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Transverse single-file diffusion and enhanced longitudinal diffusion near a subcritical bifurcation
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A quasi-one-dimensional system of repelling particles undergoes a configurational phase transition when the
transverse confining potential decreases. Below a threshold, it becomes energetically favorable for the system to
adopt one of two staggered raw patterns, symmetric with respect to the system axis. This transition is a subcritical
pitchfork bifurcation for short range interactions. As a consequence, the homogeneous zigzag pattern is unstable
in a finite zigzag amplitude range [hC1,hC2]. We exhibit strong qualitative effects of the subcriticality on the
thermal motions of the particles. When the zigzag amplitude is close enough to the limits hC1 and hC2, a transverse
vibrational soft mode occurs which induces a strongly subdiffusive behavior of the transverse fluctuations, similar
to single-file diffusion. On the contrary, the longitudinal fluctuations are enhanced, with a diffusion coefficient
which is more than doubled. Conversely, a simple measurement of the thermal fluctuations allows a precise
determination of the bifurcation thresholds.
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I. INTRODUCTION

When a system of repelling particles is confined in a
quasi-one-dimensional geometry by a transverse potential, if
this confining potential decreases it becomes energetically
favorable for the particles to be further apart by climbing
along the transverse potential, self-assembling in one of the
two symmetric staggered row patterns (zigzag phase). This
configurational phase transition is known as the zigzag transi-
tion [1–11], and because of the symmetry of the zigzag phase
it is a pitchfork bifurcation. Its order parameter is the zigzag
amplitude h, and the bifurcation parameter is the transverse
potential stiffness β [12], with critical value βZZ .

For long range interaction between particles, these zigzag
configurations are stable regardless of the transverse con-
finement β < βZZ , and the bifurcation between the straight
line and the homogeneous zigzag is supercritical. This is not
true for finite range interactions [14]. In this case, the homo-
geneous zigzag is linearly unstable under long wavelength
perturbations. In the thermodynamic limit, for a system size
L → ∞ and a particles number 2N → ∞ with finite density
d−1 = 2N/L, the mode of vanishing wave number is unstable,
and we have shown by a nonlinear analysis that the zigzag
bifurcation is subcritical [11]. The equilibrium configuration
is an inhomogeneous pattern with a local zigzag embedded in
particles that are still along a straight line, these zigzag bubbles
being very similar to phase coexistence in phase transitions of
order 1 [11]. In this paper, we put the focus on such systems,
taking as the interaction potential a modified Bessel function
of sufficiently short range, as explained in the Appendix.

In a finite system the most unstable mode is the one of small-
est wavenumber, which is π/N in units of d−1 (see Ref. [10]).
The stability domain of the zigzag pattern is determined by
identifying the values of parameters for which the transverse
acoustic vibrational frequency ωAT (π/N ) becomes imaginary.
For a small enough interaction range, a zigzag configuration
is unstable if its amplitude h is such that 0 < hC1 � h � hC2,
and the smaller the interaction range, the larger this gap. This

behavior is illustrated in Fig. 1, which displays [ωAT (π/N )]2

as a function of h, for a system with 2N = 16 particles and for
several values of the interaction range λ0.

When such systems are put in a thermal bath, the particles
fluctuate around their equilibrium positions. The mean squared
displacement (MSD) of these fluctuating particles may be
calculated as a superposition of the MSD of their vibrational
modes. Since the structural transitions are associated to soft
vibrational modes, the relevant vanishing frequencies lead the
main contributions to the MSD near the transition threshold.
The calculations of the longitudinal and transverse MSD
relies on our previous work [15,16], and we give the relevant
formulas in the Appendix.

For instance, we have shown in Ref. [17] that the transition
from the straight line toward the homogeneous zigzag pattern
(when β → β+

ZZ) results from the soft transverse mode with
alternating transverse displacements of the particles. This long
wavelength mode induces a long range correlation between the
transverse motions of the particles. This mode plays exactly the
same role for the transverse MSD as the longitudinal Goldstone
mode due to the translational invariance of a one-dimensional
(1D) system of interacting particles in which any crossing
between the particles is forbidden. We recall in Sec. II that
the MSD of the transverse fluctuations of the particles scales
as the squared root of time instead of the usual linear Fickian
diffusion, as for the longitudinal single-file diffusion (SFD)
[15,18–22]. In addition, as long as β > βZZ , this transverse
SFD occurs as a transient since the transverse MSD even-
tually saturates. However, the duration of this transient and
the saturation value of the transverse MSD both diverge at
the line to zigzag transition. This singularity allows one to
determine precisely the transition threshold in experiments
[17]. Therefore, the strong impact of the bifurcation on the
transverse MSD gives interesting opportunities to determine
the main characteristics of the bifurcation and to enlighten the
bifurcation process itself.

In this paper we consider the bifurcation below the thresh-
old, when β increases and β → β−

ZZ (h → 0+). Since actual
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FIG. 1. Dimensionless squared frequency of the transverse acous-
tic mode of smallest wavenumber, [ωAT (π/8,h)/ω0]2, where ω2

0 =
βZZ/m, in a system of 2N = 16 particles, as a function of the zigzag
amplitude h (mm). The interaction potential is a modified Bessel
function K0(r/λ0), with d/λ0 = 2.04 [solid green (light grey) line],
d/λ0 = 2.77 (dashed red line), d/λ0 = 3.13 (dotted blue line), and
d/λ0 = 3.91 (solid black line). The red plot is the marginal stability
curve: for longer potential range the homogeneous zigzag is stable in a
system of 16 particles; for smaller potential range the zigzag pattern is
unstable if hC1(N,λ0) < h < hC2(N,λ0). In the thermodynamic limit,
the instability occurs for d/λ0 = 2.04.

systems are obviously finite, in the limit β → β−
ZZ the homo-

geneous zigzag is always stable. In that case, the transition
from the homogeneous zigzag pattern toward a straight line is
expected to have critical behaviors similar to those observed
in the opposite direction (β decreases and β → β+

ZZ). The
comparison in Sec. II of the scaling of the soft modes and
the resulting transverse and longitudinal MSD behaviors on
both sides of the bifurcation confirms this assumption and
consequently validates the use of MSD measurements in order
to study bifurcation.

The relevance of this approach to the bifurcation study is
even more remarkable when the homogeneous zigzag loses
its stability in favor of an inhomogeneous zigzag bubble,
that is, when h → h−

C1 and h → h+
C2. In this case, we show

that the study of the MSD evidences subcriticality before the
appearance of inhomogeneous configurations themselves, an
opportunity that can be very useful in actual experiments for
which the interparticle interaction is not well known. Such

results are discussed in Sec. III, which evidences the strong
effects of the subcriticality of the bifurcation on the particles’
MSD. In particular, the consequences of the loss of stability
of the zigzag configuration on the longitudinal MSD are
exhibited, in contrast with the transition between homogeneous
patterns which only affects the transverse MSD. The necessary
details about our simulations and the data analysis are given in
the Appendix, and our conclusions are summarized in Sec. IV.

II. FLUCTUATIONS NEAR THE “HOMOGENEOUS
ZIGZAG TO LINE” TRANSITION

In a finite system with 2N particles and periodic boundary
conditions in the longitudinal direction, there is a zigzag height
hC1(N,λ0) > 0 beneath which all vibrational modes of the
homogeneous zigzag pattern are stable. Thus it makes sense
to consider the bifurcation from a homogeneous zigzag of
amplitude h, with hC1(N,λ0) > h > 0, toward a straight line.
The limit h → 0+ is equivalent to the limit β → β−

ZZ , because
there is a one-to-one relationship between the transverse
stiffness β and the zigzag height [10],

β = −4
N∑

j=1

U ′(
√

(2j − 1)2d2 + 4h2)√
(2j − 1)2d2 + 4h2

, (1)

where U ′ is the derivative of the interaction potential and where
all interactions have been taken into account. The relevant
critical stiffness is βZZ = β(h = 0).

As for the bifurcation from a straight line toward a homo-
geneous zigzag, this transition is associated to a transverse
soft mode with a frequency that vanishes as the distance to
threshold. Since the motions of the fluctuating particles are a
superposition of the vibrational modes of the chain of particles,
their transverse MSD is given by a sum of the MSD of every
eigenmodes [see Eq. (A2)]. Each eigenmode behaves like a
fictitious particle in a harmonic potential well, with a stiffness
that scales as the square of its eigenfrequency ω. Its MSD
eventually saturates at a value kBT /ω2 after a time 1/ω for
undamped systems or γ /ω2 for overdamped systems, with γ

the damping constant (in s−1). Therefore, near the transition
the contribution of the soft mode with vanishing frequency
prevails, which explains why bifurcation and MSD near the
transition are strongly linked.

(a) (b)

FIG. 2. Transverse MSD (mm2, logarithmic scale) as a function of time (s, logarithmic scale) for (a) γ = 1 s−1 and (b) γ = 10 s−1 and a
temperature of 107 K, in the limit h → 0+. The symbols are simulation data; the solid lines with the same color code as the symbols are the
relevant theoretical predictions [Eq. (A2)]. For a zigzag amplitude h = 0.069 mm (purple stars, bottom), h = 0.022 mm (blue dots, center),
and h = 0.0063 mm (cyan squares, top). The black line is the limit h → 0+; the dashed line indicates the ballistic regime.
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FIG. 3. Saturation value of the transverse MSD (mm2) as a
function of the zigzag height (mm) for a temperature of 107 K. The
symbols correspond to the data in Fig. 2. The inset shows the data
in logarithmic scales and the dashed red line indicates the saturation
values for the mode of vanishing wavenumber which is dominant for
h → 0+ [see Eq. (2)].

The transverse MSD 〈�y2〉, when the bifurcation threshold
is crossed from a homogeneous zigzag pattern toward a straight
line (h → 0+) is plotted as a function of time in Fig. 2, for
two dissipation coefficients. At small time, the MSD exhibits
the t2 scaling of the ballistic regime which is independent
of the zigzag amplitude, or equivalently independent of the
distance to the threshold. At intermediate time, the MSD
increases as the square root of time, which evidences an
anomalous diffusion (transverse SFD). The duration of this
intermediate regime increases with the dissipation coefficient
and diverges at the bifurcation threshold. This latter effect has
been previously suggested as an accurate determination of the
bifurcation threshold for systems at high temperature [17].
Eventually, the MSD saturates at a level which is independent
from the dissipation coefficient, but diverges at the bifurcation
threshold, as shown in Fig. 3.

The comparison between the simulation data and the
theoretical calculations of 〈�y2〉 in Fig. 2 obtained by the
superposition of the eigenmodes’ MSD evidences a perfect
agreement. This validates our description and the role played
by the soft mode near the bifurcation. In the inset, the focus
is put on the prevailing role played by the soft mode which

vanishes at the bifurcation, which is the transverse acoustic
mode with wavenumber q = 0 [23]. Indeed, when h is very
small and the bifurcation threshold very close, the saturation
value of the MSD is well described by the only contribution of
this mode, which is proportional to [ωAL(0,h)]−2:

〈�y2(t)〉 t→∞∼ 2NkBT

m[ωAL(0,h)]2
∼ 4NkBT

m
[ ∂2ω2

AL

∂h2 (0,0)
]
h2

. (2)

The scaling in the right-most term reflects the critical slow-
ing down at the pitchfork bifurcation. Indeed, when β <

βZZ , we get from Eq. (1) that βZZ − β ∝ h2, which re-
flects the symmetry h ←→ −h of the zigzag pattern. Hence
ωAL ∝ √

βZZ − β in the long wavelength limit. The corre-
sponding frequency for β > βZZ in Ref. [17] is denoted 	,
and the scaling 	 ∝ √

β − βZZ has already been exhibited.
For the sake of completeness, let us now present very briefly

the longitudinal MSD as a function of time, at the bifurcation
(β → β−

ZZ , h → 0+), for two dissipation coefficients (Fig. 4).
The longitudinal MSD evidences a ballistic regime at short
time followed by a SFD regime linked to the ordering of the
chain, since any crossing is forbidden. At long time, the MSD
scales linearly with time since the whole system behaves as a
single free particle that undergoes Fickian diffusion [15]. The
main result is that the longitudinal MSD is basically indepen-
dent from h near the zigzag-to-line transition threshold. This
is explained by the fact that the eigenmodes that contribute
most to the longitudinal motions of the particles depend very
little on the zigzag amplitude, for the obvious reason that the
distance between the particles is almost constant and equal to
d up to quadratic corrections h2/d2 which are negligible near
the transition threshold.

On both sides of the bifurcation threshold, a soft transverse
mode exhibits the same scaling with the distance to the
threshold. The behavior of the transverse MSD is consequently
expected to be the same when h → 0+, from the homogeneous
zigzag toward the straight line, and when h → 0−, from the
straight line toward the homogeneous zigzag pattern [17]. This
is evidenced by the comparison between our Figs. 2 and 3 and
Figs. 3, 5, and 6 of Ref. [17]. Therefore, the close similarity of
the transverse MSD behavior on both sides of the bifurcation

(a) (b)

FIG. 4. Longitudinal MSD (mm2, logarithmic scale) as a function of time (s, logarithmic scale) for (a) γ = 1 s−1 and (b) γ = 10 s−1 and
a temperature of 107 K, in the limit h → 0+. The symbols are simulation data; the solid lines with the same color code as the symbols are the
relevant theoretical predictions [Eq. (A1)]. For a zigzag amplitude h = 0.069 mm (purple stars), h = 0.022 mm (blue dots), and h = 0.0063 mm
(cyan squares). As explained in the text, these curves can hardly be distinguished. The dashed line indicates the ballistic regime, and the dotted
line the diffusive behavior at long time.
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(a) (b)

FIG. 5. Transverse MSD (mm2, logarithmic scale) as a function of time (s, logarithmic scale) for (a) γ = 1 s−1 and (b) γ = 10 s−1,
T = 107 K, N = 16, L = 30 mm, in the limit h → h−

C1 with hC1 = 0.2037 mm. The symbols are simulation data; the solid lines with the same
color code as the symbols are Eq. (A2). For h = 0.181 mm (purple stars, bottom), h = 0.198 mm (blue dots, center), and h = 0.201 mm (cyan
squares, top). The black line is the limit h → h−

C1; the dashed line indicates the ballistic regime.

confirms that the MSD measurements are an accurate way to
obtain the bifurcation threshold.

III. FLUCTUATIONS NEAR THE “ZIGZAG
TO BUBBLE” TRANSITION

For a finite system of particles interacting with short
range interaction, the homogeneous zigzag pattern is un-
stable in the zigzag amplitude range hC1 � h � hC2 (see
Fig. 1). At the limit values, the frequencies ωAT (π/N,hC1) and
ωAT (π/N,hC2) vanish, so that the corresponding eigenmode
is the soft mode associated to the transitions. This soft mode
reflects the transition from a homogeneous zigzag to an
inhomogeneous pattern (bubble) and is closely linked to the
subcriticality of the pitchfork bifurcation. As a consequence,
a new SFD-like behavior occurs for transverse fluctuations at
finite zigzag amplitude, when h → h−

C1 and when h → h+
C2.

Moreover, a nontrivial effect is also observed on longitudinal
fluctuations, which is a characteristic of these transitions. We
discuss below the impact of the transition between homoge-
neous zigzag and zigzag bubbles on the transverse and longi-
tudinal MSD of particles, setting the focus on the specificities
induced by the inhomogeneity of the bubble pattern.

A. Transverse motions

The transverse MSD 〈�y2〉 is plotted in Fig. 5 for the
limit h → h−

C1 and in Fig. 6 for the limit h → h+
C2, for two

dissipation coefficients. After a short time ballistic transport,
a SFD-like behavior is evidenced for both transitions. At
constant dissipation, the duration of the SFD-like regime is
all the longer as the zigzag amplitude is closer to its relevant
threshold. The duration of this regime also clearly increases
with the dissipation coefficient. These SFD-like behaviors are
a consequence of the soft modes that occur at each transition,
which induce long range correlations between the transverse
motions of the particles. The appearance of a SFD-like behav-
ior for the transverse fluctuations at finite zigzag amplitude is a
first strong effect of the subcriticality of the zigzag transition,
because the very existence of stable inhomogeneous patterns
is a direct consequence of subcriticality.

In all the simulations the homogeneous zigzag is stable,
with an amplitude h < hC1 (Fig. 5) or h > hC2 (Fig. 6).
This explains why the transverse fluctuation MSD eventually
saturates in all cases. The saturation values are independent
of the dissipation coefficient, but they are clearly seen to be
all the bigger as the zigzag amplitude is closer to its relevant
threshold. This behavior is also linked to the soft mode at the
transition.

(a) (b)

FIG. 6. Transverse MSD (mm2, logarithmic scale) as a function of time (s, logarithmic scale) for (a) γ = 1 s−1 and (b) γ = 10 s−1,
T = 107 K, N = 16, L = 30 mm, in the limit h → h+

C2 with hC2 = 0.7321 mm. The symbols are simulation data; the solid lines with the same
color code as the symbols are the theoretical predictions (A2). For h = 0.778 mm (purple stars, bottom), h = 0.744 mm (blue dots, center),
and h = 0.738 mm (cyan squares, top). The black line is the limit h → h+

C2; the dashed line indicates the ballistic regime.
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FIG. 7. Saturation value of the transverse MSD (mm2) as a function of the zigzag height (mm) for a temperature of 107 K, for h → h−
C1

(left) and h → h+
C2 (right). The symbols correspond to the data in Figs. 5, 6, and 9. The insets show the data in logarithmic scales and the dashed

red line corresponds to Eq. (3).

Indeed, in the limit h → hCi (where i ∈ {1,2} indicates the
relevant transition), as explained in the previous section, the
modes with the smallest stiffness prevail, so that the sum of
the eigenmode contributions is very well approximated by

〈�y2(t)〉 t→∞∼ 2N
∣∣A3,3

(
π
N

,h
)∣∣2

kBT

m[ωAT (π/N,h)]2

×

⎧⎪⎪⎨
⎪⎪⎩

h→h−
C1∼ 2N |A3,3( π

N
,hC1)|2kBT

−m
∂ω2

AT
∂h

( π
N

,hC1)(hC1−h)
h→h+

C2∼ 2N |A3,3( π
N

,hC2)|2kBT

m
∂ω2

AT
∂h

( π
N

,hC2)(h−hC2)
.

(3)

The scaling in |h − hCi | reflects the fact that hCi is a simple
root of ω2. This estimate is compared to the simulation data
in Fig. 7, where it is shown that it is in very good quantitative
agreement with the simulations.

B. Longitudinal motions

The second qualitative consequence of subcriticality con-
cerns the longitudinal MSD. The longitudinal MSD as a
function of time is shown in Fig. 8 for the limit h → h−

C1 and
in Fig. 9 for the limit h → h+

C2. In contrast with the case of the
transition from the homogeneous zigzag to a line, described in
Sec. II, the longitudinal MSD clearly depends on the distance
to the thresholds hC1 and hC2 that correspond to the transition
from the homogeneous zigzag to the bubble.

In systems of finite size, the transition from a homogeneous
zigzag to a localized bubble induces an effect on the longi-
tudinal motions. While for a straight line or a homogeneous
staggered row the mean longitudinal distance between the
particles is a constant equal to d, when a bubble occurs in a
finite cell, there is a longitudinal compression in the bubble and
thus a longitudinal expansion outside the bubble. It is this effect
which allows the bubble stability because the energy loss of the
particles that take part in the zigzag and climb in the transverse
potential is more than compensated by the interaction energy
gain of the remaining particles that, because of the bubble, are
further apart from their neighbors (this mechanism has been
demonstrated quantitatively in Ref. [24]). This explains the
increase of the longitudinal MSD shown in Fig. 8 (h → h−

C1)
and in Fig. 9 (h → h+

C2).
The strongest effect on the longitudinal fluctuations of the

transition between the homogeneous zigzag and the localized
bubble pattern is seen in the long time regime. A Fickian
diffusion is eventually observed, which was shown in Ref. [15]
to be a correlated motion of the particles as a whole. The
diffusion coefficients limt→∞〈�x2(t)〉/t calculated from the
data of Figs. 8 and 9 are shown in Fig. 10. Part of the eventual
diffusive behavior is linked to the Goldstone mode due to
the translational invariance of the zigzag pattern. However,
near the transitions from the homogeneous zigzag toward the
bubble, a second relevant soft mode has to be taken into account
as well. A rough estimate for the diffusion coefficient at long

(a) (b)

FIG. 8. Longitudinal MSD (mm2, logarithmic scale) as a function of time (s, logarithmic scale) for (a) γ = 1 s−1 and (b) γ = 10 s−1,
T = 107 K, 2N = 16, and L = 30 mm, in the limit h → h−

C1 with hC1 = 0.2037 mm. The symbols are simulation data; the solid lines with
the same color code as the symbols correspond to Eq. (A1). For h = 0.181 mm (purple stars, bottom), h = 0.198 mm (blue dots, center), and
h = 0.201 mm (cyan squares, top). The black line is the limit h → h−

C1; the insets show the data during a longer time.
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(a) (b)

FIG. 9. Longitudinal MSD (mm2, logarithmic scale) as a function of time (s, logarithmic scale) for (a) γ = 1 s−1 and (b) γ = 10 s−1,
T = 107 K, 2N = 16, and L = 30 mm, in the limit h → h+

C2 with hC2 = 0.7321 mm. The symbols are simulation data; the solid lines with
the same color code as the symbols correspond to Eq. (A1). For h = 0.778 mm (purple stars, bottom), h = 0.744 mm (blue dots, center), and
h = 0.738 mm (cyan squares, top). The black line is the limit h → h+

C2; the insets show the data during a longer time.

time may be calculated from Eq. (A1) when only the two soft
modes are taken into account. The longitudinal MSD is found
to scale as t , with a diffusion coefficient

〈�x2(t)〉 t→∞∼ kBT

2Nmγ
t

[
1 + 2

∣∣∣∣A13

(
π

N
,hCi

)∣∣∣∣
2]

, (4)

where i ∈ {1,2} depending on the relevant transition. This
expression emphasizes that two soft modes are considered.
We also remark that the diffusion coefficient depends on the
whole system mass 2Nm, which reflects that at very long
time all particles are correlated [15]. As seen in Fig. 10, the
subcritical bifurcation results in more than a doubling of the
diffusion coefficient.

These SFD-like behaviors of the MSD, in the transverse
direction and the longitudinal one as well, result from the
subcriticality of the zigzag transition. Therefore, any exper-
imental evidence of such behaviors will indicate that the
interactions between the particles are of sufficiently short
range for the zigzag transition to be subcritical. These MSD
measurements, which are presumably rather easy, could be
a convenient method to estimate the range of the interaction
between particles of a quasi-one-dimensional system.

IV. CONCLUSION

When a quasi-one-dimensional system of 2N repelling
particles is confined along a line by a transverse potential,
with periodic longitudinal boundary condition (experimen-
tally, with a confining cell of annular shape), it undergoes
configurational phase transitions when the confining potential
decreases. Below a threshold, it becomes energetically favor-
able for the system to adopt one of the staggered raw patterns,
symmetric with respect to the longitudinal axis. This transition
is a pitchfork bifurcation known as the zigzag transition. This
paper is concerned with the dynamical consequences of the
zigzag transition on the thermal motions of the particles that
occurs when the system is put in a thermal bath.

For a finite system, and very close to the transition thresh-
old, the homogeneous zigzag is always stable. Just at the
transition between the line and the zigzag, and regardless of
the passing direction (from line to zigzag or conversely), the
frequency of one transverse vibration mode vanishes at zero
wavenumber. This soft mode induces long range correlation
between the particles which is the reason for a strongly
subdiffusive behavior of the transverse fluctuations. Exactly
as the longitudinal fluctuations of the chain exhibit SFD, with
a mean square displacement that scales as the square root of
time, the transverse fluctuations evidence a transient SFD-like

FIG. 10. Plot of the long time diffusion coefficient for longitudinal motions, in units of the free diffusion coefficient D0 = kBT /(mγ ) as
a function of h for (a) h → h−

C1 and (b) h → h+
C2. The symbols are those of Figs. 8 and 9, respectively. The insets show the same data in

logarithmic scales, and the dashed red line indicates the asymptotic value of Eq. (4).
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behavior. The closer the system is to the transition, the longer
is this transient.

If the interparticle interactions are of small enough range, in
a not too compelling way (see Ref. [14] for details), the zigzag
transition actually is a subcritical pitchfork bifurcation. The
main finding of this article is that this subcriticality has a strong
qualitative effect on the thermal motions. The homogeneous
zigzag is found to be stable only if its amplitude h is such
that 0 < h � hC1 or hC2 � h, with hC1 < hC2. If not, the
stable pattern is an inhomogeneous zigzag bubble, with a
zigzag phase embedded in a straight line phase. In this case,
a transverse vibrational soft mode occurs at each transition
between the homogeneous zigzag and the bubble, and in each
case the transverse fluctuations evidence a SFD-like behavior.
Moreover, in contrast with the transition between the zigzag
and the straight line, the longitudinal fluctuations exhibit a
diffusion coefficient which is more than doubled.

Conversely, the strong qualitative effect of the subcriticality
implies that a simple measurement of the thermal fluctuations
allows a precise determination of the bifurcation thresholds. In
addition, since the subcriticality traces back to the interaction
range, the thermal fluctuations should provide useful informa-
tion about the interparticle interactions.

APPENDIX: SIMULATIONS AND DATA ANALYSIS

1. The simulated system

We simulate the dynamics of 2N identical point particles
of mass m moving on a plane, submitted to a thermal bath
at temperature T by the numerical integration of coupled
Langevin equations [15]. The thermal bath is accounted for
by a damping constant γ , and by uncorrelated Gaussian noises
in both transverse and longitudinal directions. The length of
the simulation cell is L, with d ≡ L/(2N ) = 1.875 mm. The
particles are transversely confined in a quasi-one-dimensional
geometry by a harmonic potential of stiffness β, and periodic
boundary conditions are applied in the longitudinal direction.

All simulations are done with an interaction potential that is
a modified Bessel function of order zero, U (r) = U0K0(r/λ0),
with a characteristic range λ0 such that d/λ0 = 3.91, and a
characteristic amplitude such that U (d)/kB ∼ 1012 K. The
chosen potential range ensures that the homogeneous zigzag
is unstable in a finite range [hC1,hC2] since the instability con-
dition for the modified Bessel potential is d/λ0 > 2.04 [10].

The temperature scale is fixed by the choice of U0.
Somewhat arbitrarily, we have chosen the energy scale of an

experimental system of charged macroscopic beads [25,26],
so that U (d) ≈ 0.117 nJ or U (d)/kB ≈ 8.46 1012 K. The
temperature used in the simulations is T = 107 K. We have
to use a small ratio kBT /U (d) because we need to be very
near the transitions thresholds without disturbing the system.

The bubble motions are studied for damping constants γ =
1 s−1 and γ = 10 s−1. This is to be compared to the duration
of the simulation runs, which is typically 105 s, and to the
typical time scales d/c ∼ 0.1 s, where c is the typical velocity
of acoustic waves in the system [10].

2. Mean squared displacement calculations

We have already shown that the MSD of a given particle
in the chain may be calculated once the eigenmodes of the
chain are known [15,16], and the eigenmodes of a regular
zigzag pattern have been calculated in Ref. [10]. For the sake
of brevity, we therefore sketch the method and only give the
most relevant formulas in this section.

The zigzag pattern is made of 2N particles separated
with a constant longitudinal distance d and alternating trans-
verse positions ±h. We consider the small longitudinal and
transverse displacements of the particles in a unit cell of
two particles, with equilibrium positions (2jd,h) and [(2j +
1)d,−h] with j ∈ [1,N ]. The resulting linear system of four
coupled equations is expanded in Fourier modes, and the
dynamics is characterized by a 4 × 4 dynamic matrix M(h)
which is known as a function of d, h and the dimensionless
wavenumberφ(s) ≡ πs/N , where s ∈ [1,N ]. A unitary matrix
A built upon the eigenvector of this dynamic matrix puts it in
diagonal form.

The resulting coefficients of the diagonal matrix D =
A−1MA are D1 ≡ mω2

OL, D2 ≡ mω2
OT , D3 ≡ mω2

AL, and
D4 ≡ mω2

AT , where m is the particles mass. The first two
coefficients correspond to optical modes and do not vanish.
The coefficient D3 corresponds to the longitudinal acoustical
mode and vanishes for h = 0 and a null wavenumber φ = 0.
The remaining coefficientD4 is plotted in Fig. 1 and vanishes at
nonzero wavenumber for h → h−

C1
and h → h+

C2
as explained

in the text.
The MSD of a particle is then obtained from a projection

onto these eigenmodes, as shown in Refs. [15,16]. The dynam-
ics of each mode is that of a fictitious particle in the harmonic
potential that corresponds to the relevant eigenfrequency, with
dissipation γ and uncorrelated Gaussian noises because of the
unitarity of the matrix A. Therefore, the longitudinal MSD is
found to be

〈�x2(t)〉 = kBT

Nm

⎛
⎝ t

2γ
− 1

2γ 2
(1 − e−γ t ) + m

2D2(0)

[
1 + ω2,−eω2,+t

ω2,+ − ω2,−
− ω2,+eω2,−t

ω2,+ − ω2,−

]

+
N∑

s=1

4∑
j=1

m|A1j (s)|2
Dj (s)

[
1 + ωj,−eωj,+t

ωj,+ − ωj,−
− ωj,+eωj,−t

ωj,+ − ωj,−

]⎞
⎠, (A1)
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and the transverse MSD is found to be

〈�y2(t)〉 = kBT

N

⎛
⎝ 1

2D1(0)

[
1 + ω1,−eω1,+t − ω1,+eω1,−t

ω1,+ − ω1,−

]
+ 1

2D3(0)

[
1 + ω3,−eω3,+t − ω3,+eω3,−t

ω3,+ − ω3,−

]

+
N∑

s=1

4∑
j=1

|A4j (s)|2
Dj (s)

[
1 + ωj,−eωj,+t − ωj,+eωj,−t

ωj,+ − ωj,−

]⎞
⎠, (A2)

where

ωj,± ≡ −γ

2
±

√
γ 2

4
− Dj (s)/m. (A3)

As shown throughout the paper, the agreement between the predictions (A1) and (A2) and the simulation data is excellent.
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