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We elucidate the impact of diffusive motion on the nature of anomalous dispersion in layered and fibrous
disordered media. We consider two types of disorder characterized by quenched random velocities and quenched
random retardation properties. Purely advective particle motion is ballistic in both disorder models. This changes
dramatically in the presence of transverse diffusion, which leads to dimension-dependent disorder sampling. For
d � 3 dimensions, heavy-tailed velocity distributions render large-scale particle motion a correlated Lévy flight,
while transport in the quenched random retardation model behaves as a biased continuous time random walk with
correlated time increments.
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I. INTRODUCTION

Anomalous dispersion can be seen as the result of the in-
teraction of microscopic advective-diffusive mass transfer and
spatial disorder, which may hinder or facilitate transport. Sub-
diffusive transport may be induced by crowdedness, randomly
distributed traps, and retardation properties, which quantify
physical and chemical interactions between the transported
substance and the medium. Superdiffusion, on the other hand,
may be induced by strong disorder correlation [1–4]. Anoma-
lous dispersion as manifested, for example, in heavy-tailed
first-passage time distributions, and nonlinear evolution of
particle displacement variance has been ubiquitously observed
across spatial and temporal scales ranging from natural and
engineered porous media [5–13], biological tissue [14–17],
optical media [18,19], turbulence [20], and other physical
systems [21]. Anomalous dispersive behaviors in disordered
media have been modeled using stochastic approaches such as
Lévy flights [22,23], Lévy walks [24], continuous time random
walk (CTRW) [1,4,10,25,26], fractional Brownian motion
and generalized Langevin equations [27–29], and Brownian
motion with nonstationary increments [30].

Key questions we address in this paper refer to the origins of
anomalous dispersion in terms of medium geometry, disorder
properties, and microscopic mass transfer mechanisms. The
latter play a pivotal role for the way disorder is sampled, which
determines the large-scale particle motion and its ergodic and
self-averaging properties. For diffusive motion in unstructured
disordered media characterized by independent quenched ran-
dom traps, for example, the nature of the (CTRW-type) average
particle motion and self-averaging properties of subdiffusion
depend on the dimensionality of space [1,17,31–34] as a con-
sequence of the diffusive disorder sampling. For biased, purely
advective particle motion in unstructured media with random
retardation or random conductivity, large-scale transport fol-
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lows (coupled) CTRW dynamics [3,7,11,35–39]. Advective-
diffusive transport in stratified media, on the other hand,
leads to average particle dynamics that can be described as a
fractional Brownian motion [6,40–42], while purely advective
motion in such media is the prototype of ballistic dispersion.

In this paper, we study the impact of diffusion on advective
transport in structured disordered media. We consider media
organized in channels (d � 3 dimensions) or strata (d = 2
dimensions) as illustrated in Fig. 1. This type of stratified or
fibrous medium geometries can be found in geological media
(e.g., sedimentary formations), engineered materials (e.g.,
capillary bundles, filters), and biological media (e.g., neuronal
fiber pathways). We consider advection-driven microscopic
transport of a scalar c(x,t) given by the Fokker-Planck equation

∂c(x,t)

∂t
+ u(z)

∂c(x,t)

∂x
− ∇2

zD(z)c(x,t) = 0, (1)

where u(z) and D(z) are drift and diffusion coefficients that
vary randomly between the channels or strata. The coordinate
vector is denoted by x = (x,z)� with z = (z2, . . . ,zd )�.
Diffusion along the channels is disregarded because it is
subleading compared to the disorder impact on longitudinal
motion. The Fokker-Planck equation (1) is equivalent to the
Langevin equations

dx(t) = u[z(t)]dt, dz(t) =
√

2Ddtζ (t), (2)

where ζ (t) is a dw = (d − 1)-dimensional white noise, which
models the transverse diffusive motion between the strata
or fibers. Here and throughout the paper the noise average
is indicated by angular brackets while disorder-averaged
quantities are marked by an overbar. In the absence of
transverse diffusion, this means without noise, the trajectory of
a particle originating in z0 = z(t = 0) is simply x(t) = u(z0)t .
Thus, the ensemble averaged particle density in flow direction
is c(x,t) = δ[x − u(z0)t], and more explicitly

c(x,t) = 1

t
pu(x/t), (3)
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FIG. 1. (Left) Lateral and (right) frontal view of a d = 3-
dimensional disordered medium composed of channels of equal size
�. The colors represent different medium properties.

where pu(u) is the velocity distribution between the
channels or strata. The first-passage time distribution
f (t,x) = δ[t − x/u(z0)] is

f (t,x) = x

t2
pu(x/t). (4)

This type of models, sometimes including longitudinal dif-
fusion, have been known as stochastic convective streamtube
models in the literature [43–45]. In this paper we focus on the
decisive role of transverse diffusion for large-scale transport.

We first consider the Matheron–de Marsily random velocity
model [6], which assigns a random velocity to each layer or
channel such that u(z) = v(z) and D(z) = D, where D is the
diffusion coefficient. For flow in porous media, Darcy’s law
[46] relates the flow velocity v(z) to hydraulic conductivity
k(z). Second, we consider a random retardation model, which
accounts for particle retention due to physical or chemical
interactions with the medium such as fast linear adsorption
reactions. The drift and diffusion coefficients in this model read
as u(z) = v0/θ (z) and D(z) = D/θ (z), where v0 is a constant
flow velocity and θ (z) the random retardation coefficient. In
the absence of diffusion, this means for D = 0, both disorder
models give ballistic motion. Notice that the presence of
transverse diffusion has a significant impact on longitudinal
transport. Diffusion shortens the velocity correlation length,
which would be otherwise infinite. Thus, it enables particles to
explore the disorder. The efficiency of transverse diffusion as a
sampling mechanism grows with increasing spatial dimension
because the return probability to a previously visited channel
decreases. In the following, we study these mechanisms and the
consequences for average transport in the two disorder models
in detail.

II. MATHERON–DE MARSILY MODEL

We start our analysis with the Langevin equation equivalent
to (1) for the random velocity model, which reads as

dx(t) = v[z(t)]dt, dz(t) =
√

2Ddtζ (t). (5)

The random velocities v � 0 are distributed between channels
according to pv(v). Note that particle motion in transverse
direction describes a dw = (d − 1)-dimensional random walk
such that 〈z(t)〉 = 0 and 〈z(t)2〉 = 2dwDt .

In order to quantify the average particle motion, we dis-
cretize (5) such that �z(t) is oriented along the coordinate axes
and ‖�z(t)‖ = �, which implies that particles change channels
at each random walk step. The time required is equal to the
first-passage time τ across the distance � by pure diffusion,
which is approximated here by an exponential random variable
τ with mean τD = �2/dwD [47,48]. The resulting time-domain
random walk is given by

xn+1 = xn + vnτn, tn+1 = tn + τn, (6)

where we defined vn ≡ v(zn). In the transverse directions,
particles perform a random walk on a dw-dimensional hy-
perlattice according to zn+1 = zn + �ζ n, where the random
vector ζ has unit length and points into the direction of any
of the transverse coordinate axes with equal probability. The
numerical simulations reported in the following are based
on this time-domain random walk (TDRW) scheme. The
TDRW has been used in the literature for the efficient solution
of diffusion and advection-diffusion transport problems in
heterogeneous porous and fractured media [49–51].

For the derivation of the large-scale transport behaviors, we
approximate the transition time τn for a single step by its mean
τD . The space increments �x = vτD in (8) thus are distributed
according to

ψ�(x) = 1

τD

pv(x/τD). (7)

In order to understand the large-scale transport behavior, it
is important to note that the series of random velocities vn

and thus space increments �xn depends on the transverse
random walk process. Thus subsequent vn are in general not
independent because particles may visit the same site repeat-
edly according to Polya’s theorem. This notion is quantified
by the average number Sn of distinct sites visited by a random
walker on a dw-dimensional hyperlattice [1,52]. For diffusion
in dw < 2 transverse dimensions, Sn increases as the volume
swept by an ensemble of random walkers ∼ndw/2; for dw = 2,
Sn increases sublinearly as ∼n/ ln(n); and for dw > 2, Sn

increases proportional to the number of random walk steps
∼n. This means that after n steps a particle has seen in average
γn = n/Sn times the same channel. Thus, the particle trajectory
along the channels can be renormalized in terms of independent
increments as [1]

xn = γn

Sn∑
i=1

viτD. (8)

This means that the impact of transverse noise on particle
motion is accounted for through the random sampling of flow
velocities and the renormalization with Sn, see also Ref. [34].

A. Spatial density and moments

The coarse-grained longitudinal particle position at time t

is given by x(t) = xnt
, where nt = t/τD denotes the average

number of steps needed to reach t by the time process in (6).
The average particle distribution is

c(x,t) = δ(x − xnt
). (9)

In the absence of transverse diffusion, the particle distribution
is given by (3), this means it is obtained by a direct map
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FIG. 2. Displacement variance for δ = 1/2 (crosses for d = 2 and
circles for d = 3) and δ = 3/2 (squares for d = 2 and triangles for
d = 3). The solid lines represent the asymptotic scalings (13), and the
dashed line the ballistic behavior.

from the velocity distribution. Here this is different. The
particle position (8) is given by the sum of Sn independent
increments. Thus, c(x,t) is given by the Snt

-fold convolution
of the increment distribution (7). Note that the disorder average
in (9) removes the dependence on the noise realizations [34].

In the following, we study the spatial particle distributions
and the displacement moments if they exist. Specifically, the
mean displacement μx(t) and the displacement variance κx(t)
are defined by

μx(t) = xnt
, (10a)

κx(t) = [xnt
− μx(t)]2. (10b)

We first consider the case of velocity distributions charac-
terized by finite velocity variance, then the case of heavy-tailed
velocity distributions.

1. Finite velocity variance

For Snt

 1, this means for t 
 τD , the central limit

theorem implies that the particle distribution is given by the
Gaussian distribution

c(x,t) =
exp

[− (x−vt)2

2κx (t)

]
√

2πκx(t)
. (11)

The displacement variance κx(t) obtained by using (8)
in (10) as

κx(t) = σ 2
v τ 2

D

(t/τD)2

Snt

. (12)

Recall that the scaling of the number of distinct visited sites
Sn depends on the transverse dimension dw. This gives the
following well-known long-time scalings for κx(t) [6,41]

κx(t) = σ 2
v τDt

⎧⎪⎨
⎪⎩

(
t

τD

)1/2
d = 2

ln
(

t
τD

)
d = 3

1 d > 3,

(13)

see Appendix.
Figure 2 shows the temporal evolution of the displacement

variance κx(t). For times smaller than the diffusion time τD =

�2/dwD the behavior is ballistic and κx(t) = σ 2
v t2. For times

t > τD , we observe the scalings (13). Note that the asymptotic
scaling of the mean and the variance is not affected by the
velocity distribution, but fully determined by correlation, this
means by the fact that particles may return to the same channel
or fiber. Here particles change velocities at constant rate τ−1

D .
This means particularly that low velocities do not persist and
thus cannot lead to particle retention and phenomena of inter-
mittency as observed in highly heterogeneous steady random
velocity fields [7,11,53,54]. The numerical simulations employ
the truncated power-law velocity distribution

pv(v) = α

vc

(
v

vc

)δ−1

(14)

with v < vc and δ > 0. The smaller δ, the higher is the
probability of encountering low velocities. The mean and
the variance of (14) are given by v = δvc/(δ + 1) and σ 2

v =
δv2

c /[(δ + 2)(δ + 1)2].

2. Heavy-tailed velocity distribution

If the velocity distribution is heavy tailed, this means
pv(v) ∼ v−1−α with 0 < α < 2, so is the distribution ψ�(x) of
space increments �x = vτD in (8), which scales as ψ�(x) ∼
x−1−α . Thus, the resulting average particle motion constitutes
a Lévy flight. However, unlike in classical Lévy flights,
subsequent spatial increments �xn are not independent due to
the finite probability to return to the same velocity. Thus, we
call the average particle motion here a correlated Lévy flight.

The renormalization of the particle position according to (8)
renders xnt

a sum of Snt
independent random increments. Thus,

the generalized central limit theorem implies that c(x,t) given
by (9) converges to a one-sided stable density for 0 < α < 1
and an extreme stable density for 1 < α < 2 [55]. This means
that

c(x,t) =
{
gα[x/η(t)]/η(t) 0 < α < 1

gα[(x − vt)/η(t)]/η(t) 1 < α < 2,
(15)

where we defined the scaling variable

η(t) = γnt
S1/α

nt
. (16)

The function gα(x) is a stable distribution of order α, which
scales as gα(x) ∝ x−1−α for x 
 1. The scaling variable η(t)
behaves as

η(t) =
(

t

τD

)1/α

⎧⎪⎨
⎪⎩

(
t

τD

) α−1
2α d = 2

ln
(

t
τD

) α−1
α d = 3

1 d > 3.

(17)

For 0 < α < 1, the maximum of the particle distribution moves
superlinearly, its velocity increases with increasing dimension.
This behavior can be explained by the persistence of low
velocities in d < 4.

Figure 3 shows the density profiles obtained from numerical
simulations and the analytical scalings (15). The numerical
simulations use the Pareto distribution

pv(v) = α

vc

(
v

vc

)−1−α

, (18)

with v > vc and 0 < α < 2.
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FIG. 3. Particle density for (squares and circles) α = 1/2 and
(triangles and crosses) α = 1.4 (circles) in d = 2 dimensions at times
t = 20τD and 100τD rescaled by η(t) versus x̂ = x/η(t) for α < 1 and
x̂ = (x − vt)/η(t) for 1 < α < 2. The dashed and solid lines show
the asymptotic scalings as x−1−α . The simulations use the velocity
distribution (18).

B. First-passage times

We now consider the distribution of first-passage times
t(x) = min(t |xnt

� x) at a plane at a longitudinal position x,
which is defined by

f (t,x) = δ[t − t(x)]. (19)

In the TDRW framework employed here, t(x) = nxτD , where
nx = max(n|xn � x). Note that we set the transition time τ =
τD for the analytical derivations. Thus, we can write f (t,x) as

f (t,x) =
∞∑

n=0

δ(t − nτD)δn,nx
. (20)

Furthermore, mass conservation gives the following relation
between f (t,x) and c(x,t):∫ t

0
dt ′f (t ′,x) =

∫ ∞

x

dx ′c(x ′,t). (21)

This relationship expresses that the number of particles that
have passed the position x at time t is equal to the number of
particles that are to the right of the position x. It implies that

f (t,x) = ∂

∂t

∫ ∞

x

dx ′c(x ′,t). (22)

The mean first-passage time μt (x) and its variance κt (x) are
defined by

μt (x) =
∫ ∞

0
dt tf (t,x) = τDnx, (23)

κt (x) =
∫ ∞

0
dt[t − μt (x)]2f (t,x) = τ 2

D

(
n2

x − nx
2). (24)

In the following, we discuss the first-passage time distribution
for velocity distributions with finite variance and heavy-tailed
velocity distributions.

1. Finite velocity variance

In the case of finite velocity variance, the particle distribu-
tion c(x,t) is given by (11). Thus, Eq. (22) implies for f (t,x)

FIG. 4. First-passage time distributions for δ = 1/2 (circles) and
δ = 1.4 (squares) in (14) for d = 2 dimensions at the control plane
xc = 100� and xc = 5000�, respectively. The dashed and the solid
lines represent the analytical solution (25).

the inverse Gaussian-type first-passage time distribution

f (t,x) =
[κx(t)v + Dx(t)(x − vt)] exp

[− (x−vt)2

2κx (t)

]
√

2πκx(t)3
, (25)

where the apparent dispersion coefficient Dx(t) is defined by

Dx(t) = 1

2

dκx(t)

dt
. (26)

The mean first-passage time is given by μt (x) = x/v. For the
variance of the first-passage time we obtain

κt (x) ∝ σ 2
v τD

v2

x

v

⎧⎪⎨
⎪⎩

(
x

vτD

)1/2
d = 2

ln
(

x
vτD

)
d = 3

1 d > 3,

(27)

see Appendix.
Figure 4 shows the full temporal behavior of the first-

passage time distribution obtained numerical simulations for
different disorder scenarios in d = 2 dimensions. We make
use of the velocity distribution (14). We observe that the
distribution of first-passage times broadens for decreasing δ

because σ 2
v /v2 increases with decreasing δ as 1/(δ + 2).

2. Heavy-tailed velocity distribution

We first consider the case 0 < α < 1. Using expression (15)
in relation (22) between the first-passage time and particle
distributions, we find

f (t,x) = x

η(t)2

dη(t)

dt
Fα[η(t)/x], (28)

where we defined Fα(y) = gα(1/y); gα(x) is a one-sided stable
density. For α = 1/2, g1/2(x) is a Lévy distribution. Thus we
obtain the exact expression

f (t,x) = η(t)−1/2

x1/2

dη(t)

dt

a exp[−a2η(t)/2x]√
2π

, (29)

with a a constant. For general 0 < α < 1, Fα(y) behaves at
large y as a stretched exponential [55,56],

Fα(y) ∼ (yα)
1−α/2
1−α exp

[ − c2
α(1 − α)(yα)

α
1−α

]
√

2π (1 − α)α
(30)
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FIG. 5. First-passage time distributions at the control plane x =
104 for α = 1/2 in d = 2 (squares) and d = 3 (circles). The solid and
dashed lines represent Eq. (29) for d = 2 and d = 3 dimensions.

with cα a constant that depends on the details of the heavy-
tailed velocity distribution. The full behavior of f (t,x) for
α = 1/2 is shown in Fig. 5 for d < 3 and d = 3 dimensions,
which is in agreement with the analytical prediction (29).

The behavior of the mean first-passage time μt (x) with dis-
tance depends on the spatial dimension. Inserting expression
(28) into (23) and using (17), we obtain the following scaling
behaviors for the mean first-passage time with distance:

μt (x) ∝
⎧⎨
⎩

x2α/(1+α) d = 2
xα ln(x)1−α d = 3
xα d > 3.

(31)

The mean first-passage time evolves sublinearly with distance
but faster with decreasing dimension because of increasing
correlation of subsequent (low) velocities. Note that the mean
first-passage time is related to the harmonic mean velocity,
which is dominated by low velocities. The scaling of the
variance κt (x) of first-passage times is obtained analogously
by inserting (28) into (24) and using (17),

κt (x) ∝ μt (x)2. (32)

For 1 < α < 2 we use expression (15) in (22) in order to
obtain

f (t,x) = vη(t) + (x − vt) dη(t)
dt

η(t)2
gα

[
x − vt

η(t)

]
, (33)

where gα(x) is an extreme stable density. The long-time behav-
ior of f (t,x) is obtained by noting first that t/η(t) increases
with time because η(t) evolves sublinearly for 1 < α < 2.
Thus, the asymptotic behavior of f (t,x) is obtained from the
behavior of gα(x) for x → −∞, which is given by [55]

gα(x) ∼
( |x|

α

) 1−α/2
α−1 exp

[ − c2
α(α − 1)

( |x|
α

) α
α−1

]
√

2π (1 − α)α
. (34)

Thus, f (t,x) behaves at long times as a stretched exponential
and all first-passage time moments exist. In this case and in
general for velocity distributions with v < ∞, the mean first-
passage time is given by μt (x) = x/v. The variance of the

FIG. 6. Mean first-passage time for α = 1/2 for d = 2 (squares)
and d = 3 (circles). (Inset) Mean first-passage time for α = 1.4 for
d = 2 and d = 3. Lines represent the asymptotic scalings (31).

first-passage times for 1 < α < 2 scales as

κt (x) ∝
⎧⎨
⎩

x(5−α)/2 d = 2
x3−α ln(x)α−1 d = 3
x3−α d > 3,

(35)

see Appendix.
The behavior of the mean first-passage time and the

analytical scalings are shown in Fig. 6 for d = 2 and d = 3
dimensions for α = 1/2 and α = 1.4. As discussed above, for
0 < α < 1, the mean first-passage time at a control plane is
larger in d = 2 than in d = 3 as a consequence of stronger
persistence of low velocities.

III. RANDOM RETARDATION MODEL

We contrast the behaviors observed in the previous section
to dispersion under spatially random retardation. Here particle
motion is ruled by the Langevin equation

dx(t) = v0dt

θ [z(t)]
, dz(t) =

√
2Ddt

θ [z(t)]
ζ (t), (36)

where the retardation factor θ (z) is distributed according to
pθ (θ ). Note that unlike in the Matheron–de Marsily model,
disorder here acts also on diffusion in the transverse directions,
which affects disorder sampling. We define the operational
time through dt(s) = θ [z(s)]ds and transform t → s in (36)
to obtain

dx(s) = v0ds, dz(s) =
√

2Ddsζ (s). (37)

This subordinated process describes a biased Brownian mo-
tion. In order to determine the large-scale particle motion, we
coarse grain (37) so that each step corresponds to a change in
θ , which occurs whenever a particle diffuses to a contiguous
channel; this means for ‖�z(s)‖ = �. The (operational) time
σ needed for this transition is given by the diffusive first-
passage time, which is exponentially distributed with mean
τD . Diffusion depends on the local retardation coefficient.
Therefore, the coarse-grained equations read as

xn+1 = xn + v0σn tn+1 = tn + θnσn, (38)
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where we set θn ≡ θ (zn). The numerical simulations reported
in the following are based on this TDRW. For the derivations
of the average dispersion behavior, in the following, we
approximate the operational time σn needed for single step
by its mean τD . Thus, the transition length for a single step in
this approximation is constant and equal to �x = v0τD . The
transition time is τ = θτD , which is distributed according to

ψ(t) = 1

τD

pθ (t/τD). (39)

As above, transverse particle motion describes a random
walk on a dw-dimensional hyperlattice, and, as a consequence,
the {θn} and thus the transition times {τn} form correlated
random series. Unlike in the Matheron–de Marsily model,
here the disorder affects the temporal increments. The particle
time tn can be renormalized into families of independent
increments as

tn = γn

Sn∑
i=1

θiτD. (40)

Note the duality of the particle motions given by (6)–(8) in the
Matheron–de Marsily model and (38)–(40) here.

A. First-passage times

The first-passage time distribution here is given by

f (t,x) =
∞∑

n=0

δ(t − tnx
), (41)

where nx = x/(v0τD). The particle time tnx
is according to (40)

the sum of independent random variables. Note the duality
with expression (9) for the particle density in the Matheron–de
Marsily model.

1. Finite disorder variance

We first consider the case of finite disorder variance. Ex-
ploiting the duality between (41) and (9), we obtain from (11)
that f (t,x) follows at large x 
 v0τD the Gaussian distribution

f (t,x) =
exp

[ − (t−xθ/v0)2

2κt (x)

]
√

2πκx(t)
, (42)

where the mean first-passage time is xθ/v0 and the variance
of the first-passage time is

κt (x) = σ 2
θ τD

x

v0

⎧⎪⎨
⎪⎩

(
x

v0τD

)1/2
d = 2

ln
(

x
v0τD

)
d = 3

1 d > 3.

(43)

For dimensions d < 4, the variance of the first-passage time
scales superdiffusively with distance.

2. Heavy-tailed disorder distribution

We now consider heavy-tailed distributions of the retarda-
tion coefficient which for θ 
 1 behave as pθ (θ ) ∼ θ−1−β with
0 < β < 2. The generalized central limit theorem indicates
that the first-passage time distribution converges towards a
stable law for Sn 
 1 because (40) is the sum of indepen-
dent increments. Thus, we obtain in analogy to the particle

10−4

10−3

10−2

10−1

100

101

10−3 10−2 10−1 100 101

f
(t

,x
)η

(x
)

t̂

FIG. 7. First-passage time distributions for β = 1/2 (circles and
squares) and β = 1.7 (triangles and crosses) in d = 3 dimensions at
the control plane xc = 102� and 5 × 102� rescaled by η(x) versus
t̂ = t/η(x) for β < 1 and t̂ = (t − θx/v)/η(x) for 1 < β < 2. The
dashed and solid lines represent the scaling t−1−β for β = 1/2 and
β = 1.7, respectively.

distributions (15) in the random velocity model

f (t,x) =
{

gβ[t/η̂(x)]/η̂(x) 0 < β < 1

gβ[(t − xθ/v)/η̂(x)]/η̂(x) 1 < β < 2.
(44)

For 0 < β < 1, gβ(t) is a one-sided stable density, and for 1 <

β < 2 it is an extreme stable density [55]. The scaling functions
behaves as gβ (t) ∝ t−1−β at times t 
 τD . The scaling variable
η̂(x) is given by η̂(x) = η[x/(v0τD)], where η(t) is defined
by (16).

The power-law tailing is not affected by the correlation
of transition times, which impacts, however, the scaling of
the maximum fm(x) of the first-passage time distribution
according to fm(x) ∝ 1/η̂(x). For α < 1 the time τm(x) of
maximum arrival scales as τm(x) ∝ η̂(x). This is illustrated
in Fig. 7, which compares the first-passage time distributions
obtained from numerical random walk simulations with the
derived scalings. Note that Fig. 7 corresponds to Fig. 3 for the
particle distribution.

The numerical time-domain random walk simulations are
performed using the following Pareto distribution for the
retardation coefficient θ

pθ (θ ) = β

θ0

(
θ

θ0

)−1−β

(45)

with θ > θ0.

B. Spatial density and moments

The average particle density is given by

c(x,t) =
∞∑

n=0

〈δ(x − xn)δ(z − zn)δn,nt
〉. (46)

Transverse particle motion is equivalent to an unbiased random
walk in the presence of quenched random traps [1,34]. Thus,
the mean displacement in transverse direction is z(t) = 0 and
the mean squared displacement is κz(t) = z(t)2 = �2nt . The
longitudinal particle position is here given by x(t) = ntv0τD .
Note that we set the operational time σ = τD for the analytical
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derivations. Thus, the particle density is

c(x,t) =
∞∑

n=0

δ(x − nv0τD)δn,nt
, (47)

which is of the same form as the first-passage time distribution
(20) in the Matheron–de Marsily model. Thus, in analogy with
(22), mass conservation gives the following relation between
the first-passage time distribution and the particle distribution:

c(x,t) = ∂

∂x

∫ ∞

t

dt ′f (t ′,x). (48)

The mean displacement and the displacement variance are
given by

μx(t) =
∫

dxxc(x,t) = v0τDnt , (49)

κx(t) =
∫

dx[x − μx(t)]2c(x,t) = v2
0τ

2
D

(
n2

t − nt
2). (50)

Note that the mean displacement in longitudinal direction
is proportional to the transverse mean squared displacement
μx(t) ∝ κz(t).

1. Finite disorder variance

For θ2 < ∞, the transverse mean squared displacement
evolves diffusively as κz(t) = 2dwDt/θ [34], this means trans-
verse disorder sampling is effectively diffusive as for the
Matheron–de Marsily model. As a result, the longitudinal mean
displacement evolves linearly with time as μx(t) = v0t/θ , and
the displacement variance behaves as

κx(t) ∝ v2
0τD

σ 2
θ

θ
2

t

θ

⎧⎪⎨
⎪⎩

(
t

θτD

)1/2
d = 2

ln
(

t

θτD

)
d = 3

1 d > 3,

(51)

see Appendix. These expressions correspond to (27) for the
moments of the first-passage time in the Matheron–de Marsily
model. Using the duality between the Matheron–de Marsily
model and the random retardation model, we see immediately
from (25) that the spatial particle distribution is given by

c(x,t) =
[
κt (x) θ

v0
+ Dt (x)

(
t − xθ

v0

)]
√

2πκt (x)3

× exp

[
−

(
t − xθ

v0

)2

2κt (x)

]
, (52)

where 2Dt (x) = dκt (x)/dx.

2. Heavy-tailed disorder distribution

Transverse particle motion here is subdiffusive [34], which
affects the efficiency of disorder sampling across strata or
channels, which in turn affects the longitudinal particle motion.
For 0 < β < 1, we obtain from (48) in analogy with (28)

c(x,t) = t

η̂(x)2

dη̂(x)

dx
Fβ[η̂(x)/t], (53)

where Fβ(y) = gβ(1/y). It behaves at large y as the stretched
exponential (29). Along the same lines, we obtain for
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FIG. 8. Longitudinal variance of particle displacements for β =
1/2 and for d = 2 (squares) and d = 3 (circles). Black lines are
analytical scalings, the gray line is ballistic. (Inset) Mean position,
black lines denote the analytical scalings, the gray line linear scaling.

1 < β < 2

c(x,t) =
θη̂(x)

v0
+ (

t − xθ
v0

)
dη̂(x)
dx

η̂(x)2
gβ

[
t − xθ

v0

η(t)

]
, (54)

with gβ(x) an extreme stable density. The behavior of c(x,t)
at large distances corresponds to the behavior of gβ(x) as x →
−∞, which is given by the stretched exponential (34).

For d � 3 dimensions, particle motion is CTRW-like,
characterized by correlation in subsequent time increments,
which is quantified by the renormalization of the particle
time according to (40) and encoded in (53) and (54) by η̂(x).
For 0 < β < 1, we obtain by inserting the scaling form (53)
into definitions (49) and (50) for the displacement mean and
variance the quasiballistic scaling behaviors

κx(t) ∝ μx(t)2 ∝
{
t4β/(1+β) d = 2
t2β ln(t)2−2β d = 3.

(55)

This behavior is caused by the long residence times in in-
dividual channels or strata, which on one hand slows the
mean displacement down and on the other hand leads to the
quasiballistic scaling.

For 1 < β < 2, the retardation in individual channels is
weaker and the mean displacement is given by μx(t) ∝ v0t/θ

for all dimensions, while the variance scales as

κx(t) ∝
{
t (5−β)/2 d = 2
t3−β ln(t)β−1 d = 3,

(56)

see Appendix. While dispersion in the absence of diffusion is
ballistic, the observed behaviors here are entirely due to the
diffusive disorder sampling across channels of equal retarda-
tion properties. Particle motion is only CTRW-like because the
quenched nature of the underlying disorder is inherited through
the correlation of subsequent θn.

For d > 3, particles describe a CTRW in longitudinal
direction because of the efficient diffusive transverse sampling
through which the disorder experienced by the particles as-
sumes an annealed character. Thus, displacement mean and
variance show the scaling known from uncorrelated CTRW
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FIG. 9. Longitudinal variance of particle displacements for β =
1.7 and for d = 2 (squares) and d = 3 (circles). Black lines are
analytical scalings; the gray line is ballistic. (Inset) Mean position,
the gray line denotes linear scaling.

[57,58], this means

μx(t) ∝ tβ κx(t) ∝ t2β (57)

for 0 < β < 1 and

μx(t) ∝ t κx(t) ∝ t3−β (58)

for 1 < β < 2.
Figures 8 and 9 show the temporal evolution of the mean

and the variance of particle displacements in d = 2 and d = 3
dimensions for power-law distributed retardation coefficients
with exponents β = 1/2 and β = 1.7, respectively. We ob-
serve ballistic behavior at times shorter than τD , which is
the characteristic time for the onset of transverse disorder
sampling. For times larger than τD , the moments evolve
towards their respective asymptotic scalings, which depend
on the heterogeneity and the dimensionality of the medium.

IV. CONCLUSIONS

In conclusion we have analyzed the impact of diffusion
on anomalous transport in stratified and fibrous disordered
media for which transport is otherwise ballistic. We have shown
how diffusive disorder sampling changes the nature of average
transport depending on the microscopic transport mechanisms,
disorder distribution, and dimensionality of space. Transverse
diffusion acts differently on longitudinal transport properties
and on the first-passage time distributions depending on the
disorder model. There is complete duality in spatial and
temporal features between the random velocity model and
the random retardation model. The quenched nature of the
underlying disorder is inherited by the average particle motion
in d � 3 dimensions, for which we discover correlated Lévy
flights in the case of the Matheron–de Marsily model with
heavy-tailed velocities and correlated biased continuous time
random walks for the random retardation model with heavy-
tailed retardation distribution. For d > 4 the disorder particles
experience assumes an annealed character, which leads to Lévy
flight dynamics in the random velocity and biased CTRW
behavior in the random retardation model. These results shed
light on the pivotal role of diffusion for the prediction and

interpretation of anomalous transport behaviors and signal
transmission in disordered structures.
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APPENDIX: MEAN AND VARIANCE OF DISPLACEMENT
AND FIRST-PASSAGE TIME

Here we derive the asymptotic scalings of the moments of
the first-passage time distribution for the Matheron–de Marsily
model with the velocity distribution (18) and the displacement
moments for the random retardation model with the distri-
bution (45) of the retardation coefficient. As we discuss in
the main text, the random velocity model and the random
retardation model are dual. The first-passage time distribution
(20) of the Matheron–de Marsily model corresponds to the
particle distribution (47) in the random retardation model. The
first-passage time in the random velocity model is given by

t(x) = nxτD (A1)

and the position in the random retardation model by

x(t) = ntv0τD. (A2)

Thus, mean and variance of first-passage time and displace-
ment can be written as

μθ (ξ ) = θ0nξ κθ (x) = θ2
0

(
n2

ξ − nξ
2), (A3)

where ξ = t , θ = x, and θ0 = v0τD for the displacement
moments and ξ = x and θ = t and θ0 = τD for the first-passage
time moments. Note that the asymptotic scalings depend only
on the moments of the renewal process nξ . The derivation of the
behavior of the moments of nξ can be found in Ref. [34] for the
power-law distribution ψξ ∼ (ξ/ξ0)−1−ν with 0 < ν < 2. Note
that ν = α for the random velocity and ν = β for the random
retardation model. For the convenience of the reader, in the
following, we provide the derivation for the case of 1 < ν < 2.

The distribution of nξ is given by

pn(ξ ) = δn,nξ
. (A4)

Its ith moments are defined by

hk(ξ ) =
∞∑

n=0

nkpn(ξ ). (A5)

The Laplace transform of (A4) can be written for large n

as [34]

p∗
n(λ) = −1

λ

d

dn
f ∗

n (λ), (A6)

where we defined

f ∗
n (λ) = ψ∗(γnλ)Sn . (A7)

Likewise, we write the Laplace transform of the moments
(A5) as

h∗
k(λ) = −1

λ

∫ ∞

0
dnnk d

dn
f ∗

n (λ), (A8)
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for which we obtain by integration by parts

h∗
k(λ) = 1

λ
k

∫ ∞

0
dnnk−1f ∗

n (λ). (A9)

As outlined above, we consider the case ψξ (ξ ) ∝ (ξ/ξ0)−1−ν

and focus on the case 1 < ν < 2. The Laplace transform of
ψξ (ξ ) is for λξ0 � 1 given by

ψ∗
ξ (λ) = 1 − ξλ + aνλ

ν, (A10)

where the constant aν depends on the specific form of the
distribution ψξ (ξ ). For ν > 2, we set ν = 2 in (A10) and aν is
equal to ξ 2/2. Using this expansion, we can write (A7) as

f ∗
n (λ) = exp

[
Sn ln

(
1 − ξγnλ + aνγ

ν
n λν

)]
. (A11)

Expansion of the exponent gives

f ∗
n (λ) = exp

(−ξSnγnλ + AνSnγ
ν
n λν

)
, (A12)

where Aν = aν for 1 < ν < 2 and Aν = σ 2
ξ /2 for ν > 2 with

σ 2
ξ = ξ 2 − ξ

2
. Further expanding the exponential, we obtain

in leading order

f ∗
n (λ) ≈ exp(−nξλ)

(
1 + S1−ν

n nνAνλ
ν
)
, (A13)

where we used that γn = n/Sn.
For d = 2, this means dw = 1, we obtain for the moments

h∗
k(λ) = 1

λ
k

∫ ∞

0
dnnk−1 exp(−nξλ)

+ 1

λ
k

∫ ∞

0
dnnk+ ν−1

2 Aνλ
ν exp(−nξλ). (A14)

Scaling of n → nξλ gives

h∗
k(λ) = λ−1−k

ξ
k

k�(k)

+ 1

λ
(λξ )−k− 1−ν

2 Aνk�[1 + k+(ν − 1)/2]. (A15)

Inverse Laplace transform gives

hk(ξ ) = (ξ/ξ )k + B2k(ξ/ξ )k− ν−1
2 , (A16)

with

B2k = Aν

ξ
ν

k�[1 + k + (ν − 1)/2]

�[1 + k − (ν − 1)/2]
. (A17)

Specifically, we obtain for the mean and variance of nξ in
leading order

nξ = ξ/ξ, (A18)

n2
ξ − nξ

2 ∝ Aν

ξ
ν (ξ/ξ )2− ν−1

2 . (A19)

For d = 3, this means dw = 2, we derive along the same lines
that

hk(ξ ) = (ξ/ξ )k + B3k(ξ/ξ )1+k−ν ln(ξ/ξ )ν−1, (A20)

with B3k ∝ Aν/ξ
ν

a constant. Mean and variance of nξ are
given by

nξ = ξ/ξ, (A21)

n2
ξ − nξ

2 ∝ Aν

ξ
ν (ξ/ξ )3−ν ln(ξ/ξ )ν−1. (A22)

For d > 3, this means dw > 2, we find

hk(ξ ) = (ξ/ξ )k + B4k(ξ/ξ )1+k−ν, (A23)

with B4k = Aν/ξ
ν

a constant. Thus, we obtain for the mean
and variance of nξ

nξ = ξ/ξ, (A24)

n2
ξ − nξ

2 ∝ Aν

ξ
ν (ξ/ξ )3−ν . (A25)
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