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Dissipative solitons in the discrete Ginzburg-Landau equation with saturable nonlinearity
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The modulational instability of nonlinear plane waves and the existence of periodic and localized dissipative
solitons and waves of the discrete Ginzburg-Landau equation with saturable nonlinearity are investigated. Explicit
analytic expressions for periodic solutions with a zero and a finite background are derived and their stability
properties investigated by means of direct numerical simulations. We find that while discrete periodic waves and
solitons on a zero background are stable under time evolution, they may become modulationally unstable on
finite backgrounds. The effects of a linear ramp potential on stable localized dissipative solitons are also briefly
discussed.
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I. INTRODUCTION

A great deal of attention is presently devoted to the
investigation of localized states in the discrete Ginzburg-
Landau equation (DGLE) [1–7]. This equation is similar
to the well known discrete nonlinear Schrödinger equation
(DNLSE) but includes also nonconservative terms which
allow one to model dissipative and amplification effects. It
appears in connection with several physical systems, including
arrays of waveguides with amplification and damping, arrays
of semiconductor lasers [8], arrays of exciton-polariton
condensates [9], etc. While solitons solutions of the DNLSE
emerge from the balance between the discrete dispersion and
nonlinearity, dissipative discrete solitons of the DGLE require
also additional balance between dissipation and amplification.
Discrete dissipative solitons have been investigated for power-
law (nonsaturable) nonlinearities and in particular for complex
extensions of the Ablowitz-Ladik equation [3,10] and DNLS-
type equations with cubic-quintic nonlinearities [11–14].
In the continuous case, dissipative solitons and breathers
were investigated for the nonlinear Schrödinger equation with
different types of complex periodic potentials [15].

In the case of saturable nonlinearities, the study of solitons
has been restricted mainly to the conservative case. In particu-
lar, discrete solitons for the DNLSE with saturable nonlinearity
were investigated in [16,17] and discrete breathers for the
same type of equation in [18]. In spite of the relevance of this
type of nonlinearity for optics, the existence and stability of
dissipative solitons in the presence of a saturable nonlinearity
have not been thoroughly investigated. In the continuum
case saturable nonlinearities have been recently considered
in the one-dimensional complex Ginzburg-Landau equation
(GLE) for both scalar and vectorial cases [19]. Modulational
instability and stopping of Kerr self-focusing induced by
nonconservative effects have also been investigated in the
multidimensional continuous complex Ginzburg-Landau-type
equation with nonlinear saturation [20,21].

It is then interesting to consider possible extensions of
the above conservative results by including complex terms

in the DNLSE that correspond to amplification and damping.
This leads to the consideration of the DGLE with saturable
nonlinearity.

The aim of the present paper is to investigate both analyt-
ically and numerically modulational instability of nonlinear
plane waves, as well as the existence and stability of dissi-
pative solitons of the DGLE with saturable nonlinearity. We
start from the consideration of the dispersion relation and
properties of the nonlinear plane-wave solution. Analysis of
the instability of these waves under weak modulations (the
so-called modulational instability problem) allows us to define
the region of parameters where solitons and a train of solitons
can be formed. This will allow us to construct soliton solutions
and nonlinear periodic waves of the DGLE with saturable
nonlinearity. In particular, we provide explicit analytic expres-
sions for periodic dissipative solitons solutions in the form
of elliptic functions on both a zero and a finite background.
The stability properties of these solutions are investigated by
means of direct numerical simulations of their time evolution
under the DGLE. As a result, we show that while discrete
periodic waves and solitons on a zero background are stable
under time evolution, they become modulationally unstable
on a finite background. The effects of a linear ramp potential
on stable localized dissipative solitons will be also briefly
considered.

II. MODEL

Let us consider the discrete complex Ginzburg-Landau
equation with saturable nonlinearity

iAn,t + (1 − iα)(An+1 + An−1)

+ (ν − iγ )
|An|2

1 + μ|An|2 An − iδAn = 0, (1)

where parameters μ and ν control the saturation and the
strength of the nonlinearity, respectively, α is the discrete
filter parameter, and γ , δ denote the amplification and
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the linear damping parameters, respectively. This model
arises in connection with several interesting physical phe-
nomena such as the dynamics of nonlinear excitations in
dissipative photorefractive crystals, pulse propagation in
optical fibers with dopants, and arrays of cavities with
exciton-polariton condensates [22,23]. Notice that in Eq. (1)
a missing term −2An in the discrete Laplacian can always be
introduced by means of the transformation An → Ane

i2t and
δ → δ − 2α.

It is easy to check that Eq. (1) supports nonlinear plane-
wave solutions of the form An = A exp[i(kn − ωt)], with the
amplitude A, wave numbers k, and frequency ω satisfying the
nonlinear dispersion relations

A2 = − δ + 2α cos(k)

δμ + γ + 2μα cos(k)
,

k �= ± arccos

(
δμ + γ

2μα

)
± π,

ω = 2 cos(k)

(
να

γ
− 1

)
+ νδ

γ
.

(2)

For ω > 0 there are two possibilities for plane-wave existence;
e.g., (i) for ν/μ > 0, the frequency must vary in the interval
2 − ν/μ < ω < 2, and (ii) for ν/μ < 0, the frequency must
vary in the interval 2 < ω < 2 + |ν/μ|. In the case of ω < 0 we
find that the frequency must be varied in the interval 2 − ν/μ <

ω < 0, with ν/μ > 2. Taking into account that ω is defined by
Eq. (2), one can easily derive a restriction on parameters for the
existence of plane waves at special points of k space: at k = 0
(unstaggered solution) and at k = π (staggered solution). For
the staggered solution we find the restriction δ � 2α, while for
the unstaggered k = 0 solution we find that ν(2α + δ)/γ � 4
must be satisfied.

III. MODULATIONAL INSTABILITY ANALYSIS

As is well known, the modulational instability is a fun-
damental dynamical phenomenon responsible for soliton and
pattern generation in nonlinear systems [24]. In comparison to
the continuous (nonperiodic) case, the modulational instability
(MI) in the discrete case displays different properties since
the discrete diffraction makes it possible to have MI also for
defocusing (e.g., repulsive) nonlinearity. Since the parameter
region where plane waves become modulationally unstable
coincides with the existence region of solitons, one has that
nonlinear lattices can support solitons also for defocusing
interactions. This fact is true also in the continuous case, if
a periodic potential is present [25]. It is worth mentioning here
that different discretizations of the same continuous nonlinear-
ity can have different effects on the MI and correspondingly
can lead to different conditions for the existence of soliton
solutions [26–28]. We also remark that in the DNLSE for small
wave numbers of the nonlinear plane wave, all modulations
become unstable if the power exceeds a threshold value [18].
For the DNLSE with a saturable nonlinearity the gain and
critical frequency are decreased in comparison with the Kerr
nonlinearity model [12].

Experimentally discrete MI has been observed in the array
of nonlinear optical waveguides [29] and in photovoltaic
crystals [30]. To analyze MI in the model (1), we look for

solutions of the form

An = [A + ψn(t)] exp[i(kn − ωt)], ψ � A. (3)

By substituting into Eq. (1) and using the dispersion relation
(2), we get the equation for ψn, to the linear order, as

iψn,t + (1 − iα)[ψn+1e
ik + ψn−1e

−ik − 2 cos(k)ψn]

+ (ν − iγ )
A2

(1 + μA2)2
(ψn + ψ∗

n ) = 0. (4)

By looking for solutions of Eq. (4) of the form

ψn = Bei(Qn−	t) + C∗e−i(Qn−	∗t), (5)

with B, C, and 	 complex numbers, one can readily check that
the dispersion relation

	2 − 
1	 − 
2 = 0 (6)

is obtained where


1 = 2[2S + i(2α� + γD)],


2 = 4(1 + α2)(�2 − S2) + 4D�(ν + αγ )

+ 4i(αν − γ )DS, (7)

with

� = cos(k)[cos(Q) − 1],

D = A2

(1 + μA2)2
,

S = sin(k) sin(Q).

From these equations the MI gain g(Q,k) = |Im[	(Q,k)|] is
found as

g(Q,k) =
∣∣∣∣(2α� + γD) + 1√

2

√
−F +

√
G2 + F 2

∣∣∣∣, (8)

with the functions F and G given by

F = [4S2 − (2α� + γD)2] + 4(1 + α2)(�2 − S2)

+ 4D�(ν + αγ ),

G = 4Sα[(2� + νD)].

It is interesting to link the above MI results with the ones
of the continuous GLE with saturable nonlinearity

iAt + (1− iα)(Axx + 2A) + (ν − iγ )
|A|2A

1+ μ|A|2 − iδA= 0.

(9)

Continuous MI results can be obtained from our expressions
in the long-wave limit Q � 1 and k � 1. In this case, as it
follows from Eq. (8), the expression for the gain has the form

g = (γD − αQ2) +
√

2Dk2νQ2 − Q4 + γ 2D2. (10)

From this it follows that the continuous plane-wave solutions

A = A0e
−iωt , ω = −2 − νA2

0

1 + μA2
0

,

A2
0 = − 2α + δ

δμ + γ + 2αμ
(11)
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FIG. 1. The MI gain g(Q,k) in Eq. (8) versus wave numbers Q

and k for focusing and defocusing cases with (a) ν =3 and (b) ν =−3,
respectively. Other parameters are fixed as μ = 1, α = 0.01/3,
δ = −0.01, and γ = 0.012.

are unstable with respect to modulations with wave numbers

Q <

√
D(ν +

√
ν2 + γ 2), Q <

√
γD/α. (12)

Note that very recently the MI in the continuous GLE for the
scalar and vector form has been studied in [19] and our analysis
is consistent with the derivations therein.

The expressions of the MI gain for some specific value of
the wave number k can be also easily derived.

(i) Case k = 0 (unstaggered wave). The expression of the
MI gain in this case is

g(Q) =
∣∣∣∣ − 4α sin2

(
Q

2

)
+ γD

+ 1√
2

√
−F0 ±

√
F 2

0 + G2
0

∣∣∣∣, (13)

where F0 and G0 are values at k = 0. The wave is unstable
when the wave numbers satisfy the condition

sin

(
Q

2

)
<

1

2

√
D(ν +

√
ν2 + γ 2). (14)

(ii) Case k = π/2. In this case the MI gain is given by Eq. (8)
with

F = 4α2 sin2 Q − γ 2D, G = 4ανD. (15)

The region of instability is given by

Q < sin−1

(
γD

2α

)
. (16)

(iii) Staggered wave k = π . The expression of the MI gain
is the same as in the case of k = 0 but with � = 2 sin2(Q/2).
The MI imposes the condition that F < 0. Then we obtain that
for the staggered wave the modulations with the wave numbers

Q < sin−1[D(−ν +
√

ν2 + γ 2)] (17)

are unstable.
In Fig. 1 we show the typical dependence of the MI gain

on wave vectors Q and k for the focusing [Fig. 1(a)] and
defocusing nonlinearities [Fig. 1(b)]. Notice that the white
open regions visible in the figures correspond to the lines k =
± cos−1( γ+δμ

2αμ
) + π on which the wave vector k is not defined

[see Eq. (2)]. From this analysis we expect that nonlinear
localized and extended solutions can exist in the DGLE with
saturable nonlinearity. In the next two sections we will confirm
the existence of dissipative solitons and cnoidal wave solutions
by providing a few exact solutions and by investigating their
stability by direct numerical integrations of the DGLE.

IV. EXACT DISSIPATIVE SOLITON SOLUTIONS

In the following we report different types of exact soliton
solutions of the DGLE with saturable nonlinearity.
(i) The single dissipative soliton solution is sought in the form

An = sinh(β)

cosh(βn)
e−iωt . (18)

Using the relation

sech(z + β) + sech(z − β) = 2
cosh(z) cosh(β)

cosh2(z) + sinh2(β)
, (19)

we obtain that it is the exact solution of Eq. (1) if

β = cosh−1

(
γ

2α

)
, ω = −γ

α
, μ = 1,

ω = −ν, γ = −δ. (20)

(ii) The nonlinear periodic solution is sought in the form

An = sn(β,m)

cn(β,m)
eiωtdn(βn,m). (21)

Taking into account the relation for the cnoidal functions

dn(z + β) + dn(z − β) = 2
dn(z)dn(β)

1 − m2sn2(z)sn2(β)
, (22)

we find that the solution parameters should be taken as

ω = δ

α
= −ν,

dnβ

cn2(β)
= γ

2α
, γ = −δ. (23)

(iii) The second type of nonlinear periodic solution is

An = √
m

sn(β,m)

dn(β,m)
cn(βn)eiωt . (24)

Taking into account the relation

cn(z + β) + cn(z − β) = 2
cn(z)cn(β)

mcn2(z)sn2(β) + dn2(β)
, (25)

we find that in this case the parameters must satisfy

ω = δ

α
= −ν,

cnβ

dn2(β)
= γ

2α
, γ = −δ. (26)
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FIG. 2. Time evolution of the modulo square of the periodic
dissipative soliton trains in (a) Eq. (24) and (b) Eq. (21) as obtained
from direct numerical integration of Eq. (1). Parameter values are fixed
as in (a) Eq. (26) with α = 0.001, m = 0.5, and β = 2K(m)/Np and
(b) Eq. (23) with α = 0.01, m = 0.32, and β = 4K(m)/Np . In both
cases the number of lattice points per period is Np = 10 and the total
number of points along the line is 30. The cnoidal solution remains
stable and the dnoidal solution displays modulational instability.

We remark that for the periodic solutions the above parameter
relations must be complemented with the periodicity condition
βNp = Xp, where Np is the number of points per spatial period
Xp = 2K(m) for (22). Also Xp = 4K(m) for (24), with K(m)
the complete elliptic integral of first kind.

V. NUMERICAL RESULTS

To check the stability of the dissipative solitons derived
in the preceding section we have performed direct numerical
integrations of Eq. (1), taking as initial conditions the exact
solutions with a small noise component added in order to
accelerate the emergence of eventual instabilities. In Fig. 2
we show the time evolution of the periodic dissipative soliton
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FIG. 3. Time evolution of the modulo square of the dissipative
soliton in Eq. (18) as obtained from direct numerical integration
of Eq. (1), for parameter values γ = 0.01, ν = 3, and δ = −0.01.
Other parameters are derived from Eq. (20) as β = 0.962 424 and
α = 0.01/3.
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FIG. 4. Time evolution of a dissipative soliton of Eq. (1) in the
presence of a linear force εnAn of strength (a) ε = 0.0002 and
(b) ε = 0.0001. Other parameters are fixed as in Fig. 3.

trains in Eqs. (22) and (24). We see that while the cnoidal
solution remains stable over a long time, the dnoidal solution
display modulational instability at time t ≈ 200 out of which
two single-hump dissipative solitons are created.

Notice from Fig. 2(b) that the dnoidal solution can be seen
as a uniform k = 0 background with a superimposed plane
wave of wave number Q = 0.628, in correspondence to which
the analysis of the preceding section predicts a MI gain of
approximately 0.561. This also correlates with the fact that
out of the instability emerge three bright solitons, as expected
for an attractive (focusing) interaction and from the fact that the
wave number of the modulation satisfies the relationQL/2π =
3, where L is the length of the chain (in our case L = 30).

The single-hump dissipative soliton centered on a site in
Eq. (18), which is the limit of an infinite period (m → 1) of
the soliton trains in Eqs. (24) and (22), is found to be also stable
over a long time, as one can see from Fig. 3. We remark that
this soliton can exist only due to the perfect balance between
the linear damping (δ < 0) and the nonlinear amplification, a
condition which can be realized only in the stationary case. As
soon as one deviates from stationarity, as is the case, for exam-
ple, when external forces or potentials try to put the soliton in
motion, the soliton may become dynamically unstable under
time evolution. To investigate this dynamical instability we add
a linear potential of the type εnAn on the right-hand side of
Eq. (1) which can be implemented in an optical context by a
curved optical fiber. The resulting dynamics of the dissipative
soliton is depicted in Fig 4. We see that, apart from small
oscillations, the soliton can survive the acceleration process
for a long time without significative changes in its shape. By
reducing the strength of the linear potential, pinning phenom-
ena become possible [see Fig. 4(b)]. In this case an on-site
symmetric soliton becomes pinned to a lattice site in a state for
which the perfect balance between damping and amplification
is not realized, this leading to the instability of the state.

VI. CONCLUSION

In this paper we have investigated the modulational insta-
bility of nonlinear plane waves and the existence of dissipative
solitons and cnoidal waves of the complex discrete Ginzburg-
Landau equation with saturable nonlinearity. We showed that in
the region of the parameter space where the MI gain is positive,
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generation of solitons and nonlinear periodic wave structures
is possible. By taking specific parameters in these regions, we
derived exact soliton periodic-wave analytical solutions of the
GLE with saturable nonlinearity. We found that while discrete
periodic waves and solitons of cnoidal type are stable, solutions
of dnoidal type with a finite background are modulationally
unstable. We also considered the effect of a linear ramp on a
stable localized dissipative soliton and showed that the soliton
could survive such a disturbance for a relatively long time.
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