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Phase definition to assess synchronization quality of nonlinear oscillators
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This paper proposes a phase definition, named the vector field phase, which can be defined for systems with
arbitrary finite dimension and is a monotonically increasing function of time. The proposed definition can properly
quantify the dynamics in the flow direction, often associated with the null Lyapunov exponent. Numerical examples
that use benchmark periodic and chaotic oscillators are discussed to illustrate some of the main features of the
definition, which are that (i) phase information can be obtained either from the vector field or from a time series,
(ii) it permits not only detection of phase synchronization but also quantification of it, and (iii) it can be used in
the phase synchronization of very different oscillators.
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I. INTRODUCTION

Synchronization is a ubiquitous phenomenon which has
been addressed with different approaches. A common ap-
proach is to reduce complex oscillators, such as living beings,
to a phase model [1]. This kind of method was successfully
used to describe synchronization phenomena in biology [2],
chemical oscillators [3], and many others (e.g., [4]), especially
in large populations of oscillators.

Another approach is to describe the synchronization phe-
nomenon between coupled complex oscillators without sim-
plifications or reductions. This seems to be more interesting
for describing synchronization of chaotic oscillators [5,6] for
which dynamical regimes such as complete, phase, lag, inter-
mittent, and generalized synchronization can also be defined
[7].

Although each of these two branches of research received
considerable attention, a common challenge remains: to define
a proper phase variable that can be applied to a wide class
of oscillators and should have some desired characteristics.
Most papers seem to focus on two main features that a
phaselike variable should exhibit: (i) It is a monotonically
increasing function of time [7–18] and (ii) it is related to
the zero Lyapunov exponent [8–11,19–23] that is associated
with the flow direction (e.g., [7,23,24]). The importance of the
latter is strengthened by published studies pointing to the fact
that a null Lyapunov exponent becomes negative when two
coupled oscillators synchronize phases [19]. A phase variable
is expected to exist for a general attractor, due to the zero

*Present address: Programa de Pós-Graduação em Engenharia
Elétrica, Universidade Federal de Minas Gerais, Avenida Antônio
Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil;
leandro.freitas@ifmg.edu.br
†leotorres@ufmg.br
‡aguirre@ufmg.br

Lyapunov exponent [25], although it may be impossible to
explicitly calculate it [11].

The main aim of this paper is to propose a definition for the
phase, named the vector field phase (VFP), which is applicable
to a large class of oscillators, of any finite dimension. The
main features of the VFP are that it increases monotonically
with time and has a clear relationship with the flow direction,
which corresponds to the zero Lyapunov exponent. Despite
its intuitive definition, a phase variable with such a clear
connection with the null exponent is not available in the phase
synchronization literature.

In order to illustrate the main characteristics of the VFP,
examples of assessing phase synchronization of benchmark
oscillators are provided. As discussed, the VFP is helpful in
evaluating the quality of the synchronization, which is a feature
that is not shared by most available phase definitions.

Still, in the vein of validation and testing, a coupling scheme
that directly uses the VFP is conceived. The attained results,
strict or nonstrict phase locking, confirm that the VFP has the
expected features.

This paper is organized as follows. Section II briefly reviews
some existing definitions of phase. The proposed definition of
the VFP is presented, assuming that the vector field is known,
in Sec. III, and not known, in Sec. IV. Numerical examples
are provided and discussed in Sec. V and the main conclusions
and suggestions for future work are provided in Sec. VI. All
mathematical proofs are provided in the Appendix.

II. BACKGROUND

One common way to describe a phase variable, which
has led to the concept of isophases [15], is accomplished by
defining a Poincaré section �P such that the so-called phase
value is constant when x ∈ �P and evolves at a constant rate
when x /∈ �P , increasing by 2π at each revolution. It is then
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written as

ϕa(t) := 2π
t − tk

tk+1 − tk
+ 2πk, tk � t < tk+1, (1)

where tk is the time of the kth crossing �P . According to this
definition, the phase is piecewise linear and a monotonically
increasing function of time. A fundamental drawback is that
the phase dynamical behavior within one revolution in state
space is totally disregarded [26] since the dynamics in the flow
direction is not seen on the Poincaré section.

Consider a projection plane (x,y) on which there is a
well-defined center of rotation. In such cases the phase can
be defined as [8,19,26–30]

ϕb(t) := arctan2(y,x), (2)

where ϕb(t) ∈ [−π ; π ). The main drawback of this definition
arises when the rotation plane is not readily available or it is
very difficult to find a proper rotation center as for the Lorenz,
funnel Rössler, cord [31], and Li [32] attractors. Specific
transformations can be used to help find a rotation center
for some systems as for the Lorenz [8] and funnel Rössler
[29] attractors. Unfortunately, a general procedure is not yet
available.

A phase variable based on the general idea of curvature was
proposed in [9,33]:

ϕc(t) := arctan2(ẏ,ẋ). (3)

Although this proposition solves the problem of finding a
rotation center in some cases, the phase variable defined
can be nonmonotonic as the curvature signal changes on the
attractor, due to curvature inflections. Another aspect is that
ϕc will remain constant if the system evolves on a straight-line
trajectory.

Other ways to define phase variables are associated
with signal processing techniques like the Hilbert trans-
form [16,26,34,35], spectral analysis, and the wavelet trans-
form [12,35–37]. Such definitions assign phase values (e.g.,
ϕx,ϕy,ϕz) to each temporal time series (e.g., x,y,z) and are
applied in phase detection problems. However, it is not clear
how to decide which variable to use in defining a phase for
the system. In general, a well-behaved variable is chosen (a
variable that generally exhibits a sinelike temporal behavior),
without a clear justification.

Remark 1. There is a distinction between the phase of a
signal (one dimensional) and the phase of a trajectory (for an
n-dimensional system). This paper addresses only the latter
case.

III. DEFINING PHASE BASED ON THE VECTOR FIELD

Consider an oscillator described as ẋ = f (x), where x ∈
X ⊆ Rn is the state vector, f : X �→ Rn a nonlinear function,
and x0 := x(0) ∈ X \ {x ∈ Rn : f (x) = 0} is an initial state
that is not an equilibrium point, such that the solution γ (t ; x0)
exists and is unique. It is assumed that the trajectories converge
to an attractor �0 ⊆ X as t → ∞. The following definition is
proposed.

Definition 1 (vector field phase). For a trajectory γ (t ; x0), a
VFP φ is given by

φ(t) = φ0 +
∫

γ (t ;x0)
c(x) f �(x)dx, (4)

where φ0 ∈ R is an arbitrary constant and c(x) is a positive
function c : X �→ R∗+. �

A similar phase definition has been suggested by Baptista
et al. [38], but in a context closely related to that of using the
returning time to a Poincaré section (1). The main difference
is that the phase defined in [38] considers a subspace, with
some coherence properties, that is a specific projection of the
state space. In this work φ0 = 0 is used and c(x) is chosen as
discussed in Sec. III A. It is worth noticing that Definition 1 is
intimately connected to the zero Lyapunov exponent, since its
computation is effected in the flow direction.

Proposition 1. A VFP (Definition 1) is a monotonic growing
function with respect to time. �

One of the main assumptions of the well-known phase
reduction theory [1] is the linear growth rate of the phase
variable, i.e., φ(t) = ωt , with constant ω, for the unperturbed
motion. Under certain conditions, φ(t) is a VFP, as shown
below.

Proposition 2. If φ0 = 0 and c(x) := ω/‖ f (x)‖2, the VFP
in Definition 1 is φ(t) = ωt . �

Therefore, it seems fair to conjecture that if by using
the phase reduction approach one can detect synchronization
[39,40], the same phenomenon should be possible using a
VFP variable. The main drawback of the VFP is that it is
not generally possible to describe it as a function of the
states, as φ(t) ≡ φ(x(t)), for an oscillator.1 This is an essential
distinction from most phase definitions.

A. Periodic oscillators

In order to compute the phase using Definition 1 it is
necessary to determine c(x) and φ0. One possibility for the
periodic case is shown in the following, and the chaotic case
will be discussed in Sec. III B.

Definition 2. For a given oscillator with limit cycle �0 with
period T , c(x) can be chosen as

c(x) := 2π

�‖ f (x)‖ , (5)

where � = ∫ T

0 ‖ f (x)‖dt is the length of �0. �
Proposition 3. The phaseφ(t) in Definition 1 with c(x) given

in (5) increases 2π at each rotation on �0. �
Using Definition 2 and φ0 := 0, it is possible to write (4)

as φ(t) = [2π/�]
∫ t

0 ‖ f (x(τ ))‖dτ . It becomes clear that this
VFP can be interpreted as the integration of the length along
the trajectory, since ‖ f (x(τ ))‖ is the instantaneous velocity of
the flow. In addition, 2π/� is a normalization factor such that
φ increases 2π at every revolution.

1If φ(t) := φ(x(t)), then, by (4), the gradient of the φ would be
∇φ ≡ c(x) f (x). In this case ẋ = f (x) is a gradient system and there
will be no closed orbits [41]. Then the systems cannot be an oscillator,
because there are no limit cycles or unstable periodic orbits.
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It is worth noting that � plays an important role concerning
the spatial property of recurrence of the phase. It tells us that,
after � length units, the system will recur in the state space.

The length along the trajectory was used by Kralemann
et al. [24] in a phase definition based on a Poincaré section
(1) where, instead of the returning time, the length between
crossings is computed. Although the technique is useful, a
complete reconstruction of the phase dynamics is not possible
since it does not convey information about the fast (intracycle)
dynamics [24].

It is worth pointing out that Definition 2 does not assume
any rotation center or well-behaved curvature on the attractor,
but only its periodicity. Hence, the definition holds for any
periodic oscillator, in any dimension.

B. Chaotic oscillators

The proposed VFP (Definition 2) presumes a stable limit
cycle with a constant length �. For chaotic systems, this length
is not constant, since it depends on the trajectory, and an
estimate �̂ should be used instead.

A complete extension to the chaotic case is currently under
investigation. However, to illustrate the application of the
VFP to chaotic oscillators, the length per revolution will be
estimated using a Poincaré section �P , where �̂k is computed
as the trajectory length from the (k − 1)th and the kth crossing
through �P . In this way, the proposed VFP can be defined for
chaotic oscillators.

Remark 2. In the chaotic case, �̂k is the length between two
consecutive crossings through �P and not the time between
crossings, as in the case of ϕa .

The VFP can be defined for other classes of nonperiodic
oscillators such as hyperchaotic (Sec. V A 5), non-phase-
coherent, and high-dimensional systems. However, the chal-
lenge of estimating � remains.

C. Two illustrative examples

In this section the Poincaré and van der Pol oscillators
will be used to illustrate some of the main features of the
phase definition. More challenging problems are discussed in
Sec. V.

1. Poincaré oscillator

Consider the Poincaré system [42]

ẋ = −ωy − λ(x2 + y2 − p2)x,

ẏ = ωx − λ(x2 + y2 − p2)y, (6)

with (ω,λ,p) = (1,0.5,1). For (6) the phaselike variable ϕb =
arctan2(y,x) [Eq. (2)] is often used [42], for which

dϕb(x)

dx
= d[arctan2(y,x)]

dx
=

⎡
⎢⎣

−y

(x2 + y2)
x

(x2 + y2)

⎤
⎥⎦. (7)

Now for φ with Definition 2 the partial derivatives are

⎡
⎢⎢⎢⎣

∂φ

∂x

∂φ

∂y

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

2π [−ωy − λx(x2 + y2 − p2)]

�

√
[ωy + λx(x2 + y2 − p2)]2 + [ωx − λy(x2 + y2 − p2)]2

2π [ωx − λy(x2 + y2 − p2)]

�

√
[ωy + λx(x2 + y2 − p2)]2 + [ωx − λy(x2 + y2 − p2)]2

⎤
⎥⎥⎥⎥⎥⎥⎦

. (8)

Clearly, the partial derivatives of ϕb and φ are not equal.
However, for x ∈ �0, x2 + y2 = p2 and � = 2πp, leading to
∇φ ≡ ∂φ/∂x = ∂ϕb/∂x. In other words, for x ∈ �0, ϕb(x)
coincides with the phase φ in Definition 1.

A modified version of the Poincaré oscillator is introduced
by taking ω = α(1 − 0.9x), where the constant α is chosen to
achieve the same period as the original oscillator. Hence, the
modified Poincaré evolves on the same limit cycle �0, but with
a different time evolution (Fig. 1). The evolution of the state
on �0 is well represented by all phaselike variables discussed
in Sec. II, except ϕa for the modified system.

In this example most of the phaselike variables agree. The
main reason for that is the circular shape of �0, yielding a
sinusoidal time evolution with constant curvature and length-
angle rate. A different scenario is investigated next.

2. van der Pol oscillator

The van der Pol oscillator [43] can be described as

ẋ = y, ẏ = 2μy(1 − βx2) − ω2x. (9)

With (μ,β,ω) = (4,1,1) the system behaves as an integrate-
and-fire oscillator, with acceleration and deceleration regions
on the attractor. The time evolution of the phaselike variables
are shown in Fig. 2(b), in which the integrate-and-fire regions
are clear in all variables except ϕa(t) (Poincaré section).

Unlike the previous example, the time evolutions of the
phaselike variables (Fig. 2) have different shapes. As expected,
ϕa(t) disregards the dynamical behavior between crossings of
the Poincaré section. The variable ϕc(t) is a nonmonotonic
function of time, due to the inflections on the curvature of
the attractor. On the other hand, ϕb(t) and φ(t) show similar
behavior.

The modified oscillator is ẋ = α f (x)/‖ f (x)‖, where f (x)
is the vector field in (9) and α is chosen such that both
oscillators have the same period. For the modified oscillator,
two initial conditions on the limit cycle, (x1(0),x2(0)) ∈ �0

and ‖x1(0) − x2(0)‖ < ε with ε � 0, will maintain the initial
distance from each other over time, hence ‖x1(t) − x2(t)‖ =
const ∀t (see Fig. 2).

In Fig. 2(d) a clear distinction is observed between the
VFP and the other phaselike variables: When the evolution
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FIG. 1. (a) and (b) Original and (c) and (d) modified Poincaré
oscillators: (a) and (c) state space showing evolution on �0 (gray
line) and equally time-spaced dots and (b) and (d) phaselike variables
vertically displaced for the sake of clarity. Shown, from top to bottom,
are ϕa (Poincaré section), ϕb (angle), ϕc (curvature), and φ (VFP). The
parameters are (λ,p) = (0.5,1), with ω = 1 for the original system,
and ω = α(1 − 0.9x), with α = 22.646 for the modified one.

happens at roughly constant speed, the temporal behavior
of φ is a straight line, showing that in the flow direction,
corresponding to the zero Lyapunov exponent, the system
evolves at a constant rate. In such a direction there is no local
contraction or expansion of a set of initial conditions arbitrarily
close to the trajectory.

In Fig. 2(d) ϕb shows some oscillations that are a conse-
quence of the trajectory not being a circle, although the phase
should be a straight line. The correct behavior of ϕb in the
previous example was due to the perfectly circular trajectory.

Hence the VFP has a consistent interpretation which is
based on the dynamics. Some insights concerning phase sync
of coupled oscillators can be obtained from the VFP, as shown
next.

D. Coupling by phase

Phase synchronization is more efficiently achieved when
the coupling signal influences directly the phase dynamics
(frequency) [44] as it can be verified in the well-known phase-
locked loop [45] or in some applications in complex networks
[46,47]. In this section we use this principle to provide further
evidence of the suitability of the VFP as a phase measure. To
see this, consider an oscillator described as

ẋ = f (x) + g(x)p(x,t), (10)

where f ,g : Rn �→ Rn are vector functions and p : Rn ×
R �→ R is an external signal that drives the system to phase
synchronization with another oscillator. From the previous
discussion, if g(x) and f (x) are collinear for all x ∈ X, p(x,t)
will be most effective in changing the phase dynamics. On the
contrary, if g(x) ⊥ f (x), phase synchronization can be very
difficult or even impossible.

The collinearity between the vector functions can be triv-
ially achieved by choosing g(x) ≡ f (x). In this way, aside
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FIG. 2. (a) and (b) Original and (c) and (d) modified van der Pol
oscillators with (μ,β,ω) = (4,1,1) and α = 3.033: (a) and (c) state
space showing evolution on �0 (gray line) and equally time-spaced
dots and (b) and (d) phaselike variables vertically displaced for the
sake of clarity. Shown, from top to bottom, are ϕa (Poincaré section),
ϕb (angle), ϕc (curvature), and φ (VFP).

from the direct influence on the (VFP) phase dynamics,
furthermore, the signal p(x,t) will drive the rhythm of the
oscillator, i.e., it will make a reparametrization of time (see
[48], Sec. 1.4). For instance, a constant value p(x,t) ≡ p0

will change the period of an oscillation from T to (1 + p0)T ,
directly.

Unlike other phase definitions, the VFP provides insight
into how to effectively actuate the system, at each point in
state space in order to directly influence the oscillator period.
This is further investigated next.

1. A VFP-based coupling scheme

Consider two coupled periodic oscillators, each one de-
scribed as in (10), with gi(xi) ≡ f i(xi) and p(xi ,t) a drive
signal proportional to the phase error in order to attain phase
synchronization. With the VFP variablesφ1 andφ2 as described
in Definitions 1 and 2, and taking the phase difference ψ :=
φ1 − φ2, it is possible to write the equations of the coupled
oscillators as

ẋ1 = f 1(x1) − βε f 1(x1)ψ,

ẋ2 = f 2(x2) + ε f 2(x2)ψ,
(11)

ψ̇ = 2π

�1
‖ f 1(x1) − βε f 1(x1)ψ‖

− 2π

�2
‖ f 2(x2) + ε f 2(x2)ψ‖,
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with xi ∈ Rni and f i : Rni �→ Rni i ∈ {1,2}. In the case
of bidirectional coupling β = 1; otherwise β = 0. Let x :=
[x�

1 ,x�
2 ,ψ]� be the state vector of the overall system. The

following assumptions are made.
Assumption 1. Each uncoupled oscillator settles to a mini-

mal compact ω-limit set �i (attractor).
Assumption 2. The initial states x0,i := xi(0) are on the

corresponding attractor, x0,i ∈ �i .
Assumption 3. The initial phase difference ψ0 := ψ(0) =

φ1(0) − φ2(0) ∈ (−1/ε,1/ε).
Since the attractor is a bounded set, the condition

vi,min < ‖ f i(xi)‖ < vi,max (12)

will hold for all xi ∈ �i ∀i ∈ {1,2}.
The proposed framework (11) can be used to analyze

strict and nonstrict phase-locking conditions (see [49], p. 8),
respectively given by

limt→∞ ψ(t) = ψdev, (13)

ψmin � ψ(t) � ψmax ∀t > t0, (14)

where t0, ψdev, ψmin, and ψmax are constant values. Following
Vorotnikov [50] and Miroshnik [51], the partial stability
analysis is done with respect to the state ψ(t), and not to the
whole state space, and is therefore called ψ stability [50].

It will be convenient to define partial stability using concepts
of attracting sets (submanifolds), which allows the use of
geometric control techniques to derive sufficient conditions
to ensure local ψ stability [51].

Definition 3. For the system (11) if for all x0 ∈ Z and t � t0,
x(t ; x0) ∈ Z , Z is said to be positively invariant. �

We are particularly interested in invariant sets where ψ

remains bounded, nonstrict phase locking (14), or where it
converges asymptotically to a constant value, strict phase
locking (13). It is interesting to analyze the motion in the
neighborhood of Z which is an open set E(Z) such that
E(Z) ⊃ Z . We introduce the distance from an arbitrary point
x ∈ E(Z) to Z as

dist(x,Z) = inf
x∗∈Z

‖x − x∗‖. (15)

Definition 4 (from [51]). The set Z is called an attracting
submanifold of the system (11) when it is invariant and
uniformly attractive, i.e., there exists a neighborhood E(Z)
such that for all x0 ∈ E(Z),

lim
t→∞ dist(x(t ; x0),Z) = 0, (16)

uniformly in E(Z). �
These concepts can be used to analyze the boundedness

of ψ(t). The following section shows sufficient conditions to
achieve strict and nonstrict phase locking.

Remark 3. The coupled system (11) can be rewritten as

φ̇1 = v1(t)|1 − βεψ |,
φ̇2 = v2(t)|1 + εψ |, (17)

ψ = φ1 − φ2,

where vi(t) = (2π/�i)‖ f i[xi(t)]‖ � 0, for i ∈ {1,2}, are
bounded (12) exogenous signals. For |ψ | < 1/ε it is possible to

write ψ̇ = [v1(t) − v2(t)] − ε[βv1(t) − v2(t)]ψ , resembling
the well-known phase reduction [1] analysis. �

2. Sufficient conditions for phase locking

For two coupled oscillators described by (11) the following
theorem holds.

Theorem 1. For two bidirectionally (β = 1) coupled os-
cillators (11) with a constant coupling strength ε := ε0 and
considering Assumptions 1–3, the nonstrict phase-locking
condition (14) is ensured with

ψmin = 1

ε0

(
�2v1,min − �1v2,max

�2v1,min + �1v2,max

)
, (18)

ψmax = 1

ε0

(
�2v1,max − �1v2,min

�2v1,max + �1v2,min

)
(19)

for some finite positive t0. �
In the special case where the norm of the vector field is

constant for both oscillators, i.e., ‖ f i(xi)‖ = vi ∀xi ∈ �i for
i ∈ {1,2}, the strict phase-locking condition (13) is ensured
with

ψdev = 1

ε0

(
�2v1 − �1v2

�2v1 + �1v2

)
. (20)

Similar results for the unidirectionally coupled oscillators
(β = 0) can be derived, with the benefit of some relaxation
of the Assumption 3 (initial phase difference), which can be
replaced by the following.

Assumption 4. If β = 0, the initial phase difference ψ0 :=
ψ(0) = φ1(0) − φ2(0) ∈ (−1/ε,∞).

Results for the nonstrict and strict phase-locking conditions
are, respectively, presented next.

Theorem 2. For two unidirectionally (β = 0) coupled os-
cillators (11) with a constant coupling strength ε := ε0 and
considering Assumptions 1, 2, and 4, the nonstrict phase-
locking condition (14) is ensured with

ψmin = 1

ε0

(
�2v1,min

�1v2,max
− 1

)
, (21)

ψmax = 1

ε0

(
�2v1,max

�1v2,min
− 1

)
(22)

for some finite positive t0. �
In the special case where ‖ f i(xi)‖ = vi ∀xi ∈ �i for i ∈

{1,2}, the strict phase-locking condition (13) is ensured with

ψdev = 1

ε0

(
�2v1

�1v2
− 1

)
. (23)

Some applications of these results are presented in Sec. V.

IV. DEFINING PHASE BASED ON OBSERVABLES

The present section shows how to estimate the VFP without
knowledge of the vector field. Without loss of generality, and
with an eye on applications, it is assumed that the data are
regularly sampled at instants tk , k = 0,1, . . ..

Consider an observable sk = h[x(tk)] ∈ R from a nonlinear
oscillator where h : Rn �→ R is a measuring function that
acts on the original state space. From the sequence {sk} it
is possible to reconstruct an embedding space using, say,
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delay coordinates xk ≡ [sk,sk−τ , . . . ,sk−τ (d−1)]�, where τ is
the delay time and d is the embedding dimension. Takens’
theorem [52] ensures that if d is sufficiently large, the attractors
in the reconstructed and original spaces are diffeomorphic.
Hence, given xk , the reconstructed vector field can be locally
estimated as

f̂ (xk) = xk − xk−1

tk − tk−1
. (24)

Recalling that the VFP can be interpreted as the length along
the flow, its estimate becomes

φ̂k = φ0 + 2π

�

k∑
i=1

‖xi − xi−1‖. (25)

The cost of computing (25) is similar to the explicit phase
definitions presented so far. In Sec. V some numerical results
on assessing phase synchronization with (25) are presented.

Coupling without the vector field

The coupling scheme presented in Sec. III D can be applied
without the full knowledge of the vector field. Consider the
two nonlinear oscillators

ẋ1 = f 1(x1) − βε p1(t),

ẋ2 = f 2(x2) + ε p2(t), (26)

where the aim is the design of the vector functions p1 and p2 in
order to phase synchronize both systems. It is considered that
the vector fields f 1(x1) and f 2(x2) are unknown, but the state
variables are available. To address more practical cases, we
consider p1(t) and p2(t) as piecewise constant vector functions
whose values can change only at the sampling instants tk .

Following the procedure adopted in Sec. III D and consid-
ering the phase estimate (25), it is possible to implement the
coupling scheme with

ψk = ψk−1 +
[

2π

�1
‖ f̂ 1(x1k)‖ − 2π

�2
‖ f̂ 2(x2k)‖

]
�tk,

p1k = f̂ 1(x1k)ψk, p1(t) = p1k, t ∈ [tk,tk+1),

p2k = f̂ 2(x2k)ψk, p2(t) = p2k, t ∈ [tk,tk+1), (27)

where �tk = tk − tk−1 is the sampling time and f̂ i(xi k) are
estimated by (24) based on the state vector of the ith oscillator.
In comparison with (11), notice that each term inside the norms
in (27) does not include the external signals p1 and p2. The
reason is that, because the estimate (24) is based on the states,
the external influences are already considered, e.g., f̂ i(xi k) ≈
f i(xi(tk)) + pi(tk).

V. NUMERICAL RESULTS

In this section the VFP is used to assess phase synchro-
nization. It is shown that the VFP can provide additional
information beyond detecting phase synchronization even if
the vector field is not known.
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FIG. 3. Results for the cord oscillators (28): (a) steady-state
evolution of uncoupled (ε = 0) oscillators 1 (solid black line) and
2 (dashed green line) and (b) phase variables, from top to bottom,
ϕa1, ϕa2, φ1, and φ2.

A. Assessing phase synchronization

Consider two coupled nonidentical cord systems [31]

ẋ1,2 = −y1,2 − z1,2 − ax1,2 + aF + ε(x2,1 − x1,2),

ẏ1,2 = x1,2y1,2 − b1,2x1,2z1,2 − y1,2 + G, (28)

ż1,2 = b1,2x1,2y1,2 + x1,2z1,2 − z1,2,

where the subindices indicate the oscillator; (a,F,G) =
(0.258,8.0,1.0) are the same for both oscillators and b1 �= b2.
First, (b1,b2) = (3.85,3.80), for which both systems are in
period-1 regimes. The second result corresponds to (b1,b2) =
(4.45,4.25). All simulations use the Runge-Kutta fourth-order
method with an integration time step of 0.01.

1. Periodic cord oscillator

Figure 3(a) shows the limit cycles for both uncoupled
periodic oscillators (28). The attractors do not have a single
rotation center, or even a single rotation direction, and present
curvature inflections. The rotation on the (y,z) plane changes
its direction halfway through the cord. Thus, it is hardly possi-
ble to define a monotonic growing phaselike variable by means
of curvature or angle measurement (i.e., some transformation
would be needed). One can define a phaselike variable ϕa with
the Poincaré section �P = {x ∈ X|x = 0,ẋ > 0}, but with no
dynamical information about the phase evolution between
consecutive crossings of �P .

By contrast, the VFP can successfully represent the irregular
evolution on the limit cycle that resembles a kind of integrate-
and-fire oscillator. Figure 3(b) shows that the VFP provides
this information, where the almost horizontal part of φ(t)
corresponds to the evolution on the cord (integrating) and
the quick increase corresponds to the evolution on the wings
(firing). As expected, the phaselike variable ϕa does not convey
any detailed information about the oscillations.

When the oscillators are (mutually) coupled, it is possible to
identify the nonstrict phase-locking (see [49], p. 8) regime by
verifying |φ1(t) − φ2(t)| < const. Figure 4 shows the phase
difference �ϕa and �φ for six values of coupling strength.
Note that the amplitude of the fluctuations of �φ, the energy of
�φ(t), decays with increasing ε, which reveals different levels
of synchronization. A high variance of the signal indicates
that the systems are almost losing the phase-locking regime.
On the other hand, small fluctuations of the phase difference
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FIG. 4. Results for the cord oscillators (28): time evolution of the
phase differences �ϕa and �φ of mutually coupled systems for six
values of coupling strengths, from top to bottom, (a) ε = 0, 1 × 10−3,
and 5 × 10−3 and (b) ε = 1 × 10−2, 2 × 10−2, and 3 × 10−2. Some
transient regime at the beginning (t < 400) is shown in (b).

(VFP) indicate a tight sync state. This sort of detail is absent
in �ϕa .

2. Chaotic cord oscillator

As for the periodic case, two coupled chaotic cord oscil-
lators (28), with (b1,b2) = (4.45,4.25), can attain the syn-
chronization regime by gradually increasing ε (Fig. 5). The
evolution of �ϕa is very similar in all synchronized cases
[Fig. 6(a)] and it would be difficult to quantify the quality
of synchronization in each case. Contrary to this, �φ reveals
differences.

To emphasize this point, the energy of �φ(t), measured
by its variance, is shown in Fig. 6(b) for various values of
ε. The phase difference based on the VFP can reveal different
levels of synchronization, where a low variance of�φ indicates
high-quality phase synchronization.

To explore this point further, a random noise (μ = 0,σ =
0.05) was added to the first state equation of both oscillators.
Figure 7 shows that the noise caused more phase slips on those
cases where the variance of the VFP was high in the noiseless
case [see Fig. 6(b)]. For ε = 1 × 10−3, the variance of the VFP
was very low and the added noise did not cause any phase slips.

Such details are not conveyed by ϕa in general. One can
argue that the average value of �ϕa can also convey a measure
of the quality of synchronization. That is true when dealing
with very similar systems, when the Poincaré sections of both
systems are defined in the “same location” in the state space
and thus the values of reference of the phase variables are
the same and can be compared. In contrast, dealing with very
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FIG. 5. Results for chaotic cord oscillators (28): time evolution
of the phase differences �ϕa and �φ of mutually coupled systems
for six values of coupling strengths, from top to bottom, (a) ε = 1 ×
10−5, 5 × 10−5, and 1 × 10−4 and (b) ε = 5 × 10−4, 7 × 10−4, and
1 × 10−3. Some transient regime (t < 500) is shown in (b).

FIG. 6. Results for chaotic cord oscillators in a steady state (28):
(a) details of �ϕa and �φ of mutually coupled systems in the phase
synchronization regime for three values of coupling strengths, from
top to bottom, ε = 5 × 10−4, 7 × 10−4, and 1 × 10−3 and (b) variance
of �φ according to the coupling strength.

different systems, the value of the phase difference becomes
meaningless, susceptible to the arbitrariness of the choice of
the Poincaré section, since the phase values of each system are
not comparable. This point is discussed next.

3. Coupling very different systems

Many real-world phenomena involving phase synchroniza-
tion occur between very different systems. The influence of the
sun on life cycles on earth, the interaction between foodwebs,
and the synchronization between neurons in the brain are some
examples.

Here the VFP is used to assess phase synchronization of a
cord system [31] mutually coupled with the modified Hodgkin-
Huxley model [53]. Both uncoupled oscillators behave chaot-
ically and have different dimensions. The parameters of the
cord system (28) are (a,b,F,G) = (0.258,4.45,8.0,1.0). For
the modified Hodgkin-Huxley model, the same parameters
as in [54] are used, except the values sd = 0.25 mV−1, sr =
0.25 mV−1, Vl = −60 mV, T = 12 ◦C, and ξ (t) = 0 ∀t . The
cord system was simulated with a multiplying timescale factor
of α = 0.004 in order to make the timescales compatible.
Simulations use the fourth-order Runge-Kutta model with an
integration step of 0.1.

The systems are mutually coupled with the ordinary diffu-
sive (normalized) scheme as

⎡
⎢⎣

V̇

ȧr

ȧsd

ȧsr

⎤
⎥⎦ = f 1(V,ar ,asd ,asr ) + ε

⎡
⎢⎣

0
0

(z̄ − āsd )σasd
+ μasd

0

⎤
⎥⎦, (29)
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FIG. 7. Phase difference �φ of mutually coupled chaotic cord
oscillators (28) with noise (see the text) for three values of coupling
strength, from top to bottom, ε = 5 × 10−4, 7 × 10−4, and 1 × 10−3.
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FIG. 8. Results for a chaotic cord oscillator mutually coupled with
a chaotic modified Hodgkin-Huxley model (29): (a) time evolution
of �φ for three values of coupling strengths, from top to bottom,
ε = 2.23 × 10−5, 2.56 × 10−5, and 2.63 × 10−5, all in the phase
synchronization regime, and (b) variance of �φ according to the
coupling strength.

⎡
⎢⎣

ẋ

ẏ

ż

⎤
⎥⎦ = f 2(x,y,z) + ε

⎡
⎣ 0

0
(āsd − z̄)σz + μz

⎤
⎦, (30)

where f 1 : R4 �→ R4 and f 2 : R3 �→ R3 are the vector fields
of the uncoupled oscillators; the bars on āsd and z̄ indicate that
a normalization (standard score) with respect to the uncoupled
system was taken; μ and σ are constants that represents the av-
erage and standard deviation of the subscripted variable. These
values normalize the magnitudes of the coupled variables.

For the case shown in Fig. 8, the relationship between ε and
the variance of the VFP is not as clear as in the previous case
(Fig. 6), due to the heterogeneity of the oscillators. Notice how
the VFP variance for the second value of ε is greater than for
the first one despite the stronger coupling.

However, the same interpretation for what concerns the
synchronization quality is possible. When random noise is
added to the state equations of ȧsd and ż, the higher the variance
of the VFP in the noiseless case, the more phase slips occur
(Fig. 9). This shows that the insights provided by the VFP are
consistent and can be applied in a wide variety of problems.

4. Assessing phase sync without the vector field

As shown in Sec. IV, the VFP can be defined based on
observables. Consider the coupled chaotic cord oscillators
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FIG. 9. Phase difference �φ of the mutually coupled cord and
the modified Hodgkin-Huxley oscillators (29), where a random noise
of zero mean and 0.05% of the standard deviation of the respective
variable was added to the corresponding state equation, for, from top
to bottom, ε = 2.23 × 10−5, 2.56 × 10−5, and 2.63 × 10−5.
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FIG. 10. Results for chaotic cord oscillators without using the
system of equations (28): phase difference �φ̂ computed with (25)
and delay embedding. The mutually coupled systems are with, from
top to bottom, (a) ε = 1 × 10−5, 5 × 10−5, and 1 × 10−4 and (b) ε =
5 × 10−4, 7 × 10−4, and 1 × 10−3.

(28), where only the x variable of each system is available.
Choosing the embedding parameters as in Ref. [31], with
dimension d = 4 and delay τ = 0.84, it is possible to define
the VFP without the equations.

Figure 10 shows �φ̂ for the same values of ε shown in
Fig. 5(b). Comparing both figures, it is possible to note some
differences in the microdynamics, perhaps due to the recon-
struction via delay embedding. However, the main features
concerning phase synchronization phenomena are qualitatively
similar, including the previous discussion about the quality
of the phase synchronization regime. Note that the higher
coupling strength in Fig. 10 corresponds to a lower variance
of the VFP.

5. Assessing phase sync on coupled hyperchaotic systems

The same insights presented so far can be obtained by
applying the VFP to other classes of nonperiodic systems. Con-
sider two mutually coupled hyperchaotic Rössler oscillators
as ẋ1,2 = f 1,2(x1,2) + ε(x2,1 − x1,2), where the subindices
denote different systems, with

f 1 =

⎡
⎢⎣

−y − z

x + 0.25y + w

3 + xz

−0.5z + 0.05w

⎤
⎥⎦, f 2 =

⎡
⎢⎣

−y − z

x + 0.255y + w

3 + xz

−0.5z + 0.05w

⎤
⎥⎦.

(31)

When dealing with hyperchaotic systems an important
challenge is to estimate �. Here the cross section given by
S = {x ∈ R4|x < −15,y = 0,ẏ < 0} is used to compute �̂ at
each revolution. Note that there is no (topological) guarantee
that S is a proper Poincaré section, but it allows the estimation
of �̂.

Because of the hyperchaotic behavior, an implicit technique
is used as a reference of comparison to evaluate the synchro-
nization. The correlation between probabilities of recurrence
(CPR) [55], an index based on recurrence properties of the
system, was chosen and has proven to be effective in assessing
phase synchronization in non-phase-coherent dynamics and
nonstationary data [55]. Basically, the index is the normalized
cross correlation coefficient between the probability of recur-
rence [Fig. 11(b)] of both systems. When there is phase sync,
the amount of recurrence after a τ time lag is approximately
the same for both systems and that yields a CPR approximately
equal to 1.
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FIG. 11. Two mutually coupled hyperchaotic Rössler oscillators
showing the (a) phase difference �φ and (b) probability of recurrence
[55] for four values of coupling strength.

The results in Fig. 11 show that the VFP is in agreement
with the CPR index. The stronger the coupling, the greater the
CPR index, the smaller the variance of the �φ, and the higher
the quality of the synchronized state.

B. Nonlinear oscillators coupled by phase

Here, examples of the VFP-based coupling schemes
(Secs. III D and IV) are discussed. Consider the vector fields
of two periodic Rössler oscillators

f 1 =
⎡
⎣ −0.8y1 − z1

0.8x1 + 0.3y1

2.0 + z1(x1 − 4.0)

⎤
⎦, f 2 =

⎡
⎣ −0.9y2 − z2

0.9x2 + 0.3y2

2.0 + z2(x2 − 4.0)

⎤
⎦.

(32)

In order to phase synchronize both oscillators using the VFP,
two configurations of unidirectional coupling (β = 0) are
implemented. The first is given by (11) and considers the full
knowledge of the vector field; the second (27) is based on the
states of the systems. Theorem 2 is also used for comparison.

Figure 12 shows that (in a steady state) the observed
maximum and minimum values of phase difference are very
similar for both implementations and remain within the theo-
retical bounds given by Theorem 2, although these are clearly
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FIG. 12. Bounds of the phase difference ψ for two unidirection-
ally coupled Rössler oscillators computed by Theorem 2 (red line) and
observed numerically, for ten Monte Carlo runs, with (yellow area)
and without (blue dashed line) the knowledge of the vector fields,
implemented by (11) and (27), respectively. The bottom plot shows a
detailed view of the top one.
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FIG. 13. Time evolution of the phase difference ψ (solid line) and
the theoretical strict phase-locking value ψdev (dashed line), calculated
from (20), for mutually coupled cord and van der Pol oscillators as
in (11).

conservative for small values of ε. The coupling scheme
based on the VFP can also ensure strict phase locking (23)
for coupled oscillators with constant norm of the vector
fields along the attractor, even for very different oscilla-
tors. Consider a van der Pol oscillator (9), with (μ,β,ω) =
(4,1,1), and a periodic cord oscillator (28), with (a,b,F,G) =
(0.258,3.85,8.0,1.0), mutually coupled (β = 1) as in (11).
To ensure ‖ f i(xi)‖ = const ∀xi ∈ �i , the systems are sim-
ulated with ẋ = αi f i(xi)/‖ f i(xi)‖, where f i(xi) is the
original vector field of the systems, α1 = 57.369 (cord),
and α2 = 2.392 (van der Pol). Figure 13 shows the time
evolution of the phase difference and the computed theo-
retical strict phase-locking value ψdev. Clearly, ψ(t) → ψdev

as t → ∞.
The results can also be applied to systems with any

dimension. Consider, for instance, a van der Pol oscilla-
tor (n = 2) mutually coupled (β = 1) with the well-known
Hodgkin-Huxley neuronal model (n = 4). The van der Pol
system is described by (9) with the parameters (μ,β,ω) =
(3,1,1) and the Hodgkin-Huxley model is described in [56],
p. 37, with the parameters (I,C,EK,ENa,EL,ḡK,ḡNa,gL) =
(10,1, − 12,120,10.6,36,120,0.3). Those are systems with
high variance of the vector field norm along the attractor.

Figure 14 shows the results for various coupling strengths.
The implementation that uses the knowledge of the vector field
(yellow area) remains within the bounds provided in Theorem
1 and the coupling based on the state variables (blue dashed
lines) remains close, but not inside the region defined by the
theoretical bounds. It was observed (not shown in the figures)
that at higher sampling rates the vector field estimates improve
and likewise for all subsequent results that depend on such
estimation.

VI. CONCLUSION

This work presented a phase definition (VFP) which is
clearly related to the zero Lyapunov exponent. The defined
phase was proved to be a monotonically increasing function
of time (Proposition 1), it is incremented by 2π at every
rotating cycle for periodic oscillators (Proposition 3) and it
can be applied to a large class of oscillators, of any dimension,
because it does not depend on finding a rotation plane or the
like.

Illustrative examples have shown that the performance of
commonly found phaselike variables (defined by Poincaré
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FIG. 14. Bounds of the phase difference ψ for two mutually
coupled van der Pol and Hodgkin-Huxley oscillators computed by
Theorem 2 (red line) and observed numerically, for ten Monte Carlo
runs, with (yellow area) and without (blue dashed line) the knowledge
of the vector fields, implemented by (11) and (27), respectively. The
bottom plot shows a detailed view of the top one.

sections, angle, and curvature measurements) is equivalent to
the proposed definition only for the perfectly circular Poincaré
attractor, however they differ considerably for noncircular
attractors. One of the benefits of the proposed definition lies
in the possibility of describing intracycle phase dynamics
with a consistent interpretation related to the zero Lyapunov
exponent and at the same time it can be applied to oscillators
of any dimension. This allows the comparison of the phase
dynamics between very different systems in a meaningful
way.

Numerical results with cord and modified Hodgkin-Huxley
oscillators showed that the VFP can be used to assess phase
synchronization and provide information about the quality of
the synchronization, beyond the binary status of yes-no phase
sync. Simulations showed that the VFP can be applied when
the vector field is unknown and when only one state variable
is available. An example with coupled hyperchaotic Rössler
oscillators showed that similar results can be obtained for other
classes of oscillators.

The proposed VFP also provides insight into the problem
of choosing coupling schemes (Secs. III D and IV) to phase
synchronize two oscillators and how to effectively maximize
the influence on phase dynamics, for a general oscillator. When
the equations of the vector fields are known and for a special
coupling related to the definition of the VFP, it is possible to
ensure strict (20) and (23) and nonstrict (Theorems 1 and 2)
phase-locking regimes, with uni- and bidirectional coupling.
Although such a special coupling scheme may not be easily
implementable in practice, the corresponding synchronization
results are taken as confirmations of the consistency of the VFP.
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APPENDIX: PROOFS OF PROPOSITIONS
AND THEOREMS

Proof of Proposition 1. From (4),

φ(t) = φ0 +
∫

γ

c(x) f (x)dx

= φ0 +
∫ t

0
c(x ◦ τ ) f �(x ◦ τ ). f (x ◦ τ )dτ

= φ0 +
∫ t

0
c(x ◦ τ )‖ f (x ◦ τ )‖2dτ (A1)

holds, in which ‖ · ‖ denotes the L2-norm and the trajectory γ

was parametrized by τ . Resorting to the second fundamental
theorem of calculus, the time derivative of φ(t) is

dφ

dt
= c(x)‖ f (x)‖2. (A2)

Since c(x) is a positive scalar field for all x ∈ X (see Definition
1), the time derivative of φ(t) is always positive and φ(t)
monotonic. �

Proof of Proposition 3. Assuming x ∈ �0, the phase incre-
ment during a full period T is

φ(T ) = 0 +
∫ T

0
c(x ◦ τ )‖ f (x ◦ τ )‖2dτ

=
∫ T

0

2π

�‖ f (x ◦ τ )‖‖ f (x ◦ τ )‖2dτ

= 2π

�

∫ T

0
‖ f (x ◦ τ )‖dτ = 2π

�
� = 2π.

�
The following lemma will be useful to prove Theorem 1.
Lemma 1. In the second system in (11), or similarly

the first system with β = 1, for any initial condition x0,2 ∈
�2 (Assumption 2), the states will remain on the attractor
x2(t ; x0,2) ∈ �2 for all t > 0.

Proof. The attractor �2 can be understood as an f 2-
invariant manifold, since the unperturbed motion (ε = 0)
yields x2(t ; x0,2) ∈ �2 ∀t > 0 (Assumption 1). For a given
initial condition x0,2 ∈ �2 of the perturbed motion (ε �= 0),
the trajectory will remain on the attractor �2 if it is also f̂ 2
invariant, where f̂ 2 := f 2(x2) + ε f 2(x2)ψ . It can be done
by verifying if the Lie bracket between both vector fields,
perturbed and unperturbed, vanishes:

[ f 2, f̂ 2] = d� f̂ 2

dx2
f 2 − d� f 2

dx2
f̂ 2,

= d�[ f 2 + ε f 2ψ]

dx2
f 2 − d� f 2

dx2
[ f 2 + ε f 2ψ],

= d� f 2

dx2
f 2 + εψ

d� f 2

dx2
f 2

− d� f 2

dx2
f 2 − εψ

d� f 2

dx2
f 2,

= εψ

[
d� f 2

dx2
f 2 − d� f 2

dx2
f 2

]
= 0, (A3)
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FIG. 15. Representation of the sets M, Z , and Z∗.

where explicit dependences of x2 were omitted. Then the man-
ifold �2 is involutive (since it is integrable) and invariant under
the proposed perturbation, which means that the perturbed
motion will remain on the attractor �2 for all t > 0. �

Proof of Theorem 1. For the sake of clarity, some explicit
dependences of x1 and x2 will be suppressed. First, without
loss of generality, let us consider the translated system with
ψ̄ := ψ − ψmin, with ψmin a constant value given by (18),
where the new complete state vector is x̄ := [x�

1 ,x�
2 ,ψ̄]�.

Concerning the mutually coupled (β = 1) case given by (11),
one can take the positive semidefinite V function V (x̄) =
(1/2)(ψ̄)2, where its time derivative is given by

V̇ =
[

2π

�1
‖ f 1‖|1 − εψ | − 2π

�2
‖ f 2‖|1 + εψ |

]
ψ̄. (A4)

By analyzing the signal of V̇ in (A4), it will be convenient
to define the following sets:

Z =
{

x̄ ∈ Rn1+n2+1 : 0 � ψ̄

� 1

ε

(
�2‖ f 1‖ − �1‖ f 2‖
�2‖ f 1‖ + �1‖ f 2‖

)
− ψmin,

x1 ∈ �1,x2 ∈ �2

}
(A5)

and

Z∗ =
{

x̄ ∈ Rn1+n2+1 : −1

ε
− ψmin � ψ̄ � 0 or

1

ε

(
�2‖ f 1‖ − �1‖ f 2‖
�2‖ f 1‖ + �1‖ f 2‖

)
− ψmin � ψ̄ � 1

ε
− ψmin,

x1 ∈ �1,x2 ∈ �2

}
. (A6)

Note that there exists a nonempty intersection of Z and Z∗,

M =
{

x̄ ∈ Rn1+n2+1 : ψ̄ = 0 or

ψ̄ = 1

ε

(
�2‖ f 1‖ − �1‖ f 2‖
�2‖ f 1‖ + �1‖ f 2‖

)
− ψmin,

x1 ∈ �1,x2 ∈ �2

}
, (A7)

where M ≡ Z ∩ Z∗ ( �≡∅) and M �≡ Z∗ (Z∗ \ M �≡ ∅), as
represented in Fig. 15. Because of (12), it is also possible to
say that M �≡ Z (Z \ M �≡ ∅).

By analyzing (A4), the conditions (see [50], p. 29, as well as
[57]) (i) V (x) � a(‖ψ̄‖), e.g., a(‖ψ̄‖) := 1

2‖ψ̄‖; (ii) V̇ (x) = 0

(x ∈ M) and V̇ (x) < 0 (x �∈ M); and (iii) M contains no
entire semitrajectories for t ∈ [0,∞) hold for all x̄ ∈ Z∗. These
condition were stated by Risito [57] as sufficient conditions
for partial stability (ψ̄ stability), where dist(x̄,M) → 0 as
t → ∞. So, in light of Definitions 3 and 4, the set Z can be
called invariant and attractive, because it is surrounded by an
attractive set Z∗.

Because of Lemma 1 and Assumption 2, x1 ∈ �1 and x2 ∈
�2 will hold for all t � 0. Because of Assumption 3, the initial
phase difference can be ψ0 ∈ (−1/ε,1/ε) ⇒ ψ0 ∈ Z ∪ Z∗,
i.e., already inside the attractive set or its basin of attraction.

The bounds given in (18) and (19) clearly take the worst
cases (upper and lower bounds) of ψ̄ when x ∈ Z [see
Eq. (12)]. Because the set Z is invariant and its neighborhood
complies with the ψ̄-stability condition, the nonstrict phase
locking ψmin � ψ � ψmax ∀t � t0 will hold for some t0 < ∞.
This completes the proof. �

The result (20) can be demonstrated as follows. In the
special case where the norm of the vector fields is constant,
i.e., ‖ f i(xi)‖ = vi ∀xi ∈ �i for i ∈ {1,2}, and concerning the
bidirectionally coupled case (β = 1), part of (11) can be
simplified as

ψ̇ = 2π

�1
v1|1 − ψ | − 2π

�2
v2|1 + ψ |, (A8)

which allows the evaluation of the stability of ψ independent
of the state variables x1 and x2. By evaluating (A8), there are
two fixed points

ψ̇∗
1 = 1

ε

(
�2v1 − �1v2

�2v1 + �1v2

)
, (A9)

ψ̇∗
2 = 1

ε

(
�2v1 + �1v2

�2v1 − �1v2

)
, (A10)

where (A9) is stable and (A10) is unstable. Because of
Assumption 3, the initial phase difference is inside the basin
of attraction of the stable fixed point, leading to an asymptotic
convergence to (20) as t → ∞.

The unidirectionally coupled case follows the same reason-
ing that has been shown so far. Therefore, the following proofs
will refer to the ones presented above.

Proof of Theorem 2. Concerning the unidirectionally cou-
pled (β = 0) case (11) and following the procedure in the proof
of Theorem 1, it is possible to define a similar V function
V (x̄) = (1/2)(ψ̄)2, where ψ̄ := ψ − ψmin, but with ψmin given
by (21). The time derivative of V is

V̇ =
[

2π

�1
‖ f 1‖ − 2π

�2
‖ f 2‖|1 + εψ |

]
ψ̄. (A11)

By analyzing the signal of V̇ in (A11), the sets Z , Z∗, and
M can be defined respectively as

Z =
{

x̄ ∈ Rn1+n2+1 : 0 � ψ̄

� 1

ε

(
�2‖ f 1‖
�1‖ f 2‖

− 1

)
− ψmin,

x1 ∈ �1,x2 ∈ �2

}
, (A12)
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Z∗ =
{

x̄ ∈ Rn1+n2+1 : −1

ε
− ψmin � ψ̄ � 0 or

1

ε

(
�2‖ f 1‖
�1‖ f 2‖

− 1

)
− ψmin � ψ̄ < ∞,

x1 ∈ �1,x2 ∈ �2

}
, (A13)

M =
{

x̄ ∈ Rn1+n2+1 : ψ̄ = 0 or

ψ̄ = 1

ε

(
�2‖ f 1‖
�1‖ f 2‖

− 1

)
− ψmin,

x1 ∈ �1,x2 ∈ �2

}
. (A14)

Using these sets and replacing Assumption 3 by Assumption
4, it is possible to make the same reasoning stated in the proof
of Theorem 1 and conclude that the bounds given in (21) and
(22) take the wort cases (upper and lower bounds), where the
nonstrict phase-locking condition (14) holds for some finite
time.

This completes the proof. �

The result (23) can be demonstrated as follows. In the
special case where the norm of the vector fields are con-
stant, i.e., ‖ f i(xi)‖ = vi ∀xi ∈ �i for i ∈ {1,2}, and con-
cerning the unidirectionally coupled case (β = 0), Eq. (11)
becomes

ψ̇ = 2π

�1
v1 − 2π

�2
v2|1 + ψ |, (A15)

which allows the evaluation of the stability of ψ independent
of the state variables x1 and x2. By evaluating (A8), there are
two fixed points

ψ̇∗
1 = 1

ε

(
�2v1

�1v2
− 1

)
, (A16)

ψ̇∗
2 = −1

ε

(
�2v1

�1v2
+ 1

)
, (A17)

where (A16) is stable and (A17) is unstable. The main differ-
ence here from the bidirectional case is that the unstable fixed
point ψ̇∗

2 (A17) is always negative, which allows any positive
initial condition ψ0 > 0 to converge to ψ̇∗

1 as t → ∞. The
same is true for any initial condition stated by Assumption 4,
which ensures the asymptotic convergence to (23).
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