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Tracking tracer particles in heterogeneous environments plays an important role in unraveling material prop-
erties. These heterogeneous structures are often static and depend on the sample realizations. Sample-to-sample
fluctuations of such disorder realizations sometimes become considerably large. When we investigate the sample-
to-sample fluctuations, fundamental averaging procedures are a thermal average for a single disorder realization
and the disorder average for different disorder realizations. Here we report on non-self-averaging phenomena
in quenched trap models with finite system sizes, where we consider the periodic and the reflecting boundary
conditions. Sample-to-sample fluctuations of diffusivity greatly exceed trajectory-to-trajectory fluctuations of
diffusivity in the corresponding annealed model. For a single disorder realization, the time-averaged mean square
displacement and position-dependent observables converge to constants because of the existence of the equilibrium
distribution. This is a manifestation of ergodicity. As a result, the time-averaged quantities depend neither on the
initial condition nor on the thermal histories but depend crucially on the disorder realization.
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I. INTRODUCTION

Elucidating anomalous dynamics in disordered media is of
considerable theoretical and experimental interest [1-9]. In
strongly disordered media such as a living cell, anomalous
diffusion, i.e., a nonlinear growth of the mean square displace-
ment (MSD), non-Gaussian propagator, and large sample-to-
sample as well as trajectory-to-trajectory fluctuations of the
MSDs are often observed [8,10-14]. In general, the fluctua-
tions of long time-averaged observables are either a signature
of ergodicity breaking or sample-to-sample variability, namely,
the effect of non-self-averaging. The quenched trap model
(QTM), which is a random walk model in a random potential
landscape, is used to obtain a deep understanding of such
anomalous dynamics [2,15-18], where the word “quenched”
implies that the random potential landscape does not change in
time (more precisely, the timescale of changes of the random
energy landscape is much larger than the timescale of the
dynamics). In the QTM, there is a so-called glass temperature,
below which many anomalous behaviors can be observed due
to the divergence of the mean trapping time. In particular, the
MSD grows as ({r(¢) — r(0)}?) o« t? (8 < 1), where r(t) is a
position at time z. The power-law exponent 8 characterizes
anomalous diffusion and depends on the temperature as well
as on the space dimension [2].

When we treat statistical quantities in quenched environ-
ments, there are basically three different averaging procedures
to calculate the ensemble-averaged MSD, i.e., thermal histo-
ries, initial conditions, and disorder realizations. Moreover,
another averaging procedure can be used to calculate the MSD
in single-particle-tracking experiments [8,19]; e.g., one can use
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the time-averaged MSD defined by
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where A is the lag time, and ¢ is the measurement time. For
Brownian motions in homogeneous media, this time-averaged
MSD as a function of the lag time A coincides with the
ensemble-averaged MSD ([r(A) — r(0)]?) if the measurement
time is large and A < ¢, where the average (-) implies the
thermal histories and the initial condition, which is uniform
because of the homogeneity of the environment. In other words,
starting points do not play any role because the system is
homogeneous.

In highly heterogeneous systems, this equivalence will be
broken even when the local or temporal dynamics can be
described by Brownian motion [20-22]. In these systems, the
time-averaged MSDs do not coincide with the corresponding
ensemble-averaged MSD. Moreover, the time-averaged MSD
with a fixed A does not converge to a constant, but the
trajectory-to-trajectory fluctuations are intrinsically random.
Such intrinsic fluctuations of the time-averaged MSDs were
found in the QTM [17,18] as well as in other stochastic
models [23-25]. These distributional behaviors imply either
a breakdown of ergodicity or non-self-averaging. In systems
with a breakdown of ergodicity known as weak ergodicity
breaking, distribution functions of time-averaged observables
depend on the stochastic model as well as on the class of
the observable [17,23,25-29]. These distributional behaviors
are related to a generalized concept of ergodicity, i.e., infinite
ergodic theory [30-34].

When a quenched disorder of a finite but large system
is not so strong, the time-averaged MSDs will remain un-
changed in different disorder realizations. In other words, the
time-averaged MSDs do not strongly depend on the disorder
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realization. This property is called self-averaging (SA) [2,35].
When an observable in the system has an SA property, the
observable does not depend on the disorder realization. In the
QTM, the quenched disorder is represented by the random
energy landscape. Because the diffusion coefficient in the
system is determined by the mean jump rates (the inverse
of the sample mean trapping time at the random potentials)
[36,37], the SA property is a consequence of the law of large
numbers for the mean trapping times at random potentials.
Physically, this situation is related to the fact that a particle
explores a large portion of the system, sampling many local
environments, which is an approximate measure of the typical
disorder in the system [38,39]. Therefore, the time-averaged
MSD converges to a specific value, which is independent of
the disorder realization when the system size (the number
of random potentials) is sufficiently large. However, in the
QTM below the glass temperature, the law of large numbers is
broken due to the divergence of the mean trapping time. Itis an
interesting problem to clarify how the measured diffusivity and
other observables under different disorder realizations spread
in the large limit of the system size.

A continuous-time random walk (CTRW) is often used to
understand anomalous dynamics in disordered media [2,5,9].
It is an annealed model of the QTM and also a good approx-
imation for the QTM when the dimension is greater than two
[17,40]. Although the CTRW has been extensively studied
analytically and has successfully explained many aspects of
anomalous diffusion in disordered media [1,23,41-43], it lacks
the concept of disorder realization. Therefore, one cannot use
the CTRW approximation when considering sample-to-sample
fluctuations of disorder realizations. However, there are few
exact results for the QTM, unlike for CTRWSs, because the
quenched dynamics are crucially affected by the disorder
realization. Therefore, it is important to obtain exact theoretical
results for the randomness of the time-averaged MSD in the
QTM. Moreover, it is interesting to compare fluctuations of
time-averaged observables in the QTM with those in the
CTRW, because the differences between those fluctuations
reveal unique dynamics of the QTM, which provide rich
physical behaviors.

In this paper, we show how the quenched dynamics are
different from the annealed ones by using the QTM with
a finite system size and characterizing the SA property by
the SA parameter proposed in our previous study [37]. Key
facts that we use are ergodicity (existence of the equilibrium
distribution for the particle’s position) and the generalized
central limit theorem (stable law) for trapping times [44]. Our
main idea is to consider finite but large systems with disordered
environments. With the aid of the finite system size, we
rigorously obtain the equilibrium distribution of the particle’s
position, which determines dynamical and static properties
such as diffusivity and average particle position. Using the
key facts and considering the different disorder realizations,
we provide a universal distribution of diffusivity below the
glass temperature, which is a broad distribution, and thus the
diffusivity is non-SA. We show that the sample-to-sample
fluctuations of the time-averaged MSDs in different disorder
realizations are substantially large compared with those in the
annealed model (CTRW). A brief summary of a part of our
results was recently published in Ref. [37].
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FIG. 1. Sample-to-sample fluctuations of the MSDs (o = 0.5 and
L = 10), where we consider five different disorder realizations. Cross
(x) and plus (4) symbols are the results of the ensemble-averaged
and the time-averaged MSDs, respectively. Lines represent the theory,
i.e., Eq. (13). The initial points follow the equilibrium distributions in
the ensemble-averaged MSDs, and the measurement time is ¢ = 107
in the time-averaged MSD. The two disorder realizations (shapes of
the random potentials) with the highest and the lowest diffusivities
are shown in the inset figures.

II. MODEL AND EQUILIBRIUM STATE

As described above, we consider the QTM with a finite
system size as a model of diffusion in strongly disordered
environments. The QTM is a coarse-grained model of the
diffusion in a continuous random energy landscape. The QTM
that we consider here is a random walk in a quenched random
energy landscape on a finite d-dimensional hypercubic lattice.
Quenched disorder implies that the disorder realization does
not change with time during our measurement timescale. The
lattice constant is set to unity, and the number of lattices with
different energies is finite. Thus, a site r can be specified by r =
(ri,...,rq)eg,rp=1Ilwithl =1,2,...,L(k=1,...,d).In
the QTM, the random energy landscape is represented by the
depths of the potential only. In other words, all the upper parts
of the potential energy landscape are exactly the same (see
inset figures in Fig. 1). We will shortly discuss the boundary
conditions.

We assume that the depths of the potential energies at
the sites are independent and identically distributed random
variables. Moreover, we assume that the depth distribution
p(E) follows an exponential distribution (£ > 0):

p(E) =T, exp(—E/Ty), )

where T, is a parameter called the glass temperature (here
kp = 1). As will be shown, below the glass temperature, the
mean of the trapping times in infinite systems diverges, and thus
various anomalous behaviors in the dynamics can be observed
[2,16,17,45-48]. A particle is trapped in the random potential
and eventually escapes from the trap. It then jumps to one of
the nearest neighbors with equal probability, i.e., 1/(2d). The
trapping time, that is, the time that a particle is trapped in one
of the valleys of the random potential landscape, is a random
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variable. According to the Arrhenius law and Kramers’ results
[49], the trapping-time distribution at site r, p(t; t,), follows
the exponential distribution with mean t, = toexp(E,/T),
where E, is the depth of the energy at site r, T the temperature,
and 7y a typical timescale. Because the depth of the energy E,
is generated by the exponential distribution, Eq. (2), 7, is also
a random variable.

Because we have L¢ points on the lattice system, we use
the set {7y, ...,7.«} for the mean trapping times (we used also
7, where the index r is a vector). For the given mean trapping
times, i.e., Ty, ... ,Tr¢, the probability density function (PDF)
Y1 () of the trapping times in finite systems can be described
by

1 &
AGES> DY o exp(T/T) 3)
j=1

in a mean-field sense (in a mean field, one uses a unique
trapping-time PDF, so there is no spatial disorder). We called
this PDF the sample mean PDF of the trapping times. If there
is a correlation in the random energies, the sample mean PDF
becomes different from Eq. (3) [50]. Using Eq. (2) and the
continuous approximation, one can obtain the PDF ¢ (t) of
the trapping times in infinite systems as follows:

(o) = fo p(z:1)0(E)dE

*° T _ 1 _z_k
= exp| ——e ——e & TdE. @
0 ) 707,

For large T (> 1), exp (—T’—Oe’%) can be ignored when E is
not sufficiently large; i.e., when £ < —T In(7y/ 7). Therefore,
one can approximate the integral as

Nty

° 1 _e_k
w(t)ocf — ¢ &t TJdE xt '™ (5)
—Tn(zo/7) T01g

for T — oo, where @ = T/ T,. In what follows, we denote the
PDF as v, (7) to express the explicit dependence on « and set
the PDF as

*© d / / ~ oc -

/T T~ r e

where c is a constant that depends on 1y and «. We note that the
mean trapping time, (t) = fooo Y, (t)dr, diverges for T <
T,. In infinite systems with quenched disorders, anomalous
behaviors such as subdiffusion, weak ergodicity breaking,
aging, and large sample-to-sample fluctuations are caused by
the lack of a characteristic timescale (divergent mean trapping
time) [2,16-18,20,24,40,45-48,51,52]. Due to the lack of the
first moment, the Laplace transform of the PDF for o < 1
becomes the following form [53]:

(t = ), (6)

Vals) = foo Ve dx =1 —cs* +o(s%), (7)
0

fors — 0.
Because we consider finite systems with quenched disor-
ders, the sample mean trapping time
LL’

1
will)= 7737 ®)

J=1

never diverges for all temperatures even when the temperature
is below Tg, because the number of sites in the sum is finite.
With the aid of the finite characteristic time, the system
can approach equilibrium, and the equilibrium distribution is
uniquely determined.

The CTRW is an annealed model that mimics certain aspects
of the dynamics of the QTM. In the CTRW, the particle
jumps between nearest neighbors with waiting times drawn
from Eq. (6), and the waiting-time distributions for all lattice
points are identical. In that sense, the system is homogeneous
and the CTRW is considered as the mean-field model of the
QTM. For infinite systems, statistical properties such as the
squared displacement and the number of jumps in the QTM
with d > 2 can be approximately obtained by those in the
CTRW [40]. However, for d < 2, there are clear differences in
the power-law exponent of the ensemble-averaged MSD and
the scatter of the time-averaged MSDs between the CTRW and
the QTM [2,17,18]. Therefore, statistical laws for diffusivity
depend on the dimension and whether the model is quenched or
annealed for infinite systems. In the CTRW, the mean trapping
time diverges even when the number of lattice points is finite.
Thus, the system never reaches equilibrium and shows weak
ergodicity breaking [29,54].

Here we consider two boundary conditions: periodic and
reflecting boundary conditions. The master equation for a

single disorder realization r,(i) andl <rp<L(k=1,...,d)
is given by
dPp, 1 P, P,
= — —N — 0, 9
i =22 ©

where the index i represents a disorder realization, and the sum
is over the nearest-neighbor sites and P, is the probability of
finding a particle at site r. Here 2d is the number of nearest
neighbors on the cubic lattices under consideration. For the
periodic boundary condition, the energies E, are periodically
arranged: E,, = E,,  forall integers k and n. For d = 1, the
master equation is given by

dby _1(P P\ P
ar ~ 2\ 0 ) T

dp, 1 PL—1+P1 Pr
dt 2 ‘cgil ‘L’l(i) ‘L’g)‘

For the reflecting boundary condition, a particle will return to
the previous position when it hits the boundary. Ford = 1

dPl_l P2 Pl dPL_l PL—l PL
ar 2\ o) Tar T2\ o)
A stationary solution (equilibrium state) in both cases is
uniquely determined by
(@)
eq __ ‘C’l

P = T (10)

We note that Eq. (10) is the exact solution for ddf’ =0 for
both boundary conditions. Because the disorder realization,
ie., 1y, ...,T4,is completely different in different realizations,
the equilibrium ensemble average crucially depends on the

disorder realization. This equilibrium distribution can also be
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obtained by coarse graining of the continuous random energy
landscape.

III. NON-SELF-AVERAGING DIFFUSIVITY
AND ERGODICITY FOR THE PERIODIC
BOUNDARY CONDITION

In this section, we focus on the periodic boundary condition,
and consider sample-to-sample fluctuations (non-SA property)
of the ensemble-averaged MSD and the ergodicity of the time-
averaged MSD.

A. Sample-to-sample fluctuations of the
ensemble-averaged MSD

Here we consider the ensemble-averaged MSD, where the
ensemble average is taken by many realizations of thermal
histories and the initial condition (equilibrium distribution) for
a fixed disorder realization. The MSD is determined by the
mean number of jumps and the second moment of the jump
length in symmetric random walks. Therefore, the ensemble-
averaged MSD for a fixed disorder realization is given by
({r@t) — r(O)}z)eq = (Ni)eq> Where (N;)eq is the mean number
of jumps until time ¢ and (-)¢q implies the equilibrium ensemble
average, i.e., the initial points following the equilibrium state.
Because the probability of finding a particle at r for the periodic
boundary condition is invariant at equilibrium, the average
jump rate is also invariant. Using Eq. (10) yields

Pt
Z,: o i

where we deleted an L dependence of ;(L). Thus, (N;)eq
becomes

(Nyeg = — (12)
i

for a disorder realization i. This result is exact for any ¢ >
0 because the system is in equilibrium. Thus, the renewal
function, i.e., the mean number of jumps as a function of time,
is time-translation-invariant, i.e., (N;)eq = (Ny4rr — Ny)eq for
any t' with the aid of the equilibration. We note that this
average is taken over equilibrium initial conditions and thermal
histories but not over disorder.

Because there is no boundary in the sense that the position
r(t) is not bounded, the MSD grows linearly with time; i.e.,
({r@t) — r(O)}Z)eq = t/u; for any ¢t > 0. Hence, the diffusion
coefficient defined by D; = ({r(¢) — r(O)}z)eq /t becomes

D, = —. (13)
Mi

In equilibrium, the ensemble-averaged MSD is also time-
translation-invariant; i.e., {{r(t) — r(O)}Z)eq ={r@+1)—
r(t")}?)eq for any ¢ and ¢’ > 0.

Here we consider the SA property of the ensemble-averaged
MSD by taking the limit of L — oo. If the mean trapping
time, which is given by (7) = fooo T4 () dT, exists (does not
diverge), the law of large numbers holds for the sample mean
of the trapping times. Because the mean trapping time is finite

for o > 1, we have

T1(1)+"'+r£ld)

7d — (1) (L — 00), (14)

where T}El) is the mean trapping time at the kth site for the ith
disorder realization. Because (t) is determined uniquely by
the trapping-time distribution, the diffusion coefficient does
not depend on the disorder realization. This is the SA property
for diffusivity when o > 1.

On the other hand, the law of large numbers breaks down
fora < 1. Instead, the generalized central limit theorem holds
for the sum of T, o which states that the PDF of the normalized

,ie., Z D /(L) follows the one-sided Lévy

sumofr =T

distributlon [44]:
o)+t
( Ld)l Ja
where X, is a random variable following the one-sided Lévy
distribution of index «. More precisely, the Laplace transform
of the PDF of X,, i.e., (¢~*X«), is given by

= X, (L > 00), (15)

o

)~ e (16)

(e—SX

Because the inverse Laplace transform of e~*" denoted by

L7 {e™"}(x) with x > 0 can be represented by the following
infinite series [44]:
l oo

« 'k 1
71{€7S }(X) Z ( (o4 + ) 7a)k

sin(kma),

(17)
we have the PDF of X, denoted by /,(x) with x > 0

I,(x) = —n]—x 3 W(—cx—a)k sin(kra).  (18)

Using Eq. (15), the diffusion coefficient can be represented by
D; = L4V x =1 (19)

Because the PDF of X, is not a delta function, D; has sample-
to-sample fluctuations; i.e., it depends crucially on the disorder
realization. In Fig. 1 we plot both the ensemble-averaged and
the time-averaged MSDs. The two MSDs almost coincide
because of the ergodicity, which will be shown later.
The PDF of X! can be explicitly represented by using the
one-sided Lévy distribution:
oo
Pr(X,' <y)=Pr(X, >y )= / lo(x)dx.  (20)
y—l
We call this distribution the inverse Lévy distribution. Dif-
ferentiating Eq. (20), we obtain the PDF of X!, denoted by

ga(¥):

—cy®)Fsin(krre).  (21)

. Tka + 1
ga(y)= Z (a+)

k:

The inverse Lévy distribution is a special one of the modified
Mittag-Leffler distribution, which is a one-parameter extension
of the Mittag-Leffler distribution [18]. The PDFs of the inverse
Lévy distributions for different exponents « are represented in
Fig. 2. From Eq. (21), we have g,(y) o« y*~! for y — 0. In
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FIG. 2. Inverse Lévy PDF used to describe the fluctuations of
diffusivity in the QTM, for different 0 < @ = T/T, < 1. All PDFs
are unbounded at the origin.

other words, the PDF is unbounded at the origin, corresponding
to very small diffusivity in some disorder realizations, which
cannot be observed in the annealed model (CTRW). Figure 3
shows the PDF of D; obtained by numerical simulations, where
we generated the random energy and calculated the sample
average pu; to obtain D; by D; = 1/u;. The inverse Lévy
distribution is the exact distribution of D; for any dimension
and is valid for finite and large L.

Here we derive the Laplace transform of the inverse Lévy
PDF (21). In the same way as in Ref. [17], we use the auxiliary
distribution: G (y,h) = Pr(X, > hy™!). The Laplace trans-
form of G,(y,h) with respect to & is given by

—cs%y

o0
) -
Ga()ﬂs) = / dhe—ShGa(y’h) = f) (22)
0

where we used the Laplace transform of the one-sided Lévy
distribution, i.e., Eq. (16). Moreover, the Laplace transform

10

*

0=0.75

0.1

P(D)

0.01

0.001

FIG. 3. Probability density functions of D; for different o, where
we consider 10° different disorder realizations. Symbols are the results
of numerical simulations (d = 1 and L = 10°), and the solid curves
are the theoretical results.
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FIG. 4. Disorder average of the diffusion coefficients as a function
of the system size L for several o (d = 1), where we used 10’ different
disorder realizations, and the disorder average (D) ;s can be calculated
by taking the disorder average of D; = 1/u;. The symbols are the
results of numerical simulations, and the solid lines represent Eq. (27).

with respect to y gives

o0
Gulv.s) = / e Galy.s)dy
0

00 Nk (kL afkuil
=1[1_Z<v>r(a><cs> } o)

s|v ak!
k=0

The inverse Laplace transform with respect to s gives

A 1S (AT (B e
G“(”’h)_ﬁ_;ak!r(k+2) (T) G

Hence, the Laplace transform of the inverse Lévy PDF is given
by

) =vGa(v.)=1-3" aklk+ 1! \c

o0 (_1)kvk+ll-(kai1) <1>k;1
k=0
(25)

Using the relation between the Laplace transform and the
moments, we have the first and second moments of Xojl:
r(i r(2
P IR - N OU R e

1 o 2
oCe oCe

From Eq. (26), we obtain the disorder average of D;:

Ld(lfl/ot)l-'(afl)

<D>dis = acl/a

, (27
where (-)4;s means the disorder average. Recall that (D)5 has
units of m?/s.

The disorder average of D; depends on L and thus becomes
zero as L goes to infinity: (D)gis = L4~V (X 1) g — 0 as
L — oo (see Fig. 4). In infinite systems, the MSD grows
as ({r(t) — r(0)}*>) o« t# with B < 1. Because the diffusion
coefficient can be defined as the limit for the slope of the MSD,
i.e., D = lim,_ o {{r(t) — r(0)}?)/t,itbecomes zero in infinite
systems, which is consistent with the fact that (D)4 — 0 as
L — oo.

Because the diffusion coefficients exhibit sample-to-sample
fluctuations, we quantify the non-SA property by the SA
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10 T ; T
SA parameter in QTM with confinement
EB parameter in QTM without confinement (1d) — —
103 - EB parameter in CTRW =====-- )

FIG. 5. Self-averaging (SA) parameter as a function of «. The
symbols are the result of a numerical simulation (d =1 and L =
10%), where we used 10° different disorder realizations. The solid line
represents the theory [Eq. (40)]. The dashed and dotted lines represent
the EB parameters in the QTM with no confinement and the CTRW,
respectively [17,23].

parameter, defined by

(D?)ais = (D)3is
<D>ﬁis

If the SA parameter becomes zero for L — oo, the system is

called SA because sample-to-sample fluctuations become zero

when the systems become large. Using the first and second
moment of D;, we have

SA(L; D) = (28)

0 (x>1)

li A(L; D) = 2 2
Jim SA(L; D) “F()—l (29)
2

r()
It follows that the diffusion coefficient is not SA for « < 1.
The SA parameter becomes exponentially larger than the
ergodicity-breaking (EB) parameter defined below for the

corresponding infinite system especially for small o (see
Fig. 5).

J

B. Ergodicity of the time-averaged MSD

Here we consider the trajectory-to-trajectory fluctuations
of the time-averaged MSD for a fixed disorder realization,
i.e., the ergodic property of the time-averaged MSD. If the
time-averaged MSD is an ergodic observable, it converges to
a constant in the long-time limit. In other words, there are no
intrinsic fluctuations in the time-averaged MSDs if the system
is ergodic. To characterize the ergodic property quantitatively,
we use the EB parameter [23] defined by

20N 7112 20N 1))2
EB(1: A) = ({82(A;D)}7) — (82(As)) , (30)
(82(A;1)?

where (-) implies an average not only with respect to initial
conditions, but also with respect to thermal histories. In what
follows, we consider the equilibrium initial ensemble. We
note that the disorder realization is unique while the thermal
histories and the initial conditions are different. If the EB
parameter goes to zero for 1 — oo, the time-averaged MSDs
for a single disorder realization converge to a constant, which
depends on neither the thermal histories nor the initial point.
The EB parameter is used not only to investigate the ergodic
properties but also to extract the underlying information on the
dynamics [55-57].

Because MSD with the equilibrium ensemble is time-
translation-invariant, the ensemble average of the time-

averaged MSD is given by
1 t—A
(2D 1) eq = f i [P+ A) — 1) Peq
r—AJ,
A
—— G1)
i

Here we calculate the second moment of the time-averaged
MSD. We assume A < t. We then have

2 . 2 ~ z ! ’ ! " ’ _ N2
({3°(A; 1)} )eq 2 di | di([r(t +A) —r@)]
0 t

x [r(t" + A) = r(t")])eq- (32)

Moreover, we assume that the displacements r(¢' + A) — r(t’)
and r(t” + A) — r(t”) (" > t') are independent if t” > ¢’ +
A. This assumption is not exact in general. However, it does
not affect the following result crucially:

(182D ) )eq = — / dr’ / dt'"([r(t' + A) — r(d)PIrt” + A) — r(t")1)eq

+ —

_//

Dividing the displacements r(t' + A) — r(¢') and r(t" + A) —

A)—r(t'+A)+r(t' + A)—r("), we have

22 dt / dt’"([r(t' + A) — r()PIrt" + A) — r(t")]*)eq

dt"([r(t'+8)=r () P)eq ([r(t" + A) = r(t")P)eq- (33)

r@) (" >t)intor@ +A)—r@t")+r@")—r@") and r(t” +

(82(A )P )eq = —f dr' / dt"{([r(") — r(t"P)eg{[r@" 4+ &) = r(t")P)eq + ([r' + A) = r(t")]*)eq

+([r(# +A) —

r(t//)] >eq<[r(t// + A) - r(t + A)] >eq}
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2 t t
-2 / ar / " ({[r (") — r()P)eg [r(E” + A) = 1) Pheq + (I + A) — 1) )eq
—A t

2 t—A
+Alr (" + A) = 1 P)eg (1" + 8) = 1t + A)P)eq) + / di'(t — 1" = A)(Na)g,
0

2 t—A t'+A 2 2
= t_2 dt,/ dt”{<Nt”—t’)eq(NA)eq + (1 + _) (Nf2/+A_t//>eq - E<N1’+A—l”>eq
0 t

d

2 ! ! ! " 2
+ (Nt/+A—t”)eq(Nl”—f’>eq} + t_zf dt / dt {(Nt”—t’>ecl<NA)eq + (1 + E)(NZZH-A—t”)eq
t—A t

2
d

_<A)2+2A2<2A Api — 1
i dr \3u? Wi

where we used

2
- _(Nt>eq’ (35)

2
([r(6) = rO)*)eq = (1 + —)(Nf)eq 2

d
whose derivation depends on the fact that displacements are de-
termined by the number of jumps and jumps are homogeneous
(with equal probability); a mean-field approximation is used to
obtain the second moment of N, i.e., <Nt2>eq = (1/wi)* + At,
where A is a constant (see the Appendix).

As a result, the EB parameter for a single disorder realiza-
tion decays as

3dt

where B is a constant that depends on the disorder realization
as well as p; but not on A. In fact, the EB parameter decays as
Eq. (36) (see Fig. 6). This 1/t scaling is universal for ergodic
systems even when the environment is not homogeneous [58].

4A B
EB(1; A) ~ —<1 + K) (t — 0), (36)

FIG. 6. EB parameters as a function of the measurement time in
a single disorder realization (d = 1,7 = 1,T, = 1.5, and L = 10),
where the initial position follows the equilibrium ensemble, and the
boundary condition is periodic. Lines represent the theoretical results
[Eq. (36)] for different A, where the fitting parameter B does not
depend on A (B = 60).

AN (AN
- _(Nt’JrAft”)eq + <Nt’+At”>eq<Nt”t’)eq} + (1 - _) <_)

t i

) +o(t™"), (34)

(

Because the variance of the time-averaged MSD goes to zero,
the time-averaged MSD converges to a constant:

82(As1) = ({r(A) — r(0)})eq (37

for + — oo. This statement becomes invalid for an infinite
system (L = o0) because there is no equilibrium state in that
case. Although we assume the equilibrium initial condition, the
EB parameter goes to zero even without an initial equilibrium
condition. This is because all time-averaged MSDs starting
from different initial positions converge to the same constant,
Le., ((r(A) = r(0)f)eq-

Thus far, sample-to-sample fluctuations of the diffusivity
have been characterized by the asymptotic behavior of the
SA parameter, i.e., lim;_. . SA(L; D). Here we define the
SA parameter for the time-averaged MSD as a function of ¢
and L:

(G20 1) Jais — (O2(D 1))

SA(t,L;8r3) = —r
(82(A5 1)

(38)

where drp =r(t + A) — r(t). Because the time-averaged
MSD is ergodic for finite L, taking the long-time limit gives

(1/uf) g — (/1) 3is
<1/Mi>(2jis

Furthermore, taking the large-L limit, we can characterize the
sample-to-sample fluctuations in the time-averaged MSD:

(t - 00). (39)

SA(t,L;cSrzA) —

0 (@>1)

) @gn @
r(:)

This is exactly the same as the SA parameter of the diffusivity,
i.e., Eq. (29). Figure 7 shows the ¢ dependence of the SA
parameter. When the measurement time ¢ is not sufficiently
large, particles do not explore the whole space and rarely
hit the boundary. Therefore, sample-to-sample fluctuations of
diffusivity in this regime are similar to those in the system with
no confinement. After exploring almost the whole region, the
SA parameter gradually approaches the theoretical value.

lim lim SA(r,L;ér%) =

L—o00t—>00
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3 . . . 3 . . .
(a) theory [Eq. (38)] -~ (b) theory [Eq. (38)] =
EB (infinite system) ----- CTRW -----
25 | L=50 (A=10) 25 ¢ L=10 (A=10)
L=100 (A=10) L=20 (A=10)
2 S —
< s < s
70} wn
m____ W e 1}
05 osp---%---6---~----
0 3 ‘4 ' 5 ' 6 7 0 ' '
10 10 10° 10° 10 100 10t 100 10° 107 10}
t t

FIG. 7. SA parameter as a function of the measurement time
(A = 10), where the initial points are chosen by the equilibrium
distribution, and the boundary condition is periodic (¢ = 0.5). Sym-
bols represent the results of numerical simulations for (a) d = 1 with
different L, and the dashed line is the EB parameter in the QTM with
no confinement [17]; (b) d = 3 with different L, and the dashed line
is the EB parameter in the QTM with no confinement [17], which is
the same as that of the CTRW [23]. The time when the SA parameter
converges to the theoretical value crucially depends on L.

IV. NON-SELF-AVERAGING PROPERTIES FOR THE
REFLECTING BOUNDARY CONDITION

Here we consider the reflecting boundary condition. We
investigate the confinement effect for the MSD and sample-to-
sample fluctuations of the average position.

A. Sample-to-sample fluctuations of the MSD

Due to the confinement, the MSD typically exhibits two
different behaviors. For small # and L >> 1, itincreases linearly
with time. Approximately, it becomes

{r(@) = r(0))eq ~ (Ni)eq (41)

because particles do not encounter the boundary in this regime.
On the other hand, it becomes a constant for large ¢ because
of the confinement. Because the system is in equilibrium, both
r(t) and r(0) follow the equilibrium distribution and become
independent of ¢ in the long-time limit. The MSD becomes

({r() = r)})eq = 2((r’)eq — (r)e,) (42)

in the long-time limit. We will focus on the fluctuations
of 201.2 = 2((r2)eq — (r)gq), where the index i represents a
disorder realization. Here we define the crossover time ¢, from
the diffusive to the plateau regime as the time when (N;,) = al.z,
which is given by 7, = 2Mi6i2- Because p; and ol.z depend
crucially on the disorder realization, ¢, also depends on the
disorder realization. Note that the disorder average of 7. always
diverges for L > 1 because of the divergence of (it;)gis-

For the first regime, i.e., t < t., the MSD grows almost
linearly with time, and the diffusion coefficient in this regime
can be approximated as 1/u;. Therefore, the disorder average
and sample-to-sample fluctuations of the MSD in the first
regime are almost the same as those in the case of the
periodic boundary. In particular, the disorder average of the
diffusion coefficient as a function of time, i.e., Eq. (27), and
the asymptotic behavior of the SA parameter, i.e., Eq. (28), are
valid in this regime.

For the plateau regime, i.e., t > f., the MSD becomes a
constant: ({r(t) — r(O)}Z)eq ~ 20i2. To consider the disorder

average of o;, we derive the distribution of observables O
that depend only on the position. We denote it by O,. The
following calculation is almost the same as in Refs. [29,54].
The equilibrium ensemble average can be represented by

(O)eg = Y_ O, PSS (43)

Let f,(O) be the PDF of (O).q; we then have

flo-zom)),

fa(O)

1
= ——limIm
T ¢—0 <O+i8—ZrOrPreq>dis
1 1
= —— lim Im - : = . (44
T -0 O+l€ 1—erOrPr dis

We note that (O)q is a random variable that depends on the
disorder realization. Using the generating function, given by

1

p _ 1Nk k k _
Fu®) =Y (=DH(O) )8 <1 +$<0>eq>dis’ (45)

k=0

we have

1 1 A 1
= ——limI - . 4
JulO) = =2 iy m(9+ief“< O+is> (46)

Using Eq. (10), we obtain

fa(é) = </oo dse— (118 > Orfr/fL)s>
dis

0

- / ds / d, / dria(zy)- - / e (i)
0 0 0 0

« e_(H_g 3, Ortr/lL)-Y(g (tL — Z ‘L'r) s @7)

where 7, = >, 7,. Here we approximate y,(7) as a stable
distribution with exponent o:

/00 Yo(tr)e " dit, = exp(—cs®). (48)
0

Using Eq. (48) and the Fourier representation of the delta
function gives

. oo gk
fu®) = /0 ds /0 dr, /0 .

X exp |:—ik —5 = cZ(ik + OrSS)a/tz‘]. (49)

Using the same technique given in Ref. [54], we have

>0 +08)
>+ 08

Inverting the generating function yields the PDF of (O)q:

1 Y(0-0, +ief!
(O) = — = lim Im &= ,
JaO) = = I I S 5 =0, 4 ey

fal®) = (50)

(D
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foro < 1.In general, this PDF is not the delta function [29,54].
Therefore, these observables depend strongly on the disorder
realization, and are thus non-SA.

For o > 1, a similar calculation for the case o« < 1 gives

fa(o) = 3(0 - ((O)eq>dis) (L — 00), (52)

where we use an approximation, 1% (s) =1 — (1)s. Therefore,
these observables do not depend on the disorder realization in
the limit of L — oo. Hence, they have the SA property for
o> 1.

Using the generating function, one can obtain the moments.
The first moment is given by

1
(O)eqlais = 75 ) Or. (53)

For o < 1, the variance has the following general relation:
(00 = ((O)e)dis = (1 —)((OF) = (O,)?). (54

where

_ 2 2
(Oy) :LdZO and (O;) LdZO (55)
Because disorder is homogeneous with respect to the axis,
the disorder average of oiz can be represented by

<‘7i2)dis = 2d(({r¢ >eq>dis —{{r. k)zq)dis)’ (56)

where ry is a position for the kth axis. Considering a position
and a squared position, i.e., r; and r,f, as position-dependent
observables, one can obtain the moments. It follows that

L L Log 2
(07 ais = 2d Z——(l—a)ZL (ZL>

k=1 k=1
~a—, (57)

for L — oo and o < 1, while (o; 2Vagis ~ dL?/6, fora > 1. At
very low temperatures, the partlcle is situated in the minimum
of the potential energy landscape, and hence the fluctuations
vanish when o« — 0.

Moreover, the SA parameter for the position is given by

2\ _ 2
lim SA(L;r) = lim (r)ea)ai <i’>eq>dls
L—>oo L—o0 <<r>eQ>dis
0 (¢ >1)
- (58)
Lo (@<

Thus, the non-SA behavior of the position under confinement
appears for o < 1. Although we could not calculate the SA
parameters for 0'[2 and 7., they will be non-SA for o < 1
because the average position itself is not SA.

B. Ergodicity of the time-averaged MSD and position

The EB parameter of the QTM with the reflecting boundary
condition for the time-averaged MSD can be calculated in the
same way as in the periodic boundary case, whereas the A

dependence of the moments of the displacement r(¢’ + A) —
r(t') is different from that in the periodic boundary case. For
small A particles rarely hit the boundary. Therefore, the EB
parameter is almost the same as Eq. (36). Moreover, time-
averaged observables integrable with respect to the Boltzmann
measure (which is arandom measure) converge to the ensemble
averages (averages according to the Boltzmann measure)
because particles can explore the whole space and sample all
random potentials for finite systems of the QTM. Thus, the EB
parameter of the QTM with a finite size will approach zero as
t — oQ.

Because the particles eventually explore the whole system
for a single disorder realization, the time average of O,
converges to the ensemble average with respect to the equi-
librium state, e.g., r(f) = for r(t)dt'/t — (r)eq and r3(t) =
Jor@)?dt'/t — (r?)eq ast — co. In general, the time aver-
ages of O, can be represented by the equilibrium probability:

Zr O" Tr
Zr Tr
for t — oo. Because we have the SA parameter for position

with respect to the equilibrium distribution, the SA parameter
for the time-averaged position defined by

00— OP = (59)

— T2
SAG.Lir) = @) dais — z(r([»d“ (60)
(’(l‘))dis
becomes
0 (x>1)
lim lim SA(t,L;r) = 61)
L—oot—00 ]%O, (O{ < 1)

This is the same as Eq. (58); however, there we considered the
SA property with respect to the ensemble averages (thermal
histories), whereas here we consider it with respect to the
time averages. The results are the same because the process
is ergodic, if we fix the system size and take the long-time
limit.

V. CONCLUSION

We investigated ergodicity and the non-SA properties
of diffusivity and position-dependent observables in the d-
dimensional QTM with finite lattices, using both periodic
and reflecting boundary conditions. The system is ergodic if
the system size is finite. The transition from SA to non-SA
behavior occurs atar = 1,i.e., T = T, for time-averaged MSD
and position. Non-self averaging is a consequence of the
breakdown of the law of large numbers for the waiting times
at the sites. As a result, the non-SA effects lead to universal
fluctuations of diffusivity; that is, the PDF of the diffusion
coefficient follows the inverse Lévy distribution in arbitrary
dimensions.

We also quantified the degree of the non-SA property by the
SA parameter and showed a large difference from that in the
corresponding annealed model (CTRW) and the infinite system
of the QTM for arbitrary dimensions (see Fig. 5). In other
words, sample-to-sample fluctuations in the finite systems
are different from trajectory-to-trajectory fluctuations in the
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corresponding infinite systems. This difference implies that the
limits for L and ¢ are unexchangeable. For finite measurement
times, the SA parameter of the QTM for a finite system is
similar to the EB parameter of the QTM for an infinite system
when the following conditions are satisfied: the system and the
measurement time are large enough to sample several different
potentials, but the measurement time is not sufficiently large for
trajectories to traverse all sites (smaller than the characteristic
time of the coverage of the system’s phase space). In the
asymptotic limit, the SA parameter approaches the theoretical
value (see Fig. 7). In contrast to the annealed model, the SA
parameter for the finite size QTM is much larger than the
corresponding fluctuations in the annealed case, especially
when « is small.

There are many biological experiments on diffusion in
heterogeneous environments, which are considered to be
quenched environments [59—61]. In experiments so far, diffu-
sion maps have been used to characterize the inhomogeneous
system. The diffusivity map in the QTM becomes highly
heterogeneous when « is smaller than one. This heterogene-
ity results from the random energy landscape because the
local diffusivity is correlated with the energy (deep energy
implies small diffusivity), whereas the actual system is more
complicated; e.g., the upper parts are not flat, and the depths
of an energy landscape will correlate with each other. This
suggests that it is important to measure the sample-to-sample
fluctuations in experiments because the disorder average hides
rich heterogeneous structures.

In 2008, Lubelski et al. pointed out that nonergodicity
(found in the CTRW) mimics inhomogeneity, where the
time-averaged MSDs for different realizations exhibit large
fluctuations [62]. Here we have obtained universal distributions
to describe the sample-to-sample fluctuations of the inhomoge-
neous system. We have shown that starting from a thermal state
and for a finite though large system, the fluctuations stemming
from inhomogeneity greatly exceed those obtained from the
simpler annealed model. Thus, the annealed approaches hide
rich physical behaviors that are now quantified.
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APPENDIX: MEAN-FIELD APPROXIMATION

Itis difficult to obtain the exact result for the second moment
of N;. Here, we use a mean-field approximation. Instead of a
quenched environment, we use an annealed one. In particular,
we assume that the PDF of the trapping times does not depend
on the position but follows a unique PDF given by Eq. (3).
Therefore, N; can be described by a renewal process. This
approximation will be valid for d > 2. When L is finite, all the
moments of the trapping times are also finite.

In equilibrium processes, the PDF of the first trapping time
follows

T
Y1) = i ]Z:l:exp(—t/tk). (A1)

Because the mean trapping time of Eq. (3) is i, (N;)eq
becomes
t
(Nt>eq = (AZ)
i
Note that this result is exact because the jump rate is always
constant on average with the aid of the system’s equilibration.
The second moment of Eq. (3), (t2);, is given by

Lzl
2
()i =77 ) T (A3)
k=1

Therefore, the second moment of N, can be calculated by
renewal theory [63]:

) 2); — u?
LN el Y

<Nt2>eq % H/S
1 1

(A4)

The first term is exact because the first moment of N, is exactly
given by Eq. (A2).
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