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Stability in a fiber bundle model: Existence of strong links and the effect of disorder
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The present paper deals with a fiber bundle model which consists of a fraction α of infinitely strong fibers. The
inclusion of such an unbreakable fraction has been proven to affect the failure process in early studies, especially
around a critical value αc. The present work has a twofold purpose: (i) a study of failure abruptness, mainly the
brittle to quasibrittle transition point with varying α and (ii) variation of αc as we change the strength of disorder
introduced in the model. The brittle to quasibrittle transition is confirmed from the failure abruptness. On the
other hand, the αc is obtained from the knowledge of failure abruptness as well as the statistics of avalanches. It is
observed that the brittle to quasibrittle transition point scales to lower values, suggesting more quasi-brittle-like
continuous failure when α is increased. At the same time, the bundle becomes stronger as there are larger numbers
of strong links to support the external stress. High α in a highly disordered bundle leads to an ideal situation
where the bundle strength, as well as the predictability in failure process is very high. Also, the critical fraction αc,
required to make the model deviate from the conventional results, increases with decreasing strength of disorder.
The analytical expression for αc shows good agreement with the numerical results. Finally, the findings in the
paper are compared with previous results and real-life applications of composite materials.
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I. INTRODUCTION

The study of strength and predictability in failure processes
has been the center of discussion in engineering and material
science for decades [1,2]. A material with higher strength and
less abruptness in failure process is usually considered to be an
ideal material for many purposes. Mainly there are two factors
that determine the mode of failure: (i) strength of disorder and
(ii) range of interaction for stress release within a material.
When a material is subjected to an external stress, the final
breaking is characterized by the appearance of defects such
as dislocations or microcracks. The microcracks can produce
elastic waves, detectable by a piezoelectric microphone [3].
Experimentally it is believed that heterogeneities (like mi-
crocracks) present in materials leads to precursor activities
that often show scale-free behavior in energy release during
the failure process [4–6]. There are a number of external
parameters that affect the heterogeneity within a material and
hence affect the failure mode. External parameters such as
temperature [7] and pressure [7], and internal parameters such
as crystal defects (mainly dislocation) [8,9], porosity [10],
and the driving process (strain rate) [11] play crucial roles
in determining both strength and failure abruptness. Apart
from the above factors, there is another special technique that
affects the mode of failure: the mixing of materials known
as composites [1,2,12–14]. In material science, composites
are prepared by mixing two materials of different properties
in a certain proportion to create a third one that usually
comes with greater strength [15] and toughness [16] than the
component materials. Fiber reinforced composites [17–23] are
a good example in such case where fibers with high strength
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are embedded with a carrier matrix. There are some recent
works [24–26] on the fiber bundle model in comparison with
composite materials. The present work shows how the strength
and failure abruptness of the composite fiber bundle model
(FBM) [27–30] (prepared by mixing a fraction of infinitely
strong fibers with conventional breakable fibers) is affected
in the presence of a variable strength of disorder. The FBM
is basically a disordered system, guided through threshold
activated dynamics. We will discuss the model in detail in
Sec. II.

The existence of a strong link plays a crucial role while
studying the stability during the failure process in the fiber
bundle model. Recent studies show that the existence of an
unbreakable fraction affects the burst statistics in the global
load sharing [31] as well as local load sharing schemes [32].
The average size of maximum burst shows an abrupt change
around a critical fraction αc of strong links. Also, recently it
was observed that the introduction of disorder greatly affects
the failure process in the model [33]. In that study, a critical
strength of disorder was observed that separates brittlelike
abrupt failure (where the total bundle breaks in a single
avalanche without any necessity of stress increment) from
nonabrupt quasi-brittle-like failure (where the bundle shows
precursor activities prior to failure with increasing external
stress). Such critical disorder strength is a function of system
size [34] in the local load sharing scheme. Although the
disorder plays a significant role in the local load sharing (LLS)
model, the uniqueness of such critical disorder is lost here due
to the system size effect [34–36]. In light of this knowledge,
I have concentrated only on the mean-field limit, for both
analytical as well as numerical studies.

The present work has two main purposes that revolve around
the idea that a disordered system with a variable strength of
disorder contains a fraction of infinitely strong links. The first
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purpose of the paper will be to study how the existence of
strong links affects the failure process, especially the failure
abruptness. The study mainly includes the behavior of the
brittle to quasibrittle transition point [33,37] as we treat the
fraction α of strong links as the controlling parameter. Two
extreme limits of this variable can be understood: (i) α = 0,
which is the conventional limit and (ii) α = 1, where each
and every fiber has infinite strength (hence can support infinite
load) and the model does not evolve at all. The present study
discusses the nature of failure in all possible α values. The other
part of the paper is dedicated to understanding the response
of αc as the disorder is varied. A previous study [31] in the
mean-field limit claims that for uniform threshold distribution
[0,1] (introducing a constant disorder strength), half of the
bundle should have infinite strength to change the conventional
avalanche behavior: scale-free decay with a universal exponent
−5/2 [38–40]. Here I have studied how αc changes when the
strength of disorder is continuously varied.

In the next section a description of the model is provided,
followed by the analytical results in the mean-field limit
(Sec. III). Section IV is dedicated to the numerical results per-
formed with 105 fibers and a large set (≈104) of configurations.
Finally, in Sec. V, a brief discussion on the work is provided.

II. DESCRIPTION OF THE MODEL

After being introduced by Pierce in 1926 [27], the fiber
bundle model has been proven to be important yet arguably the
simplest model to study failure process. A conventional fiber
bundle model consists of fibers or Hookean springs, attached
between two parallel plates. The plates are pulled apart by a
force F , creating a stress σ = F/L on L fibers. Once the stress
crosses the breaking threshold of a particular fiber, chosen
from a random distribution, that fiber breaks irreversibly. The
stress of a broken fiber is then redistributed either globally
among all surviving fibers (global load sharing or GLS scheme)
or among the surviving nearest neighbors only (local load
sharing or LLS scheme). For the GLS scheme [27,28] no stress
concentration occurs anywhere around the failed fibers as the
stress of the failed fibers is shared among all surviving fibers
democratically. On the other hand, in the LLS scheme [41–45],
stress concentration is observed near a broken patch (series of
broken fibers) and increases with the length of such patches.
After such redistribution, the load per fiber increases, initiating
failure of more fibers, and starting an avalanche. At the end of
an avalanche, either all fibers are broken (suggesting global
failure) or the bundle comes to a stable state with few broken
fibers where an increment of external stress is required to make
the model evolve further. The last applied stress just before
global failure is considered to be the nominal stress or strength
of the bundle.

In this work the conventional model is modified by con-
sidering a fraction of total fibers to be infinitely strong and
therefore can support any amount of stress without breaking.
This kind of work is already studied in the fiber bundle model
with both GLS [31] and LLS [32] schemes. I have carried out
the study with varying disorder in the mean field or GLS limit
and observed how the above findings are affected when the
strength of disorder is varied.

If there are initially L fibers in the model, then among
them let us assume the α fraction (αL number of fibers) is
unbreakable and does not contribute to the evolution of the
model. A certain amount of applied stress breaks some fibers
among the remaining (1 − α) fraction and increases the stress
per fiber that leads to avalanches. The infinitely strong fibers
carry the extra stress (due to redistribution) without breaking
and do not contribute to the avalanche process. The behavior
of the model is mainly determined by (1 − α)L conventional
fibers that have random but finite breaking thresholds. So,
whenever we talk about failure abruptness, we indicate abrupt
failure of the (1 − α) fraction. Also the nominal or critical
stress is determined by the minimum applied stress at which
this (1 − α) fraction breaks with α fraction of intact fiber. A
further increase in applied stress does not change anything in
the bundle and hence is not worth observing.

The next section contains some analytical results for the
model, dealing with the variation of αc with disorder δ as well
as the behavior of the brittle to quasibrittle transition point with
varying α values.

III. ANALYTICAL APPROACH

For analytical calculation let us assume that a fraction of
fibers α in the model is too strong to break. A stress σ0 is
applied externally creating a stress per fiber σ . Here I have
shown the analytical calculations for a uniform distribution
of threshold stress. Also, a different case with power-law
threshold distribution is adopted in order to approach the
high-disorder limit. This will be discussed later in this paper.
Since the α fraction of the fibers are infinitely strong, it will not
take part in describing the dynamics of the system. So, later
in this paper, whenever we discuss the evolution of the model
(analytically or numerically), it is actually the evolution of the
(1 − α) breakable fraction.

A. Critical fraction for strong links

In the case of a particular distribution P (σ ) of threshold
strength values, we can relate the externally applied stress (σ0)
with the local stress per fiber (σ ) as

σ0 = (1 − α)[1 − P (σ )]σ + ασ. (1)

The second part of Eq. (1) shows the stress carried by the
infinitely strong fibers while the first part gives the stress
carried by the conventional fibers after a certain redistribution
(depending on σ0).

For a uniform distribution of width 2δ and mean at 0.5
we get P (σ ) = σ−a

2δ
, δ being the strength of disorder and a(=

0.5 − δ) is the minimum of the threshold distribution. For that
particular case, Eq. (1) can be written as

σ0 = (1 − α)

[
1 − (σ − a)

2δ

]
σ + ασ. (2)

This will give a parabolic curve at α = 0. For other α values
there will be a curve with a maximum at the unstable point of
the model, i.e., at the critical point of stress per fiber (σc). This
point is given by

dσ0

dσ

∣∣∣∣
σ0=σc

= 0. (3)
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Inserting value σ0 from Eq. (2) and using a = (0.5 − δ), we
get

1 − σc

δ
(1 − α) − 0.5 − δ

2δ
(1 − α) = 0

or, σc(α) = δ

1 − α
−

(
1

4
− δ

2

)
, (4)

Now the maximum value σ can attain is (0.5 + δ), which is the
maximum of the threshold distribution, and after this point we
cannot get any maximum of the curve. This is the point where α

reaches its critical value. So at α = αc, we get σc = (0.5 + δ).
Implying this condition we get this critical fraction of strong
links in terms of disorder:

αc = 3 − 2δ

3 + 2δ
. (5)

So as we go for higher and higher δ values, αc decreases and
we need a lesser fraction of unbreakable fibers to satisfy this
critical condition.

B. Study of failure abruptness

To understand the failure process in the model we have to
construct the recursion relation for the fraction of unbroken
bonds. Let us assume that the total Nu number of unbroken
fibers is the combination of Ns

u numbers of infinitely strong
fibers and Nw

u numbers of conventional (or weak) fibers.
This makes Ns

u/Nu = α and Nw
u /Nu = 1 − α. In a recursion

relation Ns
u does not have any role. Then, for a uniform

distribution with mean at 0.5 and width 2δ the equation of
the fraction of unbroken fibers can be given by

(1 − α) − nw
u =

∫ σ0/(nw
u +α)

a

p(σ )dσ

= 1

2δ

∫ σ0/(nw
u +α)

a

dσ. (6)

Here p(σ ) = dP (σ )/dσ . Also nw
u is the fraction of unbroken

bonds corresponding to applied stress σ0 and a (= 0.5 − δ)
is the minimum of the distribution. Equation (6) will give a
quadratic equation of nw

u ,

(
nw

u

)2 − nw
u

(
1 + a

2δ
− 2α

)
+

(
α2 + σ0

2δ
− α − aα

2δ

)
= 0.

(7)

The solution to the above equation will be

nw
u = 1

2

[(
1 + a

2δ
− 2α

)

±
√(

1 + a

2δ
− 2α

)2

− 4

(
α2 + σ0

2δ
− α − aα

2δ

)]
. (8)

Since at critical point two solutions of Eq. (8) cannot exist, it
suggests at critical point the rooted part of the above equation
will vanish. In that case, the critical fraction unbroken will be
given by

nc = (
nw

u

)
c
= 1

2

(
1 + a

2δ
− 2α

)
. (9)

For the case α = 0 above, the results reduce to the conventional
results in the model [33], where all fibers can break. An abrupt
brittlelike failure is seen in the model when nc = 1. In such a
case, the whole (1 − α) fraction breaks in a single avalanche
without any increment of external stress. For nc < 1, the model
breaks through a number of stable states. Inserting nc = 1 and
a = 0.5 − δc we get the value of δc from the above equation:

δc = 1

2

1

(4α + 3)
. (10)

For α = 0 we get δc = 1/6, which is the exact result we
obtained for the conventional fiber bundle model in the mean-
field limit (using uniform threshold distribution) [33].

IV. NUMERICAL RESULTS

Numerically, the model has been studied with system size
105 and a large set (∼104) of configurations. Most of the results
are generated in the mean-field limit with uniform distribution,
although the last part of the numerical results are discussed with
power-law threshold distribution to confirm the universality as
well as to approach the high-disorder limit. Previous numerical
studies suggest that there exists a critical fraction αc of strong
links above which the avalanche statistics deviates from the
mean-field results. The value of αc is quite high (=0.5) [31]
with the GLS scheme and drops to a very low value (∼0.05)
[32] in the presence of local stress concentration. In this paper,
I have studied this αc in detail with varying strength of disorder
in the mean-field limit. Also, the stability of the model during
the failure process is discussed with varying α values.

Below, the numerical results are discussed where the thresh-
old values are chosen from a uniform distribution of half-width
δ and mean at 0.5. δ expresses the strength of disorder.

A. Stability during failure process

A fraction of unbroken bonds just before the global failure
(nc) is proven to be a good measure of failure abruptness in
recent studies [33,34,46]. nc = 1 corresponds to a brittlelike
abrupt failure as the total model is intact just before the global
failure. After the application of a stress, large enough to break
the weakest fiber, the bundle becomes unstable and breaks in
a single avalanche without any prior warning. nc < 1 suggests
that the bundle goes through a number of stable states before
global failure (similar to quasibrittle failure). At each stable
state an increment in applied stress is required. In this section
we have discussed the behavior of nc with varying disorder, for
different fraction α. As expected, at low disorder, nc remains at
1.0 and the failure process is brittlelike abrupt. In this region all
the conventional fibers (1 − α fraction) break in at a constant
external stress in a single avalanche. On the other hand, at high
disorder nc < 1 and the model goes through a number of stable
states prior to failure point.

At low α values, where a very small fraction of the fibers are
strong, nc decreases to 0.5 when the disorder reaches δ = 0.5.
Such behavior remains unchanged in the region α < 0.5. As
we go to high values for α, nc starts saturating after a certain
disorder value. The saturation occurs as the remaining fibers
are strong enough to bear any stress without breaking. In this
section we will mainly concentrate on the point where nc
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FIG. 1. Variation of critical fraction unbroken nc with strength of
disorder δ for different α values. For low α, nc remains at 1 at low
disorder strength and gradually decreases to 0.5 with increasing δ.
For high α, due to the existence of unbreakable fibers, nc saturates to
a certain value (>0.5) beyond a certain strength of disorder.

deviates from 1 and hence from abrupt failure. The disorder
at which such deviation takes place is denoted as δc and can
be denoted as the brittle to quasibrittle transition point. Two
extreme limits of the model correspond to α = 0 and α = 1.
The former corresponds to the conventional mean-field limit
where δc is expected to be around 1/6 [33] with uniform
threshold distribution (mean 0.5 and half-width δ). On the other
hand, the later one corresponds to a situation where each and
every fiber is unbreakable and the model does not evolve at
all. Figure 1 clearly shows that δc approaches lower values as
we increase α. This in turn, reduces the window of disorder
strength within which an abrupt failure is expected. As a result,
at high α we will start getting stable states during the failure
process, even at low strength of disorder.

B. Strong link and disorder dependence in probability
of abrupt failure

To understand the predictability and stability during the
failure process, I have studied the probability of abrupt failure
with varying disorder and α. Since a fraction α is unbreakable
here, the study only shows the probability of abrupt failure for
the remaining (1 − α) fraction. A recent study [33] already
shows how the predictability is affected by disorder in the
mean-field limit. Here such behavior is studied with a varying
fraction of strong links.

The probability of abrupt failure, Pa , is basically defined
as the ratio of how many times the model goes through abrupt
failure (breaks in a single avalanche) to the total number of
observations. Figure 2 shows Pa as a function of disorder
strength δ for different fractions α. At low disorder Pa remains
at 1 and the failure is abrupt for each and every observation.
With increasing δ, Pa gradually decreases to zero. The region
Pa > 0 is denoted as brittle as there exists a nonzero probability
of abrupt failure. δc(L) is defined as the critical disorder for a
particular system size L beyond which Pa = 0. Figure 2 clearly
shows a decreasing δc(L) when α is increased. Also, the fall
of Pb becomes more and more sharp. This in turn supports
our previous claim of decreasing abrupt failure with α values.
Also, δc(L) scales down with increasing system size as δc(L) =

0
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P
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10-3
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c(

L)
-δ

c(
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FIG. 2. Pa vs δ for α = 0.0, 0.4, and 0.7. For δ < δc, Pa > 0
and hence there is a nonzero probability of abrupt failure. The
inset shows that δc(L) approaches its thermodynamic limit δc(∞) as
δc(L) = δc(∞) + L−1/3. The scaling remains invariant with respect
to α.

δc(∞) + L−ζ , where ζ = 0.33 ± 0.005. This exponent has
been observed earlier in the fiber bundle model. For example,
in the mean-field limit the relaxation time diverges close to
critical stress with the same exponent when the system size
is increased [47]. δc(∞) is the brittle to quasibrittle transition
point at the thermodynamic limit. The inset shows that the
above scaling of δc(L) remains unchanged even when α is
varied.

In Fig. 3, the behavior of Pa is discussed while both
the parameters α and δ are varied simultaneously. The color
scheme for Pa can be understood as follows:

(1) Yellow stands for the condition Pa = 1. The failure
process is abrupt here in each and every observation.

(2) Black corresponds to Pa = 0 and the failure process is
always quasi-brittle-like nonabrupt.

(3) The region 0 < Pa < 1 is shown in the other color
gradients. The probability of abrupt failure is variable in this
region and decreases with both α and δ.

Figure 3 shows that at higher α, while going from the yellow
to the black region, we cross the color gradient at a lower
disorder strength.

 0  0.1  0.2  0.3  0.4  0.5  0.6
α
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FIG. 3. Pa as a function of both disorder δ and fraction of strong
link α. The yellow and black colors correspond to pure abrupt and
pure nonabrupt failure, respectively. Within the color gradient, the
abruptness in the failure process is a function of both δ and α.
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FIG. 4. Comparison between theoretical and numerical findings
of δc(∞) for different α values. δc(∞) decreases with increasing α,
making the quasibrittle response more and more prominent.

C. Brittle to quasibrittle transition point

We have now reached the point where we can discuss the
brittle to quasibrittle transition point δc(∞) with continuously
varying α values. In Fig. 4 we have shown this numerical
variation along with the analytical finding given by Eq. (10).
Although the analytical and numerical values of δc(∞) do not
show good agreement, both agree to a decreasing behavior
of δc(L) with increasing α. Why the analytical and numerical
results do not match is not quite clear at this moment. The
above disagreement is quite prominent for higher α values.
As per Fig. 4, δc(L) starts from 1/6 at α = 0 (the conventional
limit) and decreases to 0.02 for α = 0.9. In this high α limit, the
failure process is predictable almost for all strength of disorder.

D. Strength of the bundle

A different way to understand the advantage of introducing a
fraction of unbreakable fibers is to monitor how the strength of
the bundle is affected by it. Figure 5 shows that the strength of
the bundle increases as we include more and more unbreakable
fibers.

We already know that α = 0 leads to the conventional limit
of the model, where with decreasing strength of disorder δ,

 0.1
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 0.9

 0  0.2  0.4  0.6  0.8
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L=105
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δ=0.2
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δ=0.4
δ=0.5

FIG. 5. Variation of critical strength σc with α for different
strength of disorder δ. σc increases monotonically with α for any
δ value. The response of σc against disorder is also modified as α is
increased.
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FIG. 6. Variation of nc with continuously increasing α parameter
for different strength of disorder: δ = 0.2, 0.3, 0.4, and 0.5. αc is the
point where nc deviates from the straight line nc = α. αc is observed
to decrease with increasing δ values.

the failure process becomes more brittle but at the same time
the strength of the bundle increases (see Ref. [48]). We cannot
approach an ideal limit where both strength and predictability
in the failure process is high. So, in that conventional limit we
have to compromise, either in terms of strength or predictability
in failure abruptness. Figure 5 suggests that, as we go to a
relatively high α value the response of σc against δ reverses and
instead of decreasing σc starts increasing with δ. Combining
this finding along with the results of failure abruptness we
can conclude that at high α the model operates in an ideal
situation where the strength of the bundle is high and the
failure process is highly predictable due to quasi-brittle-like
continuous failure.

E. Estimation of αc from failure abruptness

To estimate the critical fraction of strong link we have
studied the failure abruptness with varying fraction α of
infinitely strong fibers (see Fig. 6). We know that for a
certain α, nc remains at 1 below δc (where δc is a decreasing
function of α itself) and gradually decreases as δ is increased
beyond δc. In this section we have studied how nc responds to a
continuous change in α values when the disorder strength δ is
kept constant. For reference we have shown the locus of nc = α

in Fig. 6. This line corresponds to the strong link dominated
region. nc = α suggests that the bundle breaks continuously
until there remains α infinitely strong fibers only. The failure
process is extremely stable in this limit. At high α values, the
fraction unbroken shows this above behavior. As we decrease
α, nc deviates from the straight line (given by nc = α) below
a critical fraction αc. When we decrease the strength δ, such
deviation takes place at lower α values and hence αc decreases.

The system size effect of αc is also studied. αc is observed to
show almost no change while the system size is increased. The
studies are carried out over the range 103 � L � 105. Over
such range of system size, αc changes roughly by an amount
0.01. Due to such L-independent behavior, it is safe to treat the
above αc’s as αc(L → ∞), their values in the thermodynamic
limit.
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FIG. 7. (a) Variation of average maximum burst size 〈�max〉 with
α. For δ > δc, 〈�max〉 falls sharply around αc. For δ < δc, 〈�max〉
shows a nonmonotonic behavior but still shows an abrupt change as
we go beyond αc. (b) 〈�max〉 diverges around the critical fraction αc

as 〈�max〉/L ∼ (α − αc)−ν . (c) The inset shows a linearly increasing
ν with disorder strength δ.

F. Behavior of maximum burst

To understand the existence of αc and its variation with
disorder δ, I have also studied how the maximum burst behaves
at different conditions. A burst size is defined here as the
number of fibers broken in between two consecutive stress
increments. The final burst during the failure process has been
neglected in the above study. The maximum of the burst is
chosen among the rest of the avalanches. 〈�max〉 is defined
as the average over 104 such maximum burst values. Figure 7
shows how 〈�max〉 varies with α at different disorder strengths.
For δ > δc(∞), 〈�max〉 saturates at a nonzero value for small
α [see Fig. 7(a) for δ = 0.5, 0.4, 0.3, and 0.2]. As the model
crosses αc, 〈�max〉 shows a sudden decrease and reaches zero
gradually. As we decrease δ, this sudden jump in 〈�max〉 starts
taking place at higher α, suggesting a shift of αc toward high
values. For δ < δc, 〈�max〉 shows a nonmonotonic behavior.
〈�max〉 remains at a very low value for small α, reaches a
maximum, and falls back again close to αc. Figure 7(b) offers
a closer look at the divergence of 〈�max〉 around α = αc. The
following scaling is observed:

〈�max〉
L

∼ (α − αc)−ν, (11)

where the exponent ν has a disorder dependence. As we
decrease disorder from δ = 0.5, ν starts to decrease from
1.5 (matches with the earlier claim by Hidalgo et al. [31])
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FIG. 8. Burst size distribution for (a) δ = 0.5 and (b) 0.3. The
inset shows the unscaled distribution. For system size scaling the
following scaling behavior is adopted: P (�) = 〈�max〉−γ 	[ �

〈�max〉ξ ].

and reaches 0.8 at δ = 0.2. We have restricted our study to
δ > δc(∞) as below this the disorder αc value is quite high and
there will be very few points before the model stops evolving.
The variation of ν with δ is shown in Fig. 7(c). The increment
of ν is almost linear with strength of disorder δ.

G. Burst size distribution

Finally, we have studied the distribution of burst size � and
how it scales at different disorder values. The size of a burst
holds the same definition as previously: the number of fibers
broken in between consecutive stress increments. Figure 8
shows the burst size distribution P (�) for δ = 0.5 and 0.3.
The figures in the inset show the unscaled burst distribution.
For α < αc, the model barely deviates from the conventional
behavior and hence produces a scale-free avalanche: P (�) =
�−5/2 [38–40]. As we go beyond αc, an exponential cutoff
is added with the distribution, although the power of the
scale-free behavior remains unaltered. Such exponential cutoff
takes place at lower and lower � values as α is increased
beyond αc. The main purpose of the scaled figure is to construct
a master curve for the region α > αc. Since 〈�max〉 is described
by the exponential cutoff (if the cutoff is at lower �, 〈�max〉
also decreases), we have treated 〈�max〉 as a scaling parameter
to obtain the following scaling:

P (�) = 〈�max〉−γ 	

(
�

〈�max〉ξ
)

, (12)
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TABLE I. Scaling exponents γ and ξ for different δ are tabulated.

δ γ ξ γ /ξ (≈ κ)

0.5 3.25 1.25 2.60
0.4 3.40 1.35 2.52
0.3 3.45 1.38 2.50

where the function 	 is given by

	

(
�

〈�max〉ξ
)

= �−κe−(�/〈�max〉ξ ), (13)

where κ = 5/2. The exponents γ and ξ vary with disorder
strength δ, obeying the following relation: γ = κξ .

Table I shows such variation of γ and ξ for δ = 0.5, 0.4, and
0.3. As δ increases, both γ and ξ increase, keeping a universal
value for κ (≈5/2) independent of disorder strength.

H. Variation of αc with disorder

The above behavior of nc as well as the study of 〈�max〉
leads to the same αc values beyond which the strong links play
a crucial role in the evolution of the model.

Figure 9 explicitly shows the variation of αc with δ. The
value of αc was observed at 0.5 earlier for δ = 0.5. The results
of the present paper show an increment in αc as the disorder
strength is decreased. This suggests that as the disorder is
decreased we have to reach higher α values to make the model
deviate from its conventional limit.

I. High-disorder limit

We have already discussed the effect of low disorder
strength on αc. In this section we want to focus on the
question: what happens if the strength of disorder is very high?
Understandably, at high disorder some links are already so
strong that no additional strong link might be required at all
to make the model deviate from the conventional limit. Such
high-disorder limit for the model is achieved by choosing a
power-law distribution (say, with power −1) for the threshold
values instead of the uniform one. The threshold strength
values are chosen between 10−η and 10η, η being the amount
of disorder here.
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dominated

Conventional limit
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FIG. 9. Variation of αc with strength of disorder in the case of
uniform threshold distribution. For α < αc, the model operates in the
conventional limit. Beyond αc the strong links play a crucial role.
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FIG. 10. αc vs η (strength of disorder) in the case of power-law
threshold distribution. Beyond η∗, some fibers are themselves so
strong that no strong link is required to stabilize the model. Below
η∗ we get two regions: conventional and strong link dominated,
depending on whether α > αc or α < αc.

For the power-law threshold distribution αc shows a de-
creasing behavior with disorder η. Figure 10 shows that as we
go beyond η∗ we obtain αc = 0. The region η > η∗ acts as
the high-disorder limit for the model, where the conventional
burst statistics is not observed even in the absence of any
kind of additional strong links. At very high η, the threshold
values are so distinct from each other, we hardly observe
any big avalanches. In this region almost each and every
fiber breaks with external stress increment only. On the other
hand, for η < η∗, the model either operates in the conventional
limit, producing a scale- free avalanche size distribution (with
exponent −5/2) or is dominated by the strong links, depending
on whether α is less or greater than αc.

V. DISCUSSIONS

In the present work I have studied the effect of disorder
in the failure process of a heterogeneous system in light of
the framework of the fiber bundle model. A model is adopted
where a certain fraction of the fibers are infinitely strong.
The model has its similarity with a composite material as it
is a mixture of two types of fibers: α fraction unbreakable
and (1 − α) fraction with a certain breaking threshold. It is
observed that with increasing α not only failure abruptness
decreases but also it increases the strength of the bundle. The
brittle to quasibrittle transition point takes place at lower-
disorder strength values when α is increased and that in turn
reduces the brittlelike abrupt failure in the model. The critical
fraction of strong links (αc), beyond which the behavior of
the model deviates from the conventional results, is observed
to be a function of disorder strength δ (or η). Beyond αc, the
strength of the bundle is an increasing function of disorder.
In the limit α > αc, we approach an ideal situation for the
model with increasing disorder where the strength is very
high and failure abruptness is very low. The existence of αc is
captured through a sudden decrease in the average maximum
avalanche during the failure process. Besides, the scaling of
avalanche size distribution produces a master curve in the
region α > αc. The universality of the results is verified with
three different threshold distributions: uniform, power law, and
Weibull.
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The material properties, mostly the strength of a material,
have been studied extensively for different composites under
different conditions. For example, the strength of a composite
is evaluated with fiber length or fiber content [49], orientation
of the fibers [50], fiber diameter [51], fiber matrix stress transfer
[52], etc. In summary, the present study, consistent with a
previous work [31], shows that there exists a critical density
of infinitely strong links in a disordered system like the fiber
bundle model above in which the model deviates from its
conventional limit, causing higher strength and more stable
failure. Additionally, I have shown that the existence of such
critical density is observed irrespective of the disorder strength.
The study can also be repeated with a more realistic stress
release algorithm that includes the effect of stress localization
near a broken link. Specifically, the present study can be studied

in linear elastic fracture mechanics in terms of pinning to
dipping transition, where the strong links can be considered
to be pinned permanently, irrespective of an external driving
parameter. Also, the study of such infinitely strong elements in
other statistical models of fracture such as spring bundle model
[53,54], random resistor network [55–57], etc., can be helpful
to compare the numerical results with the results of real-life
composites.
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