

, which is of the order 10−7 for j = 20,
and ≈ 0.156 for j = 6. Thus, for j values � 20, we do not
see quantum-classical correspondence if we start at any one
of the period-4 points, but we do see correspondence for large
enough j values � 20, as illustrated in Fig. 5.

B. 2 < κ < π

In the range, 2 � κ < π , we have two more fixed points,
FP3 and FP4, and a period-2 orbit, P 2A, in addition to the ones
present for κ < 2, as explained in Sec. II A. FP1 and FP2 are
unstable in this range while all others are stable. FP3, FP4,
and P 2A are functions of κ (Table I). For κ = 2.5, the overlap
between the spin coherent states centered on the two points in
P 2A is on the order of 10−4 for j = 10, and on the order of
10−14 for j = 40. Correspondingly, we see in Fig. 6 that for
j = 40, the quantum dynamics follows the classical dynamics
more closely, compared to j = 10.

C. Effect of classical instability

Classical instability of any periodic orbit leads to exponen-
tial divergence of classical trajectories even for infinitesimally
small differences in initial conditions. We show in Fig. 7
that when the quantification criteria is satisfied, the quantum
initial states localized at an unstable fixed point explores the
same regions of the Husimi phase space as classical initial
states slightly perturbed from an unstable fixed point would
explore. This shows that classical instability affects classical
as well as quantum dynamics in similar ways. We have checked
this correspondence for the period-4 orbit, P 4 in Table I, as
well. The period-4 orbit is unstable for κ > π . The phase
space is predominantly chaotic for κ > 3.5 except for the
regular islands of FP3,FP4, and P 2A. Thus, any classical
initial state perturbed from the period-4 orbit explores most of
the phase space avoiding the aforementioned regular islands.
We have observed the same behavior for quantum initial
states centered close to any point on the period-4 orbit for
κ > 3.5, that is, such a quantum state spreads out in the
Husimi phase space avoiding the regions of classical regular
islands.
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j
n

47 kicks 48 kicks 49 kicks 50 kicks

1

2

3

FIG. 4. Evolution of the Husimi phase space distribution of an SCS centered on FP1 [(X,Y,Z) = (0,1,0)] for three different j values with
κ = 1.5. Like the classical dynamics, the quantum dynamics remains localized at FP1, even in a deeply quantum regime, except for j = 2
when dynamical tunneling to FP2 occurs.

VI. QUANTUM SIGNATURES OF
CLASSICAL BIFURCATIONS

Given our new criteria for quantum-classical correspon-
dence, we would ideally like to use it to identify classical
bifurcation behavior (as shown in Fig. 3) in the quantum
dynamics. To do so, we first define a measure of quan-
tum dynamics that we can use to explore bifurcations. The
survival probability of a quantum state, |ψ(0)〉, at time t ,
evolving according to a unitary operator, U (t) is given by
|〈ψ(0)|ψ(t)〉|2, where |ψ(t)〉 = U (t)|ψ(0)〉. We analyze here

the time-averaged survival probability of quantum states of the
kicked top centered on any point of a classical period-n orbit,
where n � 1.

(1) Given a classical fixed point, we compute the quantity,

S(L) = 1

L

L∑
l=1

|〈ψ(0)|ψ(l)〉|2, (7)

j
n

47 kicks 48 kicks 49 kicks 50 kicks

6

20

FIG. 5. Evolution of the Husimi phase space distribution of an SCS centered on a point in P 4 ((X,Y,Z) = (1,0,0)) for 2 different j

values with κ = 1.5. For j = 6 (first row), the quantum dynamics does not correspond to the classical dynamics, but for j = 20, there is clear
correspondence.
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j
n

101 kicks 102 kicks 103 kicks 104 kicks

10

40

FIG. 6. Evolution of the Husimi phase space distribution of an SCS centered on a point in P 2A for two different j values with κ = 2.5. For
j = 10 (top row), the quantum-classical correspondence is weak compared to j = 40.

for some L, where |ψ(l)〉 = Ul|ψ(0)〉, and |ψ(0)〉 is the SCS
centered on the classical fixed point. Here, U is the unitary
operator for one time period of the Floquet system.

(2) Given any classical period-n orbit, if F denotes the
classical map, then each of the n points of the period-n orbit
will be a fixed point of the map, Fn. Thus, we study the survival
probability of an SCS centered on any point of a classical
period-n orbit using the unitary operator, Un, instead of U .
For a classical period-n orbit, we compute the quantity

S(L) = 1

L

L∑
l=1

|〈ψ(0)|ψ(nl)〉|2, (8)

for some L, where |ψ(nl)〉 = Unl|ψ(0)〉, and |ψ(0)〉 is the SCS
centered at any point of the classical period-n orbit.

We have plotted the survival probabilities corresponding to
FP1, P 2A, and P 4 of Table I in Figs. 8, 9, and 10, respectively.

κ ↓ Classical dynamics Quantum dynamics

2.5

0

1

2

3

0

1

2

3

0

0.1

0.2

0.3

0.4

0.5

4

0

1

2

3

-2 0 2 -2 0 2

-2 0 2 -2 0 2
0

1

2

3

0

0.1

0.2

0.3

0.4

0.5

FIG. 7. Effect of classical instability on quantum dynamics. Left
column: Classical trajectories for an initial state slightly perturbed
from the unstable fixed point, FP1, in Table I, for two different κ .
Right column: Husimi phase space distribution (averaged over 100
kicks) corresponding to an initial j = 25 SCS centered on FP1, for
two different κ .

Each figure consists of two plots, one illustrating signatures of
bifurcation in the deep quantum regime and the other in the
semiclassical regime.

(a) Analysis of FP1 (Fig. 8): We see clear signatures of
classical bifurcation of FP1 at κ = 2 in the survival probability
plots in Fig. 8 in a deep quantum regime as well as the
semiclassical regime. The quantum state remains localized
at the fixed point prior to bifurcation (because the fixed
point is stable prior to bifurcation) and gets delocalized after
bifurcation.

(b) Analysis of P 2A (Fig. 9): In Fig. 9(a) the classical
bifurcation point (solid horizontal line) is easy to identify
in the survival probability plot. Above this line, the survival
probability is small, indicating that bifurcation has occurred.
Below the horizontal line, however, there is some structure in
the behavior of the survival probability. This can be understood
in the following way. The two points associated with the
period-2 orbit, P 2A (Table I), are κ-dependent. Thus, the j

value at which the two SCS centered at these two points
are orthogonal to each other is also κ-dependent. The dashed
curve in Fig. 9(a) represents the j value at which the overlap
between the two aforementioned SCS is less than 10−10 for
the corresponding κ values. Below this curve, we see small
survival probability. This is because of mixing of the quantum
dynamics between the two SCS states because they are not
orthogonal to each other. Hence, for j values below the dashed
curve the quantum dynamics does not mimic the corresponding
classical dynamics in the period-2 orbit. Above the dashed
curve, the quantum and classical dynamics should track, so
there should be high survival probability (darker regions in
the plot) below the classical bifurcation (solid line), and low
survival probability above the bifurcation line. However, there
are also some lighter regions of low probability below the
bifurcation line. One of the reasons for this is the quantum
phenomenon of dynamical tunneling. Both the points of P 2A

are fixed points for the square of the classical map of the kicked
top, thus allowing for dynamical tunneling between the two in
addition to the period-2 motion between the two points.

In Fig. 9(b), for j = 1000 (semiclassical regime), the
bifurcation at κ = √

2π is clearly visible. The initial dip
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FIG. 8. (a) Survival probability of an SCS initially centered
on FP1 (in Table I), averaged over 50 kicks as a function of j

and κ . The horizontal line depicts the classical bifurcation. Darker
color represents higher survival probability in this plot. (b) Survival
probability of an SCS initially centered on FP1, averaged over 200
kicks for j = 2000 as a function of κ . The vertical dashed line
represents the point of classical bifurcation.

in the curve close to κ = 2 is because of nonzero overlap
between the two aforementioned SCS states for κ very close
to 2. We also see a surprising dip in the survival probability
around κ = 3.7, though the P 2A orbit is still stable. Further
investigation of the classical phase space of the kicked top
near this value of κ reveals that a period-6 orbit arises near
this period-2 orbit around κ = 3.62. This period-6 orbit breaks
off to the chaotic sea near κ = 3.68, which results in the
period-2 island in the phase space becoming smaller around
κ = 3.68. Thus, the wave packet centered at the period-2 orbit
delocalizes to some extent in the phase space around κ =
3.68. The size of the period-2 island increases again beyond
κ = 3.72, which results in a higher survival probability beyond
κ = 3.72 until bifurcation occurs. Dynamical tunneling also
occurs around κ = 3.7 to some extent, though the sum of the
survival probability at the two points of the periodic orbit

(a)
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0.8

1

(b)

FIG. 9. (a) Survival probability of SCS initially centered on P 2A

(in Table I), averaged over 50 kicks as a function of j and κ . The
horizontal line depicts the classical bifurcation, and the dashed curve
represents the j value for a given κ at which the overlap between the 2
SCS states corresponding to P 2A is � 10−10. Darker color represents
higher survival probability in this plot. (b) Survival probability of SCS
initially centered on P 2A averaged over 100 kicks for j = 1000 as a
function of κ . The vertical dashed line represents the point of classical
bifurcation.

is not very close to 1 because of delocalization. These two
points explain the dip at κ = 3.7 in Fig. 9(b). As κ increases,
we clearly observe very small survival probability after the
classical bifurcation point in the deep quantum regime as well
as the semiclassical regime.

(c) Analysis of P 4 (Fig. 10): The overlap between each
pair of the four points associated with the period-4 orbit, P 4
(Table I), is less than 10−8 for j � 27. As explained for P 2A,
mixing of dynamics can happen in P 4 for small j values. For
larger j compared to the critical value of j , we observe a clear
signature of bifurcation in the survival probability plots.

We also note some general observations about the sig-
natures of classical bifurcations in the quantum dynamics.
The quantum dynamics changes smoothly with the classical
bifurcations, unlike the classical dynamics which shows a
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FIG. 10. (a) Survival probability [Eq. (8)] of SCS initially cen-
tered on P 4 (in Table I), averaged over 50 kicks as a function of j and
κ . The horizontal line depicts the classical bifurcation, and the vertical
dashed line represents the j value at which the overlap between any
two of the four SCS states corresponding to P 4 is � 10−8. Darker
color represents higher survival probability in this plot. (b) Survival
probability [Eq. (8)] of SCS initially centered on P 4 averaged over
50 kicks for j = 1000 as a function of κ . The vertical dashed line
represents the point of classical bifurcation.

sudden change. When any local bifurcation occurs that gives
rise to new fixed points or periodic orbits, these new orbits are
usually close to each other in the classical phase space, due
to which the corresponding coherent states are not orthogonal
to each other. As the bifurcation parameter (external control
parameter) is varied, these new orbits get further apart which
decreases the overlap between the corresponding coherent
states. Eventually, they may become orthogonal at which point
the correspondence between classical and quantum dynamics
near these orbits is restored (as long as other bifurcations do
not occur prior to it). Alternatively, one could have increased
the quantum number keeping the value of the external control
parameter fixed. This explains why the quantum dynamics is
affected smoothly by a classical bifurcation which gives rise

to new fixed points or periodic orbits. Far from the classical
bifurcation points, the stability of the classical fixed points and
periodic orbits affects classical and quantum dynamics in the
same way as long as the quantification criteria given in Sec. IV
are satisfied.

VII. QUANTUM-CLASSICAL CORRESPONDENCE IN
CHAOTIC SYSTEMS

The Ehrenfest break time after which quantum and classical
dynamics diverge is very small for chaotic systems, even in
the semiclassical limit. Using our quantification criteria in
Sec. V, we explain the reason for short break times in clas-
sically chaotic systems whose quantum counterpart is finite-
dimensional. There are various routes to classical chaos, such
as the period-doubling route and the intermittency route [20].
In the period-doubling route to chaos, there exists at least one
2n periodic orbit for every n at the onset of chaos. According to
our quantification criteria, if there exists a periodic orbit with,
say, r periodicity in a classical system, then the quantum system
needs to be at least r-dimensional to exhibit a correspondence
with the classical dynamics in the vicinity of that periodic orbit.
This is because the coherent states corresponding to all the
points in any period-n orbit need to be orthogonal to each other
for correspondence between classical and quantum dynamics.
Since in a period-doubling route to chaos there exists periodic
orbits with at least one 2n periodic orbit for every n at the
onset of chaos, any finite-dimensional quantum system cannot
exhibit correspondence with the classical dynamics even in
the semiclassical limit because the dimension of the set of
orthogonal quantum states in such a system is restricted by
the dimension of the basis of the corresponding Hilbert space.
Since there will always exist periodic orbits with periodicity
higher than the dimension of the Hilbert space at the onset of
chaos, there cannot exist a good correspondence between the
classical and quantum dynamics at the onset of chaos given
that the route to chaos generates periodic orbits of unbounded
periodicity. This explains why we have a short break time for
chaotic systems.

VIII. CONCLUSION

Quantum-classical correspondence for chaotic systems and
for systems with a mixed phase space has remained a long-
standing open question. Periodic orbits, and their stability
and bifurcations play an important role in the transition
from regular to chaotic behavior. Thus, gaining insight into
quantum-classical correspondence in the vicinity of periodic
orbits and understanding the role of stability of periodic orbits
and bifurcations on the quantum-classical correspondence is of
vital importance. We have proposed the conditions under which
the coherent states, which are the most classical states in quan-
tum, evolve in close conjunction with classical dynamics for
Floquet systems. We have applied our criteria to the quantum
kicked top and showed how it can be used to quantify Bohr’s
correspondence principle. We note that in some situations
quantum and classical dynamics may correspond even if our
conditions are not met, but in general this will not be the
case. Our studies of the kicked top seemed to indicate that
such exceptions are not common. We have also illustrated
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the effect of classical instability on quantum evolution. Our
analysis shows that the survival probability of quantum states
centered on the periodic orbits exhibits signatures of classical
bifurcations, given the aforementioned criteria are satisfied.
Furthermore, we have used our criteria for quantum-classical
correspondence to explain the reason for short break times
between quantum and classical dynamics in chaotic systems.

Signatures of chaos have been widely studied in the quan-
tum kicked top using various quantum theoretic measures
in the deep quantum regime as well as the semiclassical

regime [18,21–27]. Our analysis and criteria for quantum-
classical correspondence can be applied to understand these
previous results and develop better quantum control tech-
niques. Furthermore, our criteria can be experimentally tested
using current technology.
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