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This paper considers two nonequilibrium model systems described by linear Fokker-Planck equations for the
time-dependent velocity distribution functions that yield steady state Kappa distributions for specific system
parameters. The first system describes the time evolution of a charged test particle in a constant temperature
heat bath of a second charged particle. The time dependence of the distribution function of the test particle
is given by a Fokker-Planck equation with drift and diffusion coefficients for Coulomb collisions as well as a
diffusion coefficient for wave-particle interactions. A second system involves the Fokker-Planck equation for
electrons dilutely dispersed in a constant temperature heat bath of atoms or ions and subject to an external
time-independent uniform electric field. The momentum transfer cross section for collisions between the two
components is assumed to be a power law in reduced speed. The time-dependent Fokker-Planck equations for
both model systems are solved with a numerical finite difference method and the approach to equilibrium is
rationalized with the Kullback-Leibler relative entropy. For particular choices of the system parameters for both
models, the steady distribution is found to be a Kappa distribution. Kappa distributions were introduced as an
empirical fitting function that well describe the nonequilibrium features of the distribution functions of electrons
and ions in space science as measured by satellite instruments. The calculation of the Kappa distribution from the
Fokker-Planck equations provides a direct physically based dynamical approach in contrast to the nonextensive

entropy formalism by Tsallis [J. Stat. Phys. 53, 479 (1988)].
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I. INTRODUCTION

Nonequilibrium effects occur for many physical systems
and are often characterized by the departure of the parti-
cle translational distribution functions from Maxwellian. A
few examples of such systems include irreversible transport
processes [1,2], plasma physics [3], reactive systems [4,5],
nucleation [6,7], atmospheric and space physics [8,9], shock
phenomena [10], neutron transport [11], electron and ion
transport [12,13], semiconductor physics [14,15], astrophysics
[16,17], as well as finance and social dynamics [18,19]. In
every application, the systems of interest can be multidimen-
sional and may depend on several physical parameters. In
general, these systems are studied with a variety of transport
equations that include the Boltzmann equation, the Fokker-
Planck equation, the Vlasov equation, or a master equation.
The references cited provide just a few examples of the many
theoretical approaches to describe nonequilibrium processes.
The Tsallis approach [20-22], based on the definition of
an entropy functional characterized by a single parameter g
cannot describe the multitude of phenomenon referred to in
this paragraph and many others too numerous to list.

The nonextensive approach by Tsallis is based on the
definition of an entropy functional of the form

1
5@ = [1- [ ], 1)
qg—1
parametrized with ¢. In the limit ¢ — 1, we have with
I"Hopital’s rule that lim,_.; S(qg) — — [ fIn(f)dv which is

the basis for Boltzmann’s H theorem for a dilute monatomic

24770-0045/2018/97(5)/052144(9)

052144-1

gas [23] and the approach to Maxwellian at equilibrium. For
systems with discrete quantum energy levels, the integral is
replaced by a summation and the equilibrium distribution is
generally referred to as the Maxwell-Boltzmann distribution.
The equilibrium distributions are obtained by finding the
extremum of the entropy subject to the known values of the
density and average energy with the method of Lagrange
multipliers. The Tsallis formalism has been widely adopted in
space physics as a rationale for the many satellite verifications
of particle energy distributions as the Kappa distribution

[24-29] given by
k+1
: @
14 X ’

K+1

felx) = C(K)[

where x = v/vy, is the reduced particle speed and v, =
/2kT,/m is the thermal speed with k being the Boltzmann
constant and m being the particle mass. The heat bath tem-
perature is denoted 7. The Kappa distribution is normalized
according to 47 [i° fi(x)x?dx =1 so that C(k) = I'(k +
)/{T(k — %)[«/7{(/( + D)]*}. It has an asymptotic power law
dependence for large speed x and joins smoothly with a
Maxwellian distribution at low speed. The Kappa distribution
is the single nonequilibrium distribution function obtained by
maximizing S(g) as done in equilibrium statistical mechanics
[29,30]. The main objective of this paper is to report on
the solutions of two different Fokker-Planck equations for
the nonequilibrium distribution function of electrons or ions
that reduce to the Kappa distribution as solution only for
specific system parameters. There are two parameters in the
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Fokker-Planck equations used, as explained in Secs. IT A and
MIA.

There is an extensive literature, too large to discuss here (see
the bibliography in Refs. [24-29]), in which the authors suggest
that the justification for the Kappa distribution (especially in
space physics) is the maximization of S(g), Eq. (1), as in the
Boltzmann H Theorem. The physical reasons given are many
and include long-range forces [31], nonextensive thermostatics
[32,33], intermittency [25], a collisionless weakly coupled
plasma far from equilibrium [27,28], multiplicative noise [34],
Levy flights [35], turbulent fluctuations [36], and other mech-
anisms. A detailed account of these discussions is provided
elsewhere [26-29]. The dependence on « in Eq. (2) arises
from the steady-state solution of a Fokker-Planck equation in
terms of a single parameter [see Eq. (7)]. This differs from
other forms [25,37] and changes the relationship between
the temperature and « as well as the norm. A more direct
approach is the works that demonstrate that the underlying
source of the Kappa distribution are wave-particle interactions
[38—42] described by an appropriate Fokker-Planck equation.
The work by Ma and Summers [38] on Whistler-mode waves
[Egs. (3)-(10)], Hasegawa et al. [39] on a radiation field [Eq.
(17)], Bir6 and Jakovéic [34] with a Fokker-Planck equation
with multiplicative noise [Egs. (8), (14), and (17)], Lutz [43]
[Egs. (1)-(3)], and Yoon [44] [Egs. (3)—(10)] for electrostatic
Langmuir turbulence, have all demonstrated Kappa distri-
butions as the steady-state distributions of a Fokker-Planck
equation [42]. A close examination of all these works shows
that they are equivalent in the sense that the Kappa distribution
arises from the same velocity variation of the ratio of drift
and diffusion coefficients in the Fokker-Planck equations
that were used. The current paper demonstrates that it is
the particular velocity dependence of the drift and diffusion
coefficients in the Fokker-Planck equation that uniquely de-
fines the Kappa distribution irrespective of the actual wave-
particle mechanism invoked. The main objectives of this paper
is to describe the time evolution of two different systems
from an initial Maxwellian distribution to a nonequilibrium
steady-state distribution. Two different physical problems each
modelled with a two-parameter Fokker-Planck equation are
studied.

The first model system, discussed in Sec. II, involves a
charged test particle of mass m dilutely dispersed in a second
charged species of mass M that acts as a constant temperature
heat bath. The two species interact via Coulomb collisions
and the test particles are perturbed from equilibrium owing to
wave-particle interactions modelled with a diffusion operator.
The strength of the wave-particle interaction relative to the
strength of Coulomb collisions is given by «. The test particle
distribution function is given by a Fokker-Planck equation with
both Coulomb collisions and wave-particle diffusion [45,46].
The time evolution of the distribution function to a steady
nonequilibrium distribution function is considered for an initial
Maxwellian.

The Kullback-Leibler entropy

[o.¢]
k() = —471/ f(v,0)In [M}vzdv (3)
0 fss(v)
is used to rationalize the approach to a steady nonequilib-
rium distribution function, where f;(v) is the steady-state

distribution. One can show that d Xk (7)/dt > 0 and that
¥kpL(t) = 0 as t — oo [46]. The Kappa distribution arises
only for particular system parameters, m/M and «. Other-
wise, the nonequilibrium steady-state distributions are not
Kappa distributions. The Kullback-Leibler entropy measures
the departure of one distribution, f(v,t), from a reference
distribution, f;(v). The difference of the two distributions is
often referred to as the Kullback-Leibler distance (see Ref. [47]
and references therein).

The second model system discussed in Sec. III concerns
the distribution function of electrons dilutely dispersed in a
heat bath of a second species. The nonequilibrium distribution
function of the electrons is described with a Fokker-Planck
equation. We choose a power law momentum transfer cross
section, o (x) = 0¢/x?,and an electric field parameter 8, which
is defined later. The velocity distribution function for this
physical system is dependent on the physical parameters p
and B and has been studied previously [48,49]. The hard
sphere cross section corresponds to p =0 and with p =1
we have the Maxwell molecule cross section for scattering
from a potential, V(r) < 1/ r*, familiar from kinetic theory.
The Kappa distribution occurs as the steady-state distribu-
tion for this system with p = 2 and for a limited range of
values of the electric field parameter S. It is the Kulback-
Leibler entropy that rationalizes the approach to a steady
nonequilibrium state and the Tsallis formalism does not play a
role.

Numerous researchers [25,27,29,31,32,34] have suggested
that the origin of the Kappa distribution can be rationalized
with the nonextensive entropy formalism promoted by Tsallis
[22,50]. A complete bibliography can be found elsewhere
[27-30]. The nonextensive entropy approach to describe this
multitude of physical nonequilibrium phenomenon remains
controversial as noted by numerous authors [51-60] and others.
In the kinetic theory applications discussed here, there is no
need to introduce the concept of nonextensive thermodynamics
and g-extensive distributions [20]. The steady nonequilibrium
distributions for these systems depend on two parameters
that characterize the system and a large number of different
nonequilibrium steady states are calculated for which the
Kappa distribution is found only for a particular choice of these
variables.

In Sec. IITA, we briefly review the basis for the study of
electron thermalization in atomic gases [48,49] and discuss
in particular the form of the drift and diffusion coefficients
in the Fokker-Planck equation in comparison with recent
discussions in the literature for the basis of the Kappa dis-
tribution. In Sec. III B, we introduce a model system with a
momentum transfer cross section, o (v) = op/v” and based
on the Fokker-Planck theory for electron thermalization that
describes the relaxation of electrons in a heat bath of atoms and
subject to an external electric field of dimensionless strength
B [see after Eq. (12)]. We demonstrate that this model can
describe electron thermalization to a multitude of different
steady-state nonequilibrium distributions and the formation
of a Kappa distribution only for specific values of p and
B. In each case, we show that the approach to the nonequi-
librium steady state is explained with the Kullback-Leibler
relative entropy (3). A summary of the results is presented in
Sec. IV.
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II. SUPRATHERMAL POPULATIONS FOR SPACE
PLASMAS AND KAPPA DISTRIBUTIONS

A. Fokker-Planck equation

The Fokker-Planck equation for the relaxation of a charged
test-particle of mass m interacting via Coulomb collisions with
background charged particles of mass M atequilibrium s given

by
Of(v,r) A B kT, 0
- D1+ 222 1 4
a7 i |: 1(v)< Rl )}f( D@
where A = (4w Ne*Z2Z?} /mM)1In A with the diffusion coef-
ficient

Dy(v) " M2 2Mv? Mv? 5
= €er — | — €X - s
1 UT, kT, P\ "2k,

as discussed elsewhere [46,61,62]. Equation (5) arises from
the Coulomb cross section for charged particle collisions and
is averaged over the Maxwellian distribution function of the
background ions. The parameters in A are the density N of
the background species, the electronic charge e, the atomic
weights Z; of the background species, and the test particle Z.
The Coulomb logarithm is In A.

The system described by the Fokker-Planck equation (4) is
perturbed with the introduction of an energization mechanism.
In the space plasma environment, the energization mechanism
could include quasilinear wave-particle interactions modeled
by a diffusion in velocity space [38,63-65], so an appropriate
FPE is given by

af (v,t) A0 kT,
o7 =—28—|:D1(U)<1+—v—)j|f(vt)

B 9 9
Fa[szz(v)af(v,t’)], (6)

_|_

where B gives the strength of the wave-particle interaction as
modeled with the diffusion coefficient D,(v).

With the introduction of the dimensionless time,
t = l//l(), where t) = [N(Teff«/szb/M]71 with o =

[4n NZ?Z}e*In A]/(2kT,)*> the Fokker-Planck equation
(6) can be written in terms of « = 2B/A as a measure of
the strength of the wave-particle interaction that energizes
the particles. The Fokker-Planck equation (6) describes the
evolution of the isotropic portion of the distribution function.
The main objective in the present paper is the nature of the
steady-state distributions as determined by the choice of D, (v)
as well as the relaxation properties of the system towards a
steady-state distribution as a function of « and the mass ratio
M/m.

The steady distribution obtained by setting df/dt = 0 in
Eq. (6) is given by

dfss(x) 2x
f”(x) == |: 1+av hx3 Dy vy x) :|dx 0
Di(z)
where
N 2Z _z2
Dl(Z) = erf(z) - ﬁe s (8)

Vin = +/2kTp/m, z = \/yx, and y = M/m. It is clear from
Eq. (7) that the steady distribution is a Maxwellian for o = O,
that is in the absence of wave-particle interactions. For o #
0, the steady distribution is a non-Maxwellian distribution,
the features of which also depend on the mass ratio y.
The Coulomb cross section that varies as 1/g*, where g is
the relative velocity of two charged particles in a collision,
does not appear explicitly. As a consequence of the additional
diffusion term, the steady-state solution of Eq. (6), fis(v), is
no longer a Maxwellian distribution and depends on the ratio
of the strength of the wave-particle diffusion term relative to
the strength of Coulomb collisional relaxation; that is, on 8, as
well as the mass ratio m /M. The velocity dependence of this
steady-state distribution function depends on both D, (z) and
Dy (vpx). It is this mass-dependent dimensionless diffusion
coefficient that controls the Coulomb relaxation to equilibrium
and the features of f,(x).

It is useful to examine the dependence of ﬁl(ﬁx) versus
x. It is easy to see that, for x — oo, ﬁl(ﬁx) — 1, and for
small x,

N 4
lim D A ——y32x3,
lim 1(2) Sﬁy X

A dimensionless  collision  frequency v(x) =
77 D1(2)/(42%) can be defined. It is this strong mass
dependence that controls both the approach to a steady
state and the features of the steady-state distribution that
are emphasized in the present paper. It is easy to see that, in
the limit y — oo, ﬁl(z) — 1 and with Dy (v x) = 1/(vx),
the steady distribution function is then defined by

df(x) 2x
=— dx,
fie(x) 1+ ax?

which can be recognized as the ordinary differential equation
that defines the Kappa distribution (2), with x = (1 — a)/c.
This result arises owing to the particular speed dependence
of the drift and diffusion coefficients in the Fokker-Planck
equation that gives Eq. (9). This result does not arise owing
to long-range forces [33], nonextensive thermostatics [31,33],
indeterminacy [25], a collisionless weakly coupled plasma far
from equilibrium [27,28]), multiplicative noise [34], nonex-
tensive entropy [20,21,26,28-30] or Levy flights [35].

The analysis by Yoon et al. [42] and Kim et al. [41], although
based on the detailed physics of the interaction of electrons
with Whistler-type waves, reduces to the ratio of the drift coef-
ficient relative to the diffusion coefficient that varies as Eq. (7)
that leads to a Kappa distribution. The section that follows
presents some numerical results that further demonstrate the
range of nonequilibrium distributions with this simple model
for which only a subset are Kappa distributions. The works by
Ma and Summers [38] for Whistler waves and Hasegawa et al.
[39] for a radiation field use similar Fokker-Planck equations
with drift and diffusion coefficients that yield the same ordinary
differential equation for the steady-state distribution as in
Eq. (9). Similarly, the analysis of anomalous diffusion in an
optical lattice by Lutz gives a Kappa distribution with the
appropriate ratio of the drift to diffusion coefficients as in
Eq. (3) of Ref. [66] leading exactly to Eqgs. (9) and (2) here.

(€))
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FIG. 1. The solid curves are the nonequilibrium steady-state
distributions versus mass ratio m/M = 500, 160, 80, 40 20, and
10 from the topmost curve to the bottom curve approaching the
Kappa distribution shown as the dashed curve for the wave-particle
interaction Fokker-Planck equation. The Maxwellian is shown as the
dotted curve.

B. Numerical results

The steady-state nonequilibrium distribution from the
Fokker-Planck equation (6) is given by Egs. (7) and (8) and
depends on the strength of the wave-particle diffusion operator
denoted by « and the mass ratio y = M /m that defines the
Coulomb diffusion coefficient. Only in the limit y — oo is this
steady distribution function given by the Kappa distribution
9).

The variation of the steady nonequilibrium distribution
given by Eq. (7) versus the mass ratio is shown in Fig. 1 as
both loglo[xzfss(x)] and xzfss(x) versus x for x =3 and 7,
and mass ratios m/M = 500, 160, 80, 40, 20, and 10 from
the topmost curve to the bottom curve approaching the Kappa
distribution shown as the dashed curve. In Fig. 1, the distribu-
tions are plotted in the two forms one above the other with the
same data. The upper graphs enhance the high energy portion
of the distributions whereas the lower graphs demonstrate
the position of the maxima of the distribution functions. The
dotted curve is the Maxwellian whereas the dashed curve is the
Kappa distribution for y — 00. The solid curves are the steady
distributions for finite mass ratio and represent distribution
functions more energetic than the Kappa distribution. It is
clear that the steady distribution is a strong function of the
mass ratio and the distribution functions shown by the solid
curves are not Kappa functions. Almost all of the published
works giving Kappa distributions [38,39,42,44] are for the
m/M — 0limit. The nonequilibrium distribution functions for
finite m /M shown have extended “tails” in the high-x region,
more so than for the Kappa distribution shown as the dashed
line. The contrast between the Kappa distribution and the other
mass-dependent distributions appears greater with variation
of x? f(x,t) versus x shown in the lower graphs in Fig. 1.
The time-dependent distributions from the Fokker-Planck

2 4 6 8 10

FIG. 2. Time dependence of the nonequilibrium distribution from
an initial Maxwellian (innermost dashed curve) to the steady nonequi-
librium distribution (outermost dashed curve) for the wave-particle
interaction Fokker-Planck equation. (a) @ = 1/4,k = 3,y = 50, and
successive reduced times are t = 0.4, 2, 6, 10, and 20. (b) @ = 1/8,
k=T7y=50,0C)a=1/8,k =7,y =8, and(d) o = 1/10,k =9,
y = 100, and the successive times are as in panel (a).

equation (6) are shown in Fig. 2 for several system parameters.
The Chang-Cooper finite-difference algorithm was used to
solve the Fokker-Planck equation (6) as discussed elsewhere
[67,68]. The dashed curves show the initial Maxwellian and
the energetic final nonequilibrium steady-state distributions.
The features of the distribution functions should be viewed
in conjunction with the change in the temperature and the
Kullback-Leibler entropy shown in Fig. 3. In this figure, the
system parameters are chosen to show the different heatings
of the test particle owing to the wave particle interaction. Also
shown is the time dependence of the Kullback-Leibler entropy
for which d gy (t)/dt > 0 and Xk (t) — 0ast — oo. Pezzi
[9] has presented a similar time history for a nonlinear Landau
collision operator based on the Boltzmann H theorem for a
one component plasma (see Figs. 2 and 5 in this reference).
We can conclude from these results that the Tsallis entropy
plays no role in the determination of these time-dependent

(a)

Ykr(t)

0 10 20 3%0 40 50 60

FIG. 3. Variation of the temperature ratio, 7(¢)/T,, and the
Kullback-Leibler entropy, ¥k (), corresponding to the distributions
in Fig. 2 for the wave-particle interaction Fokker-Planck equation.
For the entropy, the curves are in the order (c), (b), (a), and (d) from
top to bottom.
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nonequilibrium distributions nor for the steady distributions
that are not Kappa distributions.

III. ELECTRON TRANSPORT IN AN EXTERNAL
ELECTRIC FIELD AND THE APPROACH TO A
NONEQUILIBRIUM STEADY STATE

We consider the relaxation of electrons dilutely dispersed in
a heat bath of atoms of mass M at constant temperature 7, and
subject to an external uniform constant electric field £. Owing
to the very small electron to moderator mass ratio m /M, the
anisotropic part of the distribution function can be represented
by a single Legendre polynomial; that is,

fv.t) = fow,t) + fi(v,0) P1(0), (10)

where 6 is the angle between v and the polar axis taken in the
direction of the electric field. Equation (10) is the well-known
two-term approximation [48,49,69].

The spherical portion of the electron distribution function
fo(v,t) for this small-mass-ratio limit satisfies a linear Fokker-
Planck equation with velocity-dependent drift and diffusion
coefficients as defined by the electron-moderator momentum
transfer cross section and the magnitude of the electric field.
Similar Fokker-Planck equations have been used to study many
different electron transport systems [70-72] including electron
attachment [73,74].

A. Fokker-Planck equation

The coupled equations for the first two terms fy(v,?) and
fi(v,t) are solved by replacing fi(v,?) in terms of fy(v,t)
as described elsewhere [49,68,69]. The result is the Fokker-
Planck equation for fy(v,?), given by

oy _ 10T, oy o
5 = 12 ax [2)6 o(x)fo+x"B(x) o ] (11)
where
2
B(x) =xo0(x)+ , (12)
xo(x)

and the field strength parameter is 82 = (M /6m,)(eE /nkT),)>.
Henceforth the spherical portion of the distribution f(v,?),
Eq. (10); namely, fo(v,?), is written as f(x,t) with v = vx.
The steady nonequilibrium electron distribution arising from
an interplay of the acceleration in a steady electric field and
moderated by electron-atom collisions is given by

x yZO_
fss(x) = Cexp |:—2/ dy], (13)

o B
where C is a normalization. The dimensionless time t = ¢'/t

is defined by
—1
e 2kpT,
g iy il LU B (14)
2M m,

where n, is the density of the bath species and oy is a
convenient hard sphere cross section. The distribution function
fss(x) given by Eq. (13) is often referred to as the Davydov
distribution [68,75,76] and denoted by D(x).

@ , ®)

FIG. 4. Time-dependent distribution function, f(x,) versus x for
different 7, for the e-atom Fokker Planck equation. The dashed curves
are the initial Maxwellian distribution with 7'(0)/ T, = 30 and the
final Maxwellian distribution with 7(0)/ 7, = 1. (a) p = 05t /Tt =2,
45,7.5,and 10 (b) p = 15 ¢/t = 0.5, 1.0, 1.5, 2.5, and 3.75 and the
symbols show the Maxwellian distribution parametrized by 7'(¢). The
results are for the field-free case and g = 0.

In this paper, model systems are used so as to better
understand the manner in which the speed dependence of
the cross section affects the details of the time-dependent
nonequilibrium distributions and the steady-state distributions.
A reduced model cross section of the form o(x) = op/x?
is chosen and the relaxation behavior versus p is studied.
The systems with p = 0 and 1 correspond to the hard sphere
and Maxwell molecule cross sections, respectively. The cross
section with p = 2 and finite § leads to the ordinary differential
equation given by

dfss(x) 2x
= — dx,
fss(x) 1+ p2x2
analogous to Eq. (9) which are the defining equations for the
Kappa distribution (2) with x = (1 — g2)/B>. For « > 3/2,
B < +/2/5. Although not central to the current objectives, we

briefly include the steady-state solution with p = 3 which can
be shown to be given by

15)

fss(x) = C(B)exp [—é tan”" (ﬂxz)}, (16)

which exhibits infinitely long hot “tails” that do not decay to
zero. There is some experimental and theoretical evidence of
power law cross sections [77,78]. This and other aspects of
the Fokker-Planck equations introduced here will be studied
further in a forthcoming presentation.

B. Numerical results

Figures 4(a) and 4(b) show the time evolution of an initial
Maxwellian distribution at temperature 7' (0) = 307, forp = 0
and p = 1, respectively. The time-dependent distributions are
determined with the Chang-Copper [1,68] finite-difference
solution of Eq. (11) [68,76]. It is this mass-dependent di-
mensionless diffusion coefficient that controls the Coulomb
relaxation to equilibrium and the features of f;(x). The
case with p = 0 corresponds to a hard sphere momentum
transfer cross section whereas, for p = 1, the cross section
corresponds to the Maxwell molecule cross section. The initial
and final Maxwellian distributions are shown as the dashed
curves. The other distributions are at different times as given
in the caption. Figure 4(b) with p =1 is for the Maxwell
molecule cross section and belongs to the class of systems
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t

FIG. 5. The variation of the temperature, 7'(t)/7,, and the
Kullback-Leibler entropy, Xk (¢), for p = 0 and p = 1 correspond-
ing to the distribution functions in Fig. 4. The relaxation is slower for

p=1

which exhibit canonical invariance [79]. As a consequence,
the intermediate distributions are also Maxwellian at the time-
dependent temperature 7'(¢), which varies with time ¢ as a
pure exponential. The solid curves represent the solutions of
the Fokker-Planck equation as described whereas the symbols
show a Maxwellian distribution evaluated with T (¢).

The time variation of T(¢t)/T, for the system variables
shown in the caption of Fig. 5 is on the left-hand side (LHS)
of the figure. The curve for 7'(t)/T, with the symbols is
the pure exponential decay which coincides exactly with the
temperature of the time-dependent distribution obtained with
the Fokker-Planck equation which is shown as the solid curve.
This behavior is a consequence of the particular property of
this Fokker-Planck equation that exhibits canonical invariance
[79]; namely, the preservation of a Maxwellian distribution
with a time-dependent temperature. The variation of the

= ! \ = K
004t AN L 004 ‘
= Y/ \ = /
N ! 4 \ \ ] ! \
w Yy \ I8 : \
002t ) \ 0.02| :
0 = 0l ==
0 1 2 3 4 0 1 2 3 4
X X

FIG. 6. Time-dependent distribution function, x% f(x,1), versus
x for different t. The dashed curves are the initial Maxwellian
distribution with 7'(0)/ 7, = 1 and the final nonequilibrium steady-
state distribution. The e-atom cross section is o (x) = 0y/x” and the
dimensionless electric field strengthis 8. (a) p = 0,8 = 6,(b) p =0,
B=12,(c)p =1, =6,and(d) p = 1, 8 = 12; the five solid curves
are the distribution functions for the reduced times, 7 /7 equal to 0.004,
0.008, 0.032, 0.048, and 0.12.

10 0

8 ®) 05
S = -
= Wy & 15
=, S
= D)

2 ©) -2

0 -2.5

0 0.02 0.04T0.06 0.08 0.1 0 0.02 0.04f0.06 0.08 0.1

FIG. 7. Time variation of 7'(¢)/ T, and Xy (¢) for the distributions
in Fig. 6. The temperature curves are labeled as in the previous figure.
For the Kullback-Leibler entropy, the upper portions of the curves
near steady state are ordered from top to bottom with (p,8) = (1,12),
(1,6), (0,12), and (0,6).

Kullback-Leibler entropy for these distributions is also shown
in Fig. 5 with d Xk (#)/dt > 0 and g1 (¢) — 0 ast — oo.
The time-dependent distribution functions for p = 0 and
p =1 are shown in Fig. 6 for two different dimensionless
electric field strengths, 8 = 6 and 12, respectively. The heating
of the distribution is evident in all cases and is largest for
(p,B) = (0,12) and smallest for (p,B) = (1,6) as shown by
the temperature increase in Fig. 7. The monotonic growth of
the Kullback-Leibler entropy, Xky (¢), is also shown in Fig. 7
consistent with d Xk (¢) > 0 and Xk (r) — Oast — oo. The
steady-state nonequilibrium distributions, also shown in Fig. 6
with dashed curves, are not Kappa distributions. For the hard
sphere cross section, the distribution function for large electric

(b)

FIG. 8. Time-dependent distribution function, x?f(x,t) versus
x for different z. The dashed curves are the initial Maxwellian
distribution with 7(0)/ T, = 1 and the final nonequilibrium steady-
state distribution. The e-atom cross section is o(x) = op/x? and
the dimensionless electric field strength is o,. (a) p =1, B =6.
(b) p=1, B =12 the five solid curves for panels (a) and (b) are
the distribution functions for the reduced times 7/#, = 0.01, 0.02,
0.04, 0.06, and 0.15, respectively. (¢c) p = -2, 8 =0.5, k =3 and
(d) p =2, 8 = 1/4/3, k = 2; the five solid curves for panels (c) and
(d) are the distribution functions for the reduced times ¢/7, = 0.04,
0.15, 0.25, 0.4, and 0.75, respectively. The solid symbols in panels
(c) and (d) represent the Kappa distribution calculated with Eq. (2).
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FIG. 9. Time variation of T'(¢)/ T, for the distributions in Fig. 8
and labeled as in the previous figure. For the curves labeled (a) and
(b), the time axis should be divided by 10. The curves correspond to
system variables accordingto(a) p = 1,8 =3,(b)p=1,8=6,(c)
p=2,=05k=3,and(d)p=2,8= 1/«/§,K = 2. For X (1),
the curves from top to bottom correspond to (d), (c), (b), and (a) and
the timescale factor is as for the temperature relaxation.

field strengths (8 — o0) tends to a Druyvesteyn distribution
which varies as x2e—*" [75,76], where c is a constant.

A comparison of the time dependence of the distribution
functions for p =1 and p =2 is shown in Figs. 8(a) and
8(b) with p = 1 and p = 2 for Figs. 8(c) and 8(d). The time-
dependent approach to this steady Davydov distribution which
coincides with the Kappa distribution is also provided in terms
of the Kullback-Leibler relative entropy, as shown in Fig. 9 and
discussed later. The important feature to point out is that the
steady distributions for p = 2 in Figs. 9(c) and 9(d) are Kappa
distributions given by Eq. (15). The symbols on the dashed
curves are the values of the Kappa distribution calculated with
Eq. (2). This is consistent with the result in Sec. IIT A that gave
the Kappa distribution. It is interesting that the heating by the
electric field is greater for p = 1 than for p = 2 because the
relaxation rate is slower. This is corroborated in Fig. 9 which
shows that the ¢ variation of T'(t)/ T, with the largest heating
for p = 1. The relaxation rate is also faster for p = 1 than
for p = 2. The approach to a steady-state distribution, be it
a Kappa distribution as in Figs. 8(c) and 8(d) or as a general
Davydov distribution as in Figs. 8(a) and 8(b) is rationalized
with the Kullback-Leibler entropy shown in Fig. 9.

A comparison of the time dependence of the distribution
functions for p = land p = 2isshowninFig. 8 with p = 1 for
Figs. 8(a) and 8(b) and p = 2 for Figs. 8(c) and 8(d). The time-
dependent approach to this steady Davydov distribution which
coincides with the Kappa distribution is also provided in terms
of the Kullback-Leibler relative entropy, as shown in Fig. 9 and
discussed later. The important feature to point out is that the
steady distributions for p = 2 in Figs. 9(c) and 9(d) are Kappa
distributions as defined by Eq. (15). The symbols on the dashed
curves are the values of the Kappa distribution calculated with
Eq. (2). This is consistent with the result in Sec. III A that gave
the Kappa distribution. It is interesting that the heating by the
electric field is greater for p = 1 than for p = 2 because the

relaxation rate is slower. This is corroborated in Fig. 9 which
shows that the ¢ variation of 7'(¢t)/ T, with the largest heating
for p = 1. The relaxation rate is also faster for p = 1 than
for p = 2. The approach to a steady-state distribution, be it
a Kappa distribution as in Figs. 8(c) and 8(d) or as a general
Davydov distribution as in Figs. 8(a) and 8(b) is rationalized
with the Kullback-Leibler entropy shown in Fig. 9.

IV. SUMMARY

This paper has considered the nonequilibrium effects in
two different systems, each parametrized with two variables.
Each system involves the time evolution of the translational
distribution function for a minor test particle in contact with a
heat bath at constant temperature. The first system considers
a Fokker-Planck equation for the distribution function of a
test particle subject to wave-particle interactions mediated by
Coulomb collisions with heat bath particles. The time evolution
and the steady-state distributions are dependent on the particle
mass ratio and the strength of the wave-particle interaction
o perturbing the system from equilibrium. The steady-state
distributions can generally be considered as Davydov distribu-
tions [75,76] and are Kappa distributions in the limit for the
test particle to heat bath particle mass ratio, m/M — 0.

The second system considers a model system for electron
transport in an external electric field of dimensionless strength
B. The electron-atom momentum transfer cross section is
taken to be a power law, o(x) = o,/x?. The time-dependent
distributions of electrons for different field strengths and versus
the parameter p are determined from the appropriate Fokker-
Planck equation. The nonequilibrium steady-state distributions
vary considerably with 8 and p and are generally Davydov
distributions and become Kappa distributions only for p = 2.
The approach to a steady-state distribution is rationalized in
every case with the Kullback-Leibler entropy.

This steady-state Kappa distributions calculated in this
paper do not require many of the physical attributes discussed
by numerous authors on the subject of Kappa distributions
and nonextensive entropy. The systems in this paper that yield
Kappa distributions in a certain limited parameter space are not
necessarily parametrized by long-range interactions [33], Levy
random walks [35], multiplicative noise [34], collisionless
plasmas [27,28], nonextensive thermostatics [31,32], indeter-
minacy [25], etc. In particular, the Tsallis entropy functional
has only one parameter and cannot describe the multitude of
nonequilibrium distributions in the parameter space of these
two system.
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