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Negative differential mobility in interacting particle systems
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Driven particles in the presence of crowded environment, obstacles, or kinetic constraints often exhibit negative
differential mobility (NDM) due to their decreased dynamical activity. Based on the empirical studies of conserved
lattice gas model, two species exclusion model and other interacting particle systems we propose a new mechanism
for complex many-particle systems where slowing down of certain non-driven degrees of freedom by the external
field can give rise to NDM. To prove that the slowing down of the non-driven degrees is indeed the underlying
cause, we consider several driven diffusive systems including two species exclusion models, misanthrope process,
and show from the exact steady state results that NDM indeed appears when some non-driven modes are slowed
down deliberately. For clarity, we also provide a simple pedagogical example of two interacting random walkers
on a ring which conforms to the proposed scenario.
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Systems in thermal equilibrium react to small external
drive by generating a current which is proportional to the
drive and the equilibrium fluctuation of the current [1]. The
current flows along the direction of the drive, and the mobility,
i.e., the ratio of the average particle current to the external
force, remains necessarily positive [2,3]. There is no such
restriction in nonequilibrium and both absolute mobility and
differential mobility can become negative. Absolute negative
mobility (ANM) or conductance refers to the situation when
the current flows in the direction opposite to the drive [4–9].
Negative differential mobility (NDM) results when the current
decreases with increasing drive [10,11]. It has been observed in
various electronic systems [12–15], and in context of particle
[10,16,17] and thermal transport [18–20]. In particular, the
occurrence of NDM of driven tracer particles in the presence
of static obstacles [21–25] or in steady laminar flow [26] or
crowded medium [27,28] have been studied extensively in
recent years. In context of many-particle systems, NDM has
also been observed in the presence of kinetic constraints [29]
or obstacles [25,30–32].

Much effort has been made recently to understand the
mechanism of NDM in driven systems. What appears crucial
for the emergence of NDM is the ‘trapping’ of the driven
particles [21,24], characterized by a decrease in the so-called
‘traffic’ or dynamical activity with increasing bias [33,34];
the obstacles or the crowded environment typically slow
down the particle movement, in turn reducing the ‘traffic’
or dynamical activity which results in NDM. However, the
picture can be more complicated in multi-component driven
diffusive systems where, in general, the current constitutes
contributions from many degrees of freedom (different particle
types or modes). In fact, recently it has been shown that
a driven tracer in an exclusion process, where the current
has two distinct components, can exhibit ANM even around
equilibrium [35]. In general, in interacting driven systems, each
degree of freedom or mode could experience the external field
differently; in particular, the field might affect the time-scales

of modes which are not directly biased, and in turn influence
the behavior of the current.

In this article we propose a new mechanism: ‘slowing down’
of non-driven modes in driven interacting particle systems
can lead to negative differential mobility. This proposition is
motivated from empirical studies of NDM in several lattice
models of which we present two specific examples here,
namely an M-chain conserved lattice gas system and a two-
species exclusion model. We demonstrate that occurrence of
NDM in these systems is associated with a decrease of time-
symmetric current or traffic of non-driven modes; the traffic is
‘slowed down’ due to inter-particle interactions. To prove that
the slowing down is indeed the cause, and not the effect, of
NDM, we introduce and study several exactly solvable models
where some non-driven modes are slowed down deliberately
by making a suitable choice of jump rates. We demonstrate
that NDM occurs as a direct consequence of the slowing down;
without it the NDM disappears.

Our first example is the conserved lattice gas model (CLG)
on a L × M periodic lattice [36] where the site variable τij =
1,0 with i = 1,2 . . . L and j = 1,2 . . . M represents the pres-
ence or absence of a particle at the site (i,j ); ρ = 1

LM

∑
ij τij

denotes the density. The particles in this M-chain model can
move if and only if they have exactly one vacant neighboring
site; in absence of any external drive, each jump occurs with
unit rate. Now we apply a local field ε along the x-direction
that changes the jump rates to the right (left) neighbor to
p (q) respecting the local detailed balance condition [37]
ε = ln p

q
with kBT = 1. The particle hopping in y-directions

remains unaffected. We work in the phase ρ > 1
2 where the

system is ergodic [36]. Using Monte Carlo simulations we
measure the average current jx,y = (〈nx,y

r 〉 − 〈nx,y

l 〉)/L, where
〈nx,y

r 〉 (〈nx,y

l 〉) are the steady state average of the number of
right (left) jumps in unit time. This system shows a negative
differential mobility for large drive ε, as can be seen from
the non-monotonic behavior of jx shown in Fig. 1(a). The
current in y-direction jy remains zero, however, the time-scale
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FIG. 1. (a) Current jx and (b) traffic iy in the M-chain CLG as
functions of ε for different density ρ in the range 0.55 � ρ � 0.65.

(c) Phase diagram of the two species exclusion dynamics (1) in ρB -ε
plane: NDM (j ′

A < 0) occurs in a region where the traffic ofB particles
slows down (i.e, i ′

B < 0). Here, ρA = 0.1,α = 0.01, and w = 0.1.

of y-jumps are affected due to the hard-core interaction which
is clearly visible from the average ‘traffic’ or time-symmetric
current iy ≡ (〈ny

r 〉 + 〈ny

l 〉)/L, plotted in Fig. 1(b). In fact, it
turns out that dependence of iy on ε is similar to that of jx

for large ε. This observation indicates the presence of a strong
correlation between the current jx along the driven direction x

and the traffic iy in the transverse (or non-driven) direction.
The next example is a one-dimensional exclusion model

with two different particle species, A and B—each species
can be considered as a separate current carrying mode. The
particles interact via hardcore repulsion; τi = 0,A,B denotes
the site occupancy on a periodic lattice of size L. The A

particles are driven by a biasing field ε = ln p

q
, they exchange

with Bs with rate α, and the dynamics of B particles is taken
independent of ε,

A0
p
�
q

0A, AB
α
�
α

BA, τB0
uτ�
w

τ0B. (1)

Here, uτ = w + (1 − w)δτ,0, with τ being the occupancy of
the left neighbor of the B particle, and does not depend on
the biasing field ε that drives As. Note that the B particles
experience a constant bias quantified by w, but they are still
non-driven with respect to ε. We measure the current jA =
(〈nA

r 〉 − 〈nA
l 〉)/L of A particles and the average ‘traffic’ iB =

(〈nB
r 〉 + 〈nB

l 〉)/L of the B particles for different values of the
parameters. Figure 1(c) shows the phase diagram in ρB-ε plane
for fixed values of w,α and ρA = 0.1, where the presence of
NDM and decreasing traffic are marked as shaded regions.
Clearly, the presence of NDM is always associated with the
decreased traffic of the non-driven modes.

In interacting systems, it is not uncommon that an external
driving field affects some non-driven modes [38–40]. The
examples presented above are special in a way that the effect
is to increase the time-scale, i.e., slow down the traffic of
the non-driven modes; occurrence of NDM appears to be
correlated with the same. However, whether NDM is the effect
of this slowing down or rather it is the cause, is not clear at this
stage. To show that the slowing down of non-driven degrees
can indeed ‘cause’ NDM, in the following we introduce and
investigate a set of models and show explicitly from exact
steady state results that any deliberate slowing down of non-
driven modes by external bias can result in NDM.

Two random walkers: As a simple prototypical example
of two interacting current-carrying modes we consider two

distinguishable particles, denoted by A and B, on a periodic
lattice interacting via hardcore exclusion (A and B cannot
occupy the same site), following a dynamics:

A0
p
�
q

0A, B0
ψ
�
ψ

0B. (2)

In this two random walkers (TRW) model the external field ε

affects the particles differently: A is biased to move towards
right as ε = ln(p/q) > 0, whereas B performs an unbiased
random walk with jump rate ψ. Clearly, they are the cartoon
representations of the driven and non-driven modes of realistic
interacting systems. Traffic of the B particle is proportional
to the jump rate ψ and we intend to prove below that NDM
occurs in this system when ψ is decreasing function of ε, and
it disappears when ψ ≡ ψ(ε) is constant or increasing.

We use the so-called ‘matrix product ansatz’ [41] to express
the steady state weightP (C) for any configurationC in a matrix
product form: P (C) = Tr[

∏L
i=1 Xi], where the matrix Xi =

Âδτi ,A + B̂δτi ,B + Êδτi ,0 represents occupancy τi of the site i.

The matrices Â,B̂,Ê must obey the following algebra to satisfy
the Master equation in the steady state:

Â2 = 0 = B̂2,pÂÊ − qÊÂ = ωÂ,B̂Ê − ÊB̂ = ω

ψ
B̂, (3)

where ω is an auxiliary scalar. We find a 2 × 2 matrix
representation of the algebra (3) with a choice ω = ψ

p−q

ψ+q
,

Â =
(

0 1
0 0

)
B̂ =

(
0 0
1 0

)
Ê =

(
γ 0
0 1

)
, (4)

where γ = p+ψ

q+ψ
. The partition function of the system of size

L is then ZL = ∑
C P (C) = γ L−1−1

γ−1 . The average stationary
current of A particle is

jA = p〈A0〉 − q〈0A〉 = ω
ZL−1

ZL

� (p − q)ψ

(p + ψ)
, (5)

where we have taken the thermodynamic limit L → ∞ in the
last step. Due to the presence of the interaction, the B particle
also exhibits a stationary current which depends on ε; in fact,
jB = jA (as expected in the absence of particle exchange) and
the total particle current j = jA + jB = 2 (p−q)ψ

(p+ψ) .The response
of the current j to a small increase in ε is quantified by the
differential mobility j ′(ε), where the prime denotes derivative
with respect to ε. Equilibrium corresponds to ε = 0, i.e., p = q

(remember that q = e−εp) and in this case, the mobility, as
expected, is positive irrespective of the functional form of ψ.

On the other hand, in the large driving limit ε → ∞, assuming
p and p′ remain finite, we have

j ′(∞) = − lim
ε→∞

p2ψ2

(p + ψ)2

d

dε

(
1

p
+ 1

ψ

)
. (6)

This sets a criterion for NDM in the TRW model: if asymptot-
ically the increasing rate of ψ−1 is larger than the decreasing
rate of p−1, then there will be a finite bias ε∗ > 0 above
which the response is negative. Since the inverse rates measure
the diffusion time scales, and the particles here interact via
strong repulsive interaction (here hardcore), this criterion is
in tune with the proposition given in Ref. [27]. In particular,
for the cases q = 1/(1 + eε) (i.e., p = 1 − q) or q = e−ε

(p = 1), any choice of ψ(ε) for which ψ ′(∞) < 0 would
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FIG. 2. NDM in two-species exclusion model. (a) jA obtained
from exact steady state results for α = 0 are shown for ρB = ρA =
0.1,0.3; the threshold values are ε∗ = 1.53,1.76, respectively. For the
TRW model we plot jA/200 for better visibility. (b) For α > 0, jA

(solid lines) and jB (dashed lines) are obtained from simulations with
L = 1000,ρA = 0.1,ρB = 0.3, and different α = 0.05,0.1, and 0.15.

exhibit NDM. Current jA = j/2 as a function of ε for q =
e−ε,ψ(ε) = 1/(1 + ε) is shown in Fig. 2(a); NDM occurs here
for ε > ε∗ = 1.505.

The TRW model, being a toy model of two current carrying
modes, lacks some important features of realistic driven sys-
tems. In the following we study several more complex driven
interacting systems and show that a similar mechanism indeed
induces NDM.

Two-species exclusion process: Our next example is a
generalized version of dynamics (2) with an added particle
exchange dynamics

A0
p
�
q

0A, B0
ψ
�
ψ

0B, AB
α
�
α

BA. (7)

Unlike the TRW model, now we have macroscopic numbers
of A and B particles with conserved densities ρA and ρB ,
respectively.

First let us consider the case α = 0. In absence of particle
exchange the number of As (Bs) trapped between to consec-
utive Bs (As) are conserved and thus the configuration space
is not ergodic. We choose to work in a sector with exactly one
A(B) particle between any two consecutive Bs(As); the con-
figurations are now C ≡ {A0n1B0n2A0n3B0n4 . . . B0n2N }, each
having exactly N number of As and Bs, and

∑
i ni = L − 2N

number of vacancies. The steady state weights of this particular
equal density (ρA = N

L
= ρB) sector, can be obtained exactly

using the matrix product ansatz, by representing A,B,0 as
matrices Â,B̂,Ê, respectively. The required matrix algebra in
this case turns out to be the same as Eq. (3) indicating Eq. (4)
as a possible representation. However, unlike the TRW model,
here we need to deal with finite densities ρA,B. The grand
canonical partition function is now ZL = Tr[(zÂ + B̂ + Ê)L],
where z is the fugacity associated with only A particles. In
the thermodynamic limit, ZL = λ+(z)L, where λ±(z) = 1

2 (1 +
γ ±

√
(1 − γ )2 + 4z) are the eigenvalues of (zÂ + B̂ + Ê)

and γ = (p + ψ)/(q + ψ). This leads to ρA = z d
dz

ln λ+(z) =
z/(λ2

+ − λ+λ−). The steady state current of A particles is now

jA = z(p〈A0〉 − q〈0A〉) = z(p − qγ )

λ2+(λ+ − λ−)
. (8)

Explicit calculation shows that the current of B particles jB =
ψ(〈B0〉 − 〈0B〉) is the same as jA (as expected for α = 0),
thus j = 2jA. The differential response dj

dε
becomes negative

as the field ε is increased beyond some threshold ε∗, which
depends on the densities ρA = ρB as shown in Fig. 2(a) for
p = 1,q = e−ε, and ψ(ε) = 1/(1 + ε).

For α > 0, we do not have an exact solution, however,
Monte Carlo simulations confirm that the model still exhibits
NDM in a fairly large range of particle densities. Figure 2(b)
shows jA and jB versus ε for different values of α for ρA =
0.1,ρB = 0.3.

Asymmetric misanthrope process. We also investigate sys-
tems without hardcore exclusion, namely an asymmetric mis-
anthrope process (AMP) [42] on a one-dimensional lattice
where each site i can hold any number of particles ni � 0.

The particles can hop to their right or left nearest neighbors
with a rate that depends on the occupation of both departure
and arrival sites,

{ni,ni+1}
ur (ni ,ni+1)

�
ul (ni+1+1,ni−1)

{ni − 1,ni+1 + 1}; (9)

the functional form of the rate functions ur,l(.), for right
and left hops are different. This dynamics conserves density
ρ = ∑

i ni/L. The asymmetric rate functions correspond to
driving fields Emn = ln ur (m,n)

ul (n+1,m−1) acting on bonds with local
configurations (m,n). Clearly, if Emn = 0 ∀m,n, we have
ur (m,n) = ul(n + 1,m − 1) and the system is in equilibrium
satisfying the detailed balance condition with all configurations
being equally likely.

We now choose a set of specific rate functions:

ur (m,n) =
{
ψ n = 0
1 n > 0 ; ul(m,n)

=
⎧⎨
⎩

ψ m = 1
e−ε m > 1,n = 0
1
2 m > 1,n > 0

,

implying, Emn = [ln 2 + (ε − ln 2)δm,1](1 − δn,0). (10)

Here, the hopping of isolated particles to vacant neighbors
is not biased, as both the rightward hop and corresponding
reverse hop occur with the same rate ψ ; we consider them as
non-driven modes. Jumps to occupied neighbors are however
biased by an external field which depends on the occupation
of the departure site: ε when the departure site has only one
particle or otherwise a constant field ln 2.

To explore the possibility of NDM in this system we did
a Monte Carlo simulation with ψ(ε) = 1/(1 + ε). Figure 3(a)

FIG. 3. (a) Current j versus ε for AMP dynamics (10) for density
ρ = 0.15. Circle: ψ = 1/(1 + ε) (simulations), solid line: exact
results for ψ given by Eq. (11). (b) Entropic and frenetic components
of the linear response in the TRW model K(ε) and M(ε) measured
from simulations (L = 100). The inset shows the traffic iA,iB .
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shows the particle current j versus ε (symbols) which depicts
a non-monotonic behavior; once again we see that slowing
down a non-driven mode results in NDM. This behavior of
current can be understood more rigorously from the exact
steady state weights of AMP, which has a factorized form
P ({ni}) ∼ ∏

i f (ni) when the rate functions satisfy certain
conditions [42]. In the present case, these conditions require

ψ(ε) = 2 − eε + 2δ(1 − e−ε)

3eε − 4
(11)

with δ = 1
4 (eε − 2 + √

4 + 12eε + e2ε), when f (n) =
δn−1∀n > 0 and f (0) = 1. Note that ψ(ε) in Eq. (11) is
a decreasing function for all ε, but the model is well defined
only in the regime ε > ln 4

3 , where ψ > 0. The grand canonical
partition function is ZL = F (z)L with F (z) = ∑

n f (n)zn =
1 + z

1−δz
, where fugacity z controls the particle density

through ρ(z) = zF ′(z)/F (z) = z[(1 − δz)(1 + z − δz)]−1.

Finally, the current is

j = 1

2F (z)2
[(F (z) + 2ψ − 2e−ε − 1)(F (z) − 1 − z)

+ 2z(1 − ψ)(F (z) − 1)]. (12)

Figure 3(a) shows j as a function of ε for density ρ = 0.15;
NDM is observed for ε � 0.9.

Nonequilibrium response relation: Away from equilibrium,
the linear response of current J can be expressed as a sum of
two nonequilibrium correlations [33],

d

dε
〈J 〉 = 1

2
〈S ′(ω); J 〉 − 〈D′(ω); J 〉, (13)

where S(ω) and D(ω) are the entropy (anti-symmetric under
time reversal) and ‘frenesy’ (symmetric) associated with a
trajectory ω during time interval [0,t] [33]; primes denote
derivatives with respect to ε and 〈f ; g〉 ≡ 〈fg〉 − 〈f 〉〈g〉. For
a single driven tracer, S ′ = J and the entropic term is simply
the variance of the current while the frenetic one depends on the
details of the specific dynamics. A large frenetic contribution
which may occur, for example, in the presence of traps or
obstacles, can make the overall response negative [21,24].
To understand how the entropic and frenetic components of
mobility compete in systems where the escape rate (or the
time-symmetric traffic) of the driven particle or mode is fixed
whereas a non-driven mode is slowed down, let us consider the
example of TRW model with p + q = 1. Since the driving is
associated with the A particle only, we have S ′ = JA, where
JA is the time-integrated current of the A particle during the

time [0,t]. The change in dynamical activity is now

D′(ω) = (p − q)

2
IA − ψ ′

ψ
IB − (p′ + ψ ′)tAB − (q ′ + ψ ′)tBA,

where tAB(tBA) refers to the total time during which B sits
immediately to the right (left) of A. For the stationary cur-
rent j = limt→∞〈J 〉/t, the entropic component is then given
by M(ε) = limt→∞〈JA; J 〉/2t and the frenetic component
K(ε) = − limt→∞〈D′(ω); J 〉/t.

Figure 3(b) shows plots of M(ε) and K(ε) obtained from
simulations. Similar to the single particle case, M(ε) remains
positive for all ε > 0, whereas K(ε) becomes negative re-
sulting in NDM above a threshold field. The inset shows
the average time-symmetric traffic iA,B, both decrease as the
driving is increased; the unbiased B particle, being slowed
down by the field ε, in turn slows down the A particle.1

Conclusion. In this article, we address the question of nega-
tive differential mobility (NDM) in interacting driven diffusive
systems. Usually NDM occurs when the driven particles are
slowed down (increased time-scale of motion) by the external
field. Here, we propose an alternate mechanism and show
that NDM can occur in interacting multi-component systems
when the drive slows down some other, non-driven, degree
of freedom. This proposition is motivated from the empirical
study of NDM in several systems including conserved lattice
gas models [36] and a two-species exclusion model introduced
here. To prove that the slowing down of a non-driven degree
can indeed lead to NDM we study several exactly solvable
models, the simplest one being a pedagogical example of
two distinguishable random walkers on a periodic lattice
interacting via exclusion, only one of which is driven by an
external field. NDM appears there only when the non-driven
particle is deliberately slowed down by the external field. Other,
more complex, exactly solvable examples of the two-species
exclusion process and asymmetric misanthrope process are
also studied where the same mechanism leads to NDM for large
driving. In these models explicit dependence of jump rates on
the driving field might appear simplistic, or even unrealistic,
but the main purpose of introducing them is to illustrate and
validate the proposition put forward in this article. We believe
this mechanism provides a new direction to the occurrence
of NDM in interacting particle systems, in contrast to the
existing ones—jamming, kinetic constraints, or trapping of
driven modes.
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1Note that in absence of any interaction between A and B, iA would
be a constant since p + q = 1.
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