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We investigate in detail the process of formation of the multipeak low-temperature structure in the behavior of
the specific heat capacity in frustrated magnetic systems in the framework of the exactly solvable antiferromagnetic
spin-1/2 Ising model with the multisite interaction in the presence of the external magnetic field on the kagome-like
Husimi lattice. The behavior of the entropy of the model is studied and exact values of the residual entropies of
all ground states are found. It is shown that the multipeak structure in the behavior of the specific heat capacity
is related to the formation of the multilevel hierarchical ordering in the system of all ground states of the model.
Direct relation between the maximal number of peaks in the specific heat capacity behavior and the number of
independent interactions in studied frustrated magnetic system is identified. The mechanism of the formation of
the multipeak structure in the specific heat capacity is described and studied in detail, and it is generalized to
frustrated magnetic systems with arbitrary numbers of independent interactions.
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I. INTRODUCTION

One of the most important quantities which is intensively
studied and measured in the process of experimental investiga-
tion of various frustrated magnetic systems is the specific heat
capacity which usually exhibits various anomalies such as, e.g.,
the appearance of the second peak at low temperatures widely
known as the Schottky-type anomaly (see, e.g., Refs. [1–19]).
However, besides the most common two-peak Schottky-type
anomaly in the low-temperature behavior of the specific heat
capacity, there also exist magnetic materials for which more
than the two-peak structure of the specific heat capacity is mea-
sured (see, e.g., Refs. [20–29]). It is evident that such specific
heat capacity behavior means that the corresponding magnetic
systems must pass through significant entropy changes since
the specific heat capacity is, by definition, directly related to the
entropy of the studied system. Here, it is also worth mentioning
that the multipeak structure in the temperature behavior of the
specific heat capacity is not present in the magnetic systems
only but can also be observed in other physical situations, e.g.,
in the investigation of the specific heat capacity properties of
plasma [30].

From phenomenological as well as fundamental points of
view, it is therefore desirable and useful to find and describe a
general microscopic mechanism which could be responsible
for such anomalous behavior of the specific heat capacity
in frustrated magnetic systems at low temperatures. For this
purpose, it is most convenient to study this behavior of specific
heat capacity in the framework of a theoretical model which, on
one hand, would be able to describe (at least qualitatively) a
realistic frustrated magnetic system and, on the other hand,
would be exactly solvable in the presence of the external
magnetic field. The last requirement is in fact very important
because various anomalous properties of the specific heat

capacity are usually observed when a nonzero magnetic field
is applied. Unfortunately, the set of even classical exactly
solvable spin models on regular lattices is restricted to one-
and two-dimensional models [31–34], but at the same time
no relevant classical spin model on a regular two-dimensional
lattice exists that would be exactly solved in the nonzero
external magnetic field. It is therefore evident that for a
systematic theoretical investigation of the properties of various
frustrated magnetic systems in the presence of the external
magnetic field one must necessarily use an approximation
which, however, must be chosen in such a way that it takes
into account at least the basic properties of the original model
responsible for the frustration.

In this respect, as for the geometrically frustrated magnetic
systems [35], one such approximation which, on one hand,
preserves the basic properties of the model responsible for the
geometrical frustration and, on the other hand, allows one to
perform an exact analysis of the model, is the approximation
based on the well-defined recursive lattices, e.g., on the gen-
eralized Bethe lattices known as the so-called Husimi lattices
[36–38]. The main advantage of recursive lattices is the fact that
various statistical models on such kind of lattices can always
be investigated by using the recursive relations technique (see,
e.g., Refs. [39–43] and references cited therein). Moreover, in
some special cases, models on recursive lattices are also exactly
solvable in fully analytic form even in the presence of the exter-
nal magnetic field [44–46]. Among such exactly solvable mod-
els is the antiferromagnetic spin-1/2 Ising model on the corner-
sharing triangles recursive lattice with coordination number
four, i.e, on the so-called kagome-like Husimi lattice [44,45]
(see Fig. 1), which represents an appropriate approximation of
the regular two-dimensional kagome lattice shown explicitly
in Fig. 2 and which takes into account its basic geometrical
structure responsible for strong geometrical frustration.
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FIG. 1. The structure of the kagome-like Husimi recursive lattice.

However, the fact that the antiferromagnetic spin-1/2 Ising
model on the kagome-like Husimi recursive lattice is exactly
solvable not only in the presence of the external magnetic field
[44] but also when an additional interaction is considered, e.g.,
when the multisite interaction among spin variables within
elementary triangles of the lattice is present [45], gives one
other important possibility, namely, the opportunity to inves-
tigate systematically the impact of the presence of additional
interactions on various properties of geometrically frustrated
magnetic systems such as the full system of ground states
of the model and the magnetization properties of the model.
Namely, these properties were studied in detail in Ref. [45].
In the present paper, in the framework of this exactly solvable
model, we will concentrate our attention on the investigation
of another important phenomenon related to the frustration,
namely, to the aforementioned nontrivial multipeak behavior
of the specific heat capacity at low temperatures in frustrated
magnetic systems.

It means that our main aim will be to identify on a
fundamental level of investigation the source of the multipeak

FIG. 2. The structure of the regular kagome lattice.

behavior of the specific heat capacity in frustrated magnetic
systems in the framework of a well-defined exactly solvable
model as well as to understand the process of the very formation
of this multipeak structure. As we shall see, the main role in
the very existence of this multipeak behavior of the specific
heat capacity plays the formation of a nontrivial hierarchical
system of highly macroscopically degenerated ground states
of the model in the limit T → 0. It will be shown that
the strong hierarchies of the residual entropies exist among
various neighboring ground states of different orders and that
the existence of such multilevel hierarchies of the residual
entropies leads to the appearance of the multipeak temperature
behavior of the specific heat capacity. As we shall show, the
maximal possible number of peaks in the specific heat capacity
behavior directly depends on the number of hierarchical levels
of the system of the model ground states which, on the
other hand, is directly given by dimension of the independent
parametric space of the model.

The paper is organized as follows. In Sec. II, the model
is briefly introduced. In Sec. III, the entropy of the model
is investigated and the residual entropies of all ground states
are found. In addition, their hierarchical ordering is defined
and discussed. The multipeak behavior of the specific heat
capacity as the function of the temperature under the influence
of the presence of the multisite interaction is studied in detail
in Sec. IV. Finally, obtained results are briefly reviewed and
discussed in Sec. V.

II. DESCRIPTION OF THE MODEL

In what follows, we shall investigate the influence of
the multisite interaction among spin variables within each
elementary triangle on the thermodynamical properties of the
antiferromagnetic spin-1/2 Ising model in the presence of the
external magnetic field on the kagome-like Husimi recursive
lattice, i.e., on the recursive lattice built by corner-sharing
triangles with coordination number z = 4 shown explicitly
in Fig. 1. As was already mentioned in the introduction,
this recursive lattice represents an adequate approximation of
real two-dimensional kagome lattice (Fig. 2) which takes into
account its basic geometric structure responsible for frustration
[35]. The Hamiltonian of the model has the following form,

H = −J
∑
〈i j〉

sisj − J ′ ∑
〈i j k〉

sisj sk − H
∑

i

si , (1)

where each variable si acquires one of two possible values ±1,
J < 0 is the nearest-neighbor antiferromagnetic interaction
parameter, J ′ represents the multisite interaction among spin
variables within single triangles, andH is the external magnetic
field. Thus, the first sum in Eq. (1) runs over all nearest-
neighbor spin pairs, the second sum runs over all elementary
triangles, and the third sum runs over all spin sites.

As with any statistical model on a recursive lattice, the
above-defined model can be studied numerically by using the
standard recursion relations technique (see, e.g., Ref. [32]).
But, as was shown in detail in Refs. [44,45], the exact solution
of the model exists without as well as with the presence of
the multisite interaction. In Ref. [45], it was proven that the
model exhibits a unique solution for all values of the model pa-
rameters and the explicit analytical form of the corresponding
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unique stable fixed point of the recursion relations was found
which completely drives the model thermodynamics. Using
this solution, the influence of the multisite interaction on the
magnetization properties of the model was investigated and
the system of all ground states of the model was found and
their exact values of magnetization were determined. The
most important conclusion obtained in Refs. [44,45] is the
fact that, along with the standard plateau ground states, the
model also exhibits the existence of well-defined so-called
single-point ground states which, depending on the values of
the model parameters, are realized for exactly defined values
of the external magnetic field.

The aim of the present paper is to use the nontrivial fact of
the existence of the exact solution of the model to perform de-
tailed analysis of its thermodynamics and to determine the role
of the multisite interaction in the low-temperature properties of
the model. The main attention is devoted to the investigation
of the low-temperature behavior of the specific heat capacity
of the model related to the presence of the multisite interaction
to understand in general the role of additional interactions in
frustrated magnetic systems for the very existence of various
specific heat capacity anomalies as well as their properties. To
this end, it is necessary first to investigate the entropy of the
model, which is performed in detail in the next section.

III. ENTROPY AND RESIDUAL ENTROPIES
OF ALL GROUND STATES OF THE MODEL

The entropy per site s of a given model can be determined by
using the free energy per site f through the standard relation

s = − ∂f

∂T
. (2)

The free energy per site of the present model can be derived,
e.g., by using techniques described in Refs. [47,48] and has
the form [49]

βf = 1
3 ln(x3e3h+3K+K ′ + 3x2eh−K−K ′

+ 3xe−h−K+K ′ + e−3h+3K−K ′
)

− ln(x2e2h−K−K ′ + 2xeK ′−K + e−2h+3K−K ′
), (3)

where β = 1/(kBT ), T is the temperature, kB is the Boltzmann
constant, K = βJ , K ′ = βJ ′, h = βH , and x is the exact
solution of the corresponding recursion relation obtained in
Ref. [45] which has the following explicit form

x = 1

3a

[
−b − 21/3(3ac − b2)

B
+ B

21/3

]
, (4)

where

B = [27a2d − 2b3 + 9abc

+
√

4(3ac − b2)3 + (27a2d − 2b3 + 9abc)2]1/3 (5)

and

a = e4h, (6)

b = e2K ′
(2e2h − e4(h+K)), (7)

c = e4K − 2e2h, (8)

d = e2K ′
. (9)

FIG. 3. Dependence of the entropy per site on the external
magnetic field for various nonzero values of the reduced temperature
for α = 0.

The explicit expression for the entropy per site of the studied
model is relatively large. Nevertheless, for completeness, it
can be found in the appendix.

Depending on the value of the ratio α = J ′/|J |, the studied
model exhibits three qualitatively different behaviors of the
entropy as the function of the reduced temperature and of the
external magnetic field depicted in Figs. 3–5 for three typical
values of the parameter α, namely, for α = 0,1, and 2. First of
all, Fig. 3 (where the dependence of the entropy per site on the
external magnetic field for various values of the temperature is
shown for α = 0, i.e., in the case when the multisite interaction
is absent at all) represents a typical qualitative behavior of
the entropy per site for −1 < α < 1. Here, the formation of
the corresponding system of residual entropies of the ground
states of the model in the limit T → 0 can be seen. On the
other hand, when the absolute value of the multisite interaction
is exactly equal to the absolute value of the nearest-neighbor
antiferromagnetic interaction, i.e., for |α| = 1, the behavior
of the entropy changes qualitatively and is demonstrated in
Fig. 4 for α = 1. Note that the corresponding figure for α = −1
can be obtained from Fig. 4 by the reflection with respect to
H = 0 axis. The third typical situation which holds for |α| > 1
is shown in Fig. 5 for α = 2. Here again, the corresponding
dependence of the entropy for negative values of α is obtained
by simple reflection with respect to H = 0 axis.

From all these figures, it is evident that the plateau ground
states (except of the saturated ground states with |m| = ±1)
as well as the single-point ground states, which are formed on
the borders between corresponding plateau-like ground states,
acquire nonzero residual entropies in the limit T → 0. As was
shown in Ref. [45], where the magnetization properties of the
model were investigated, the “phase” diagram of the ground
states of the model in H/|J | versus α plane consists of four
plateau-like ground states with values of the magnetization
m = ±1/3 and ±1 and the corresponding system of the single-
point ground states which are shown explicitly in Fig. 6.
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FIG. 4. Dependence of the entropy per site on the external
magnetic field for various nonzero values of the reduced temperature
for α = 1.

The formation of the system of nonzero residual entropies
for all nontrivial ground states of the model means that
all of them are highly macroscopically degenerated. Let us
remember that the macroscopic degeneracy � of a given state
of the system with total number of sites N is related to the total
entropy S = Ns by the relation S = kB ln �.

It follows from Fig. 6 that the model exhibits two nontrivial
plateau ground states with m = ±1/3. Their residual entropy
is equal to

s = kB

3
ln

4

3
≈ 0.095894 kB. (10)

FIG. 5. Dependence of the entropy per site on the external
magnetic field for various nonzero values of the reduced temperature
for α = 2.

FIG. 6. The ground-state phase diagram of the model in the H/|J |
vs α plane. The values of the magnetization and of the residual
entropies of the plateau ground states are written explicitly. On
the other hand, the values of the magnetization and the residual
entropies of the single-point ground states are the following: m = 0
and s ≈ 0.501359 kB (the solid line), m = 0 and s ≈ 0.231049 kB

(the dashed lines), m = ±0.6 and s ≈ 0.387717 kB (the dotted lines),
and m ≈ ±0.217208 and s ≈ 0.619621 kB (the filled circles).

The model also exhibits the existence of four thermody-
namically different single-point ground states. Three of them
are realized on the corresponding lines in H/|J | versus α

plane and separate various neighboring plateau-like ground
states (see Fig. 6). It follows from Figs. 3–5 that all of
them are considerably more macroscopically degenerated in
comparison to the plateau-like ground states. Here, it is
important to stress that the model exhibits the existence of
two qualitatively different single-point ground states which
are realized on the corresponding lines in the plane H/|J |
versus α (solid and dashed lines in Fig. 6) and which have
the same value of the magnetization, namely, m = 0. It means
that although from a pure magnetization point of view these
single-point ground states seem to be equivalent, nevertheless
their thermodynamics are different. The first of them is realized
on the line H/|J | = 2α for −1 < α < 1 (the solid line in
Fig. 6) and represents the separating ground state between
plateau ground states with values of magnetization m = ±1/3.
Its residual entropy is the following:

s = kB

3
ln

9

2
≈ 0.501359 kB. (11)

It is worth mentioning here that this residual entropy is very
close to the residual entropy of the same ground state on
the regular kagome lattice at zero external magnetic field,
which was found in Ref. [50], and its approximate value is
s ≈ 0.50183kB . It means that our recursive model describes
the thermodynamics of the model on the real kagome lattice
very well, not only on the qualitative level but also on the
quantitative level.

052129-4



MULTIPEAK LOW-TEMPERATURE BEHAVIOR OF … PHYSICAL REVIEW E 97, 052129 (2018)

The second thermodynamically different single-point
ground state with zero value of magnetization is realized on the
lines H/|J | = ±2 for α > 1 and α < −1, respectively, which
separate the plateau-like ground states with m = ±1/3 and
the corresponding saturated ground states with m = ±1 (the
dashed lines in Fig. 6). The exact value of the residual entropy
is now given as follows:

s = kB

3
ln 2 ≈ 0.231049 kB. (12)

It is evident that the residual entropy of this single-point ground
state is much smaller than the residual entropy of the single-
point ground state with the same magnetization discussed
above. It means that, from a thermodynamical point of view,
they represent two qualitatively different ground states with
significantly different macroscopic degeneracies; i.e., they are
formed by nonequal sets of possible spin configurations.

The last line-like single-point ground states are realized
on lines H/|J | = ±4 − 2α for α < 1 and α > 1, respectively
(the dotted lines in Fig. 6) and have the absolute value of the
magnetization |m| = 0.6. Their residual entropy is equal to

s = kB

3
ln

16

5
≈ 0.387717 kB. (13)

Besides, as follows from Fig. 6, the model also exhibits the
existence of totally unique single-point ground states which are
realized at two points at which three plateau-like ground states
meet and, at the same time, at which all three different line-like
single-point ground states meet, i.e., for |H/J | = ±2 and α =
±1 (the filled circles in Fig. 6). The nontrivial exact expression
for their absolute value of the magnetization was found in
Ref. [45]. The approximate absolute value of the magnetization
of these single-point ground states is |m| ≈ 0.217208 and their
residual entropy is given as follows:

s = kB

3
ln

y2(2 + y)3

y(3 + y) + 3
≈ 0.619621 kB, (14)

where

y = 71/3w2 − w + 72/3

3w
, w =

(
1 + 3i

√
3

2

)1/3

. (15)

Note that these single-point ground states are the most macro-
scopically degenerated ground states of the model. At the
same time, let us note that their residual entropy is relatively
close to the maximal possible entropy of any two-state spin
system in the limit T → ∞ which is equal to smax = kB ln 2 ≈
0.693147kB . As we shall see, these single-point ground states
are unique not only in the sense that they are maximally
macroscopically degenerated ground states of the model but
also in the sense that their existence causes nontrivial anomaly
behavior of the specific heat capacity in their vicinity.

It follows from the above discussion that from the point of
view of their dimensionality the studied magnetic system in
fact exhibits the existence of three different types of ground
states. First are the standard plateau-like ground states which
are realized in the corresponding two-dimensional regions of
the two-dimensional parametric space of the model at zero
temperature given by two dimensionless parameters H/|J | and
α = J ′/|J | (see Fig. 6). This type of ground state is realized

in the regions with maximal dimension in given independent
parametric space. At the same time, however, in our case, there
exist two types of the so-called single-point ground states, i.e.,
the ground states which are realized at exactly defined values
of the external magnetic field H/|J | for given concrete values
of the other model parameters (in our case for given value
of the parameter α). All of them correspond to objects with
smaller dimensions in the parameter space of the model. In
our case, we have single-point ground states which are realized
on lines in the two-dimensional parameter space, i.e., are one-
dimensional objects, and we also have the single-point ground
states which are realized at unique points of the parameter
space, i.e., they are the ground states with zero dimension in
the parametric space of the model (see Fig. 6).

Thus, one can observe a well-defined hierarchy in the set
of all ground states of the model based on their dimensionality
in the parametric space. As a result, in our case, the set
of all ground states is divided into three disjunct subsets
containing the corresponding ground states of the same order
(dimensionality). If we denote the set of all ground states in
the framework of our two parametric model as G2, then it is
evident that one can write the following simple relation G2 =
G2,0

⋃
G2,1

⋃
G2,2, where G2,i ,i = 0,1,2 are the disjunct

subsets of the ground states with the same dimensionality equal
to i. In what follows, the elements of the set G2,i will be called
as the ground states of ith order. At the same time, each ground
state can be associated with the corresponding region in the
two-dimensional parameter space in which this ground state
is realized. Therefore, if we denote whole two-dimensional
parametric space at zero temperature as G2 then it is evident
that one can also write G2 = G2,0

⋃
G2,1

⋃
G2,2, where G2,i are

regions in which ground states G2,i are realized. In our case,
the sets G2,i are also disjunct as a result of the fact that the
model does not exhibit coexistence of the phases, i.e., that we
have unique solution for all values of the parameters of the
model [45].

This classification can be extended to the general case
of a frustrated classical magnetic system with n different
couplings J1, . . . ,Jn in the external magnetic field H . In
this general case, one can define, without loss of general-
ity, the following set of n independent dimensionless pa-
rameters: J2/J1,J3/J1, . . . ,Jn/J1,H/J1, which define the n-
dimensional parametric space of the model at zero temperature,
i.e., the parametric space of the ground states of the model.
As a result, in general, the set of all ground states Gn of this
model will consist of the subset Gn,n of all plateau-like ground
states with dimensionality n, i.e., which are realized in the
n-dimensional regions in the ground-state parametric space,
and all subsets of various single-point ground states Gn,i,i =
0, . . . ,n − 1 of all smaller orders, i.e., Gn = ⋃n

j=0 Gn,j . In
addition, one can again write Gn = ⋃n

j=0 Gn,j , where Gn,j

represents all regions in which ground states Gn,j of j th order
are realized (which are all disjunct if the model exhibits a
unique solution regardless of the parameter values at zero
temperature) and Gn represents an n-dimensional independent
parametric space of the model at zero temperature.

It is important to stress that if the model exhibits a single
unique solution for all parameter values at zero temperature,
then every ground state of the order i = 0,1, . . . ,n − 1 sep-
arates corresponding neighboring ground states of the order
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i + 1 (see Fig. 6). At the same time, due to the fundamental
thermodynamic law that the entropy is always an increasing
function of the temperature, the following assertion must be
valid: For arbitrary two neighboring ground states of different
orders the residual entropy of the ground state of higher order
is lower or at most equal to the residual entropy of the lower
order ground state. As we shall see, this multilevel cascade
hierarchy of the macroscopic degeneracy of the neighboring
ground states plays the central role for understanding and
natural explanation of experimentally measured anomalous
behavior of the specific heat capacity at low temperatures such
as the existence of a multipeak structure of the specific heat
capacity in various frustrated magnetic systems.

It is also necessary to note that a similar idea of the existence
of hierarchical ordering of all ground states was also proposed
and discussed in the framework of the spin configuration
analysis of the various Ising-like models on geometrically
frustrated lattices [51–54].

IV. HIERARCHY OF GROUND STATES AND
LOW-TEMPERATURE MULTIPEAK STRUCTURE

OF THE SPECIFIC HEAT CAPACITY

As was already mentioned, the main aim of the present
paper is to investigate in detail the low-temperature anomaly
behavior of the specific heat capacity in frustrated systems
and to identify its source in the magnetic systems with
additional interactions which are represented by the multisite
interaction in the framework of the studied exactly solvable
antiferromagnetic frustrated model.

By definition, the specific heat capacity at the constant
external magnetic field is related to the entropy per site or
directly to the free energy per site as follows:

cH = T

(
∂s

∂T

)
H

= −T

(
∂2f

∂T 2

)
H

. (16)

Note that having the exact expression for the free energy
per site for the studied model given in Eq. (3) means that
the exact expression for the specific heat capacity can be
immediately derived. For completeness, its explicit form is
shown in the appendix. The fact that in the present model the
exact expression for the specific heat capacity exists even in
the nonzero external magnetic field is quite exceptional in the
framework of classical models of the statistical mechanics.
This allows us to perform an exact analysis of its properties
and to understand peculiarities in its behavior on a fundamental
theoretical level.

Detailed analysis of the temperature dependence of the
specific heat capacity shows that its behavior strongly depends
on the value of the external magnetic field H/|J | as well
as on the strength of the multisite interaction in comparison
to the nearest neighbor antiferromagnetic coupling constant
represented by the parameter α = J ′/|J |.

A. The specific heat capacity behavior for α = 0

First of all, in the case when the multisite interaction is not
present, depending on the value of the external magnetic field,
the studied model exhibits the standard one-peak behavior of
the specific heat capacity as well as the two-peak behavior

FIG. 7. The behavior of the specific heat capacity as the function
of the reduced temperature for various absolute values of the external
magnetic field for α = 0.

with appearance of the second so-called Schottky-type peak at
low temperatures. The behavior of the specific heat capacity
as the function of the reduced temperature for α = 0 and for
various absolute values of the external magnetic field is shown
explicitly in Fig. 7. As follows from this figure, in this case, the
Schottky-type anomaly behavior of the specific heat capacity
appears in the left as well as right vicinity of the values of the
external magnetic field for which the corresponding single-
point ground states are formed in the limit T → 0, i.e., in
the vicinity of H/|J | = 0 and ±4 (the curves for |H/J | =
0.2,3.8, and 4.2 in Fig. 7). Note also that directly at the absolute
values of the external magnetic field for which the single-point
ground states are formed the specific heat capacity has standard
one-peak behavior [see the curves for |H/J | = 0 (dash-dotted
red curve) and |H/J | = 4 (dashed blue curve) in Fig. 7].

The properties of the Schottky-type anomaly behavior of
the specific heat capacity near the corresponding single-point
ground-state values of the external magnetic field are shown
in detail in Fig. 8. Here, it is again evident that the specific
heat capacity has standard one-peak behavior as the function
of the temperature for the absolute values of the magnetic field
for which the single-point ground states are formed, i.e., for
|H/J | = 0 and 4 (see the corresponding black curves in Fig. 8).
Note that these peaks are also common for the specific heat
capacity curves for the magnetic fields from the left as well
as right vicinity of the corresponding single-point values of
the external magnetic field. At the same time, one can see
that the second (Schottky) peaks for the absolute values of the
magnetic field from the same side of a given single-point value
of the magnetic field have similar heights and shift toward
zero temperature when the absolute value of the magnetic
field approaches the corresponding single-point value of the
external magnetic field, i.e., the value of the external magnetic
field at which the corresponding single-point ground state is
formed in the limit T → 0 (in what follows, we shall usually
use the reduced version of this phrase for shortness).

052129-6



MULTIPEAK LOW-TEMPERATURE BEHAVIOR OF … PHYSICAL REVIEW E 97, 052129 (2018)

FIG. 8. The behavior of the specific heat capacity as the function
of the temperature in the vicinity of the single-point ground-state
absolute values of the external magnetic field |H/J | = 0 and 4 for
α = 0.

Note also that the Schottky peaks from the vicinity of
different absolute values of the single-point ground state
magnetic field have considerably different heights. Besides, the
heights of the Schottky peaks from the left and right vicinity
of the absolute value of the magnetic field |H/J | = 4 are also
different (see the corresponding curves for |H/J | = 3.8,3.9
and 4.1,4.2 in Fig. 8). All these facts are directly related
to different differences between the residual entropies of the
corresponding single-point ground state and the neighboring
plateau ground-state formation, which in the limit T → 0
can be seen explicitly in Fig. 9, where the behavior of the

FIG. 9. The dependence of the entropy per site on the reduced
temperature for α = 0 and for the same absolute values of the external
magnetic field as in Fig. 7.

FIG. 10. The behavior of the specific heat capacity as the function
of the temperature and of the absolute value of the external magnetic
field for α = 0 in the vicinity of |H/J | = 4 for which the single-
point ground state is formed in the limit T → 0. The formation of the
Schottky peaks in the left and right vicinity of |H/J | = 4 is shown
explicitly.

entropy as the function of the temperature is shown for the
same absolute values of the external magnetic field as in
Fig. 7. Finally, the behavior of the specific heat capacity as
a function of the temperature and the external magnetic field
in the vicinity of the single-point value of the external magnetic
field |H/J | = 4 for α = 0 is demonstrated explicitly in Fig. 10
with clear illustration of the formation of the Schottky-type
peak at low temperatures. At the same time, the formation of the
field-induced sharp double-peak structure in the behavior of the
specific heat capacity at low temperatures centered in the abso-
lute value of external magnetic field for which the single-point
ground state is formed can also be seen explicitly in Fig. 10.

Finally, it is worth mentioning that the Schottky peaks in
the behavior of the specific heat capacity at low temperatures
are formed only in restricted intervals of the absolute
values of the external magnetic field, namely, in the interval
0 < |H/J | < 0.606 in the vicinity of H = 0 and in the
intervals 3.250 < |H/J | < 4 and 4 < |H/J | < 5.076 in the
vicinity of |H/J | = 4.

B. Influence of multisite interaction on the specific
heat capacity anomalies

If one considers pure antiferromagnetic model, i.e., without
the presence of the multisite interaction, then the ground-state
parametric space, i.e., the parametric space at zero temper-
ature, is one dimensional and given by the only independent
dimensionless parameter H/|J |. Therefore, in this case, the set
of all ground states is G1 = G1,0

⋃
G1,1, where the subset of

the zero-order ground states G1,0 consists of three single-point
ground states realized for H/|J | = 0,±4 (geometrically they
form the subset G1,0 of the one-parametric space G1) and the
subset of the first-order ground states G1,1 consists of the
plateau-like ground states with values of the magnetization
m = ±1/3,±1 which geometrically form the subsetG1,1. Note
that G1 = G1,0

⋃
G1,1. Here, as for the temperature-specific
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heat capacity behavior, one can observe only two possible
qualitatively different behaviors, namely, the standard one-
peak or anomalous two-peak (Schottky) behavior. However, as
was already discussed above, the two peaks in the behavior of
the specific heat capacity take place only in restricted vicinities
of the values of the magnetic field for which the zero-order
(single-point) ground states are realized.

When the presence of the multisite interaction is considered
in the model, then the ground state parametric space becomes
two-dimensional, denoted as G2 in Sec. III, and is defined
by two independent dimensionless parameters α = J ′/|J | and
H/|J |. As follows from Fig. 6, when the multisite interaction
is switched on, the positions of the single-point ground states
depend of the value of the parameter α, and when the strength
of the multisite interaction is equal or larger than the nearest
neighbor antiferromagnetic interaction, then even new single-
point ground states appear. It is, however, important to realize
that the hierarchy of the ground states is also changed. On
one hand, the plateau-like ground states G1,1 are now realized
in two-dimensional regions G2,2 and therefore belong to the
subset of the second-order ground states G2,2 and the single-
point ground states G1,0 are now realized on the corresponding
lines G2,1; i.e., they also increase their order and now belong
to the subset of the first-order ground states G2,1. On the
other hand, a new subset of the zero-order single-point ground
states G2,0 emerges here which is realized at unique points
(and therefore forms the subset G2,0) in the two-dimensional
ground-state parametric space (the filled circles in Fig. 6).

Thus, introducing a new interaction into the model increases
the dimension of the ground-state parametric space of the
model with appearance of new ground states as well as with
appearance of a new ground-state hierarchy. As we shall
see, this hierarchical layering of the set of all ground states
of the model has a direct relation to the very existence of
the multipeak structure as well as to the possible maximal
number of peaks in the specific heat capacity behavior at low
temperatures.

As was mentioned above, for α = 0 the specific heat
capacity exhibits the standard one-peak temperature behavior
directly at the single-point ground-state values of the external
magnetic field, i.e., at H/|J | = 0,±4. When the multisite
interaction is switched on, the positions of these (first-order)
single-point ground states change (see the solid and dotted
lines in Fig. 6) but the specific heat capacity persists to exhibit
the standard one-peak behavior [the solid black curves in
Fig. 11, where the temperature behavior of the specific heat
capacity on the line of the first-order single-point ground states
is demonstrated for the single-point ground state with m = 0,
which is realized on the line H/|J | = 2α for |α| < 1 (solid line
in Fig. 6)]. The situation is changed when, depending on the
corresponding line of the single-point ground states, the abso-
lute value of the parameter α obtains some specific value. For
the first-order single points on the line H/|J | = 2α for |α| < 1,
this specific absolute value of the parameter α is |α| ≈ 0.627.
Starting from this absolute value of the parameter α, the system
starts to exhibit the Schottky-type anomaly behavior of the
specific heat capacity with two-peak structure (see the dashed
red curves in Fig. 11). This behavior holds up to |α| = 1 and
|H/J | = 2 where the zero-order single-point ground state with
considerably larger residual entropy appears (see the previous

FIG. 11. The dependence of the specific heat capacity on the
reduced temperature for various absolute values of the parameter
|α| < 1 and |H/J | = 2|α|, i.e., for parameters of the model for which
the corresponding single-point ground state of the first order is real-
ized. The dashed red lines represent the specific heat capacity curves
with Schottky-type anomaly behavior. The temperature dependence
of the specific heat capacity for parameters |α| = 1 and |H/J | = 2
at which the zero-order single-point ground state is realized is also
shown for comparison (the solid blue line).

section). Note that directly at this single-point ground state of
the zero order the specific heat capacity as the function of the
temperature has only one peak (the solid blue curve in Fig. 11).
As follows from Fig. 11, the height of the Schottky peak (in the
interval of the parameters where this type of peak exists at all)
is almost constant (see the dashed red curves in Fig. 11). At
the same time, the disappearance of the Schottky peak for the
corresponding values of the parameters on the lineH/|J | = 2α

for |α| < 1, namely, for |H/J | = 1.254 and |α| = 0.627, is
accompanied by adequate growth of the remaining standard
peak of the specific heat capacity. Besides, it is also evident
that the Schottky peak shifts toward zero temperature in the
limit |α| → 1 on this line and disappears directly at |α| = 1,
i.e., directly at the point at which the corresponding zero-order
ground state is realized in the limit T → 0.

This behavior of the specific heat capacity on the line
H/|J | = 2α for |α| < 1 shown in Fig. 11 can be explained by
the behavior of the entropy, which is explicitly demonstrated
in Fig. 12. As follows from this figure, the key role is played by
the nearby presence of the highly macroscopically degenerated
single-point ground state of the zeroth order at the point
|α| = 1 and |H/J | = 2, residual entropy of which is higher
than the residual entropy of the first-order ground state, which
is realized on the line H/|J | = 2α for |α| < 1 and which has
a significant impact on the behavior of the entropy per site
in its vicinity with significant slowing down of the entropy
reduction in some temperature interval which enlarges toward
zero temperature with approaching the model parameters for
which the zero-order single-point ground state is formed (see
the dashed red curves in Fig. 12).
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FIG. 12. The dependence of the entropy per site on the temper-
ature for various absolute values of the parameter α |α| < 1 and
|H/J | = 2|α|. The dashed red lines represent the entropy curves for
the model parameters for which the Schottky-type anomaly behavior
of the specific heat capacity exists (see Fig. 11). The entropy curve for
the parameter values |α| = 1 and |H/J | = 2 for which the residual
entropy of the zero-order single-point ground state is realized is also
shown for comparison (the solid blue line).

As follows from Figs. 13 and 14, similar behavior of the
specific heat capacity can also be seen on the lines of the values
of the model parameters on which the first-order single-point

FIG. 13. The dependence of the specific heat capacity on the
reduced temperature for various absolute values of the parameter
α > 1 and H/|J | = 4 − 2α, i.e., for parameters of the model at which
the corresponding single-point ground state of the first order is real-
ized. The dashed red lines represent the specific heat capacity curves
with Schottky-type anomaly behavior. The temperature dependence
of the specific heat capacity for parameters |α| = 1 and |H/J | = 2
at which the zero-order single-point ground state is realized is also
shown for comparison (the solid blue line).

FIG. 14. The dependence of the specific heat capacity on the
reduced temperature for various absolute values of the parameter
|H/J | = 2 for |α| > 1, i.e., for parameters of the model at which the
corresponding single-point ground state of the first order is realized.
The dashed red lines represent the specific heat capacity curves with
Schottky-type anomaly behavior. The temperature dependence of the
specific heat capacity for parameters |α| = 1 and |H/J | = 2 at which
the zero-order single-point ground state is realized is also shown for
comparison (the solid blue line).

ground states with values of the magnetization m = ±0.6
are realized, i.e., on lines H/|J | = ±4 − 2α for α < 1 and
α > −1, respectively, as well as on the lines H/|J | = ±2
for α > 1 and α < −1, respectively, on which new first-order
single-point ground states are realized with zero magnetization
(see Fig. 6). Detailed analysis shows that, in these cases,
the Schottky-type behavior of the specific heat capacity with
two-peak structure is realized on the lines H/|J | = ±4 − 2α

for 0.753 < α < 1 and −1 < α < −0.753, respectively, as
well as on the lines H/|J | = ±2 for 1 < α < 1.451 and
−1.451 < α < −1, respectively (see also the dashed red lines
in Figs. 15 and 16).

It is worth mentioning here that while the heights of the
Schottky peaks, which are realized on the corresponding
different lines of the single-point ground states, are different
(which is related to the different values of the residual entropies
of these ground states), the standard peak (the first peak) in the
specific heat capacity is common for all of them with the same
height as well as with the same position and, at the same time,
is also identical to the only peak in the specific heat capacity
behavior for parameters |α| = 1 and |H/J | = 2 for which
the zero-order singe-point ground states are realized (see the
dashed red and solid blue curves in Figs. 11, 13, and 14). This
behavior is related to the fact that this common standard peak in
the specific heat capacity is a result of the process of formation
of the residual entropy of the corresponding central zero-order
single-point ground state at |H/J | = 2 and |α| = 1 from fully
disordered state at high temperatures which is common for all
of them.

Thus, we can conclude that while for the parameter values
for which the zero-order single-point ground states are realized
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FIG. 15. The regions of the parameters of the model for which
the specific heat capacity exhibits one-peak (the blue filled circle, the
blue lines, and the two-dimensional regions denoted by blue roman
numeral I), two-peak (the dashed red lines and the two-dimensional
regions denoted by red roman numeral II), and three-peak (not denoted
explicitly in the figure) behavior as the function of the temperature.
The three-peak specific heat capacity regions, which can be also seen
but are too small to be denoted here, are shown explicitly in Fig. 16,
where they are denoted by green roman numeral III.

(H/|J | = ±2 and α = ±1) the model exhibits only standard
one-peak behavior of the specific heat capacity as the function
of the temperature (see the filled blue circles in Figs. 15
and 16), the two-peak Schottky-type anomaly behavior of the
specific heat capacity emerges for well-defined intervals of the
parameters for which the first-order single-point ground states
exist (given by the corresponding lines in the plane H/|J |
versusα) from relatively close vicinity of the zero-order ground
states (the dashed red lines in Figs. 15 and 16) along with the
standard one-peak behavior of the specific heat capacity which
is realized on the remaining parts of these lines (the solid blue
lines in Figs. 15 and 16).

Finally, let us analyze the temperature properties of the
specific heat capacity for the values of the parameters for
which the second-order ground states, i.e., the plateau ground
states, are realized. Here, detailed analysis shows that the
third peak appears in the temperature dependence of the
specific heat capacity when the parameters of the model
belong to rather restricted but well-defined two-dimensional
regions close simultaneously to lines and points for which
the first-order and the zeroth-order single-point ground states
exist [see the regions denoted by green roman numeral III in
Fig. 16 (they can also be seen in Fig. 15, although they are not
explicitly denoted there)]. Besides, when the chosen values
of the parameters are such that the corresponding point in the
plane H/|J | versus α is far enough from one of the lower order

FIG. 16. Detailed illustration of the regions of the model param-
eters for which the specific heat capacity exhibits one-peak (the blue
filled circle, the blue lines, and the two-dimensional regions denoted
by blue roman numeral I), two-peak (the dashed red lines and the
two-dimensional regions denoted by red roman numeral II), and
three-peak (the two-dimensional regions denoted by the green roman
numeral III) behavior as the function of the temperature.

ground states but, at the same time, close enough to the second
one, then the specific heat capacity exhibits standard two-peak
Schottky-type anomaly behavior (see the regions denoted by
red roman numeral II in Figs. 15 and 16). Finally, the one-peak
structure of the specific heat capacity as the function of the
temperature is observed when the parameters of the model
are chosen far enough from the values of the parameters for
which all lower order ground states are realized (see the regions
denoted by blue roman numeral I in Figs. 15 and 16).

The complete division of the plane H/|J | versus α into
the subregions where the specific heat capacity exhibits the
one-peak, two-peak, and three-peak behavior as the function of
the temperature is shown in detail in Figs. 15 and 16. As follows
from Figs. 15 and 16, the parts of lines in the parameter space
on which the first-order ground states are realized represent the
separation lines between neighboring two-dimensional regions
of parameters for which the second-order ground states exist
(in our case, they are the regions with the maximal dimensions
and therefore for them the plateau ground states are formed
in the limit T → 0) and for which the specific heat capacity
has one more peak in comparison with the number of peaks
on the corresponding parts of the lines (see the dashed red and
solid blue lines and the corresponding neighboring regions in
Figs. 15 and 16). At the same time, as also follows from these
figures, the zeroth-order ground-state values of the parameters,
for which the specific heat capacity has standard one-peak
behavior, represent points which separate various regions with
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FIG. 17. The three-peak behavior of the specific heat capacity
as the function of the temperature for α = 0.975 in the left and
right vicinity of the line H/|J | = 2α for which the corresponding
first-order single-point ground state is formed in the limit T → 0
(the dash-dotted green curves for H/|J | = 1.945 and 1.955). The
corresponding two-peak curve for H/|J | = 1.95, i.e., for the value
of the magnetic field directly on the first-order single-point ground-
state line (the dashed red curve), as well as one-peak specific heat
capacity curve for the zero-order single-point ground-state parameter
values H/|J | = 2 and α = 1 (the solid blue curve) are included for
comparison.

two-peak as well as three-peak structures in the temperature
behavior of the specific heat capacity.

The existence of the three-peak structure in the behav-
ior of the specific heat capacity is demonstrated explicitly
in Figs. 17 and 18, where the specific heat capacity as
a function of the reduced temperature is shown for α =
0.975 and various values of the external magnetic field
from the close vicinity of the point with H/|J | = 2 and
α = 1 for which the zeroth-order single-point ground state
is realized as well as from the left and right vicinity
of the lines H/|J | = 2α and H/|J | = 4 − 2α, respectively,
for which the corresponding first-order single-point ground
states are formed in the limit T → 0. As follows from Fig. 17,
the heights of the third peaks of the specific heat capacity, i.e.,
the heights of the peaks which are realized for the lowest values
of the temperature, are the same for the curves from the left and
right vicinity of the parameter line H/|J | = 2α. It is related to
the fact that the neighboring plateau-ground states which are
separated by the corresponding line of the single-point ground
states have the same nonzero value of the residual entropy (see
Fig. 6), which is also illustrated in Fig. 19. It is evident from this
figure that, in this case, the dependence of the entropy on the
temperature is very similar (see the dash-dotted green curves
for H/|J | = 1.945 and 1.955 in Fig. 19). As follows from
Fig. 19, the formation of the third peak in the behavior of the
specific heat capacity is directly related to the nearby presence
of the first-order single-point ground-state residual entropy of
which is larger than the residual entropy of the corresponding
neighboring plateau ground state (see the dashed red curve

FIG. 18. The three-peak behavior of the specific heat capacity as
the function of the temperature for the same value of the parameter
α = 0.975 in the left and right vicinity of the line H/|J | = 4 − 2α

for which the corresponding first-order single-point ground state
is formed in the limit T → 0 (the dash-dotted green curves for
H/|J | = 2.045 and 2.055). Again, the corresponding two-peak curve
for H/|J | = 2.05, i.e., for the value of the magnetic field directly on
the first-order single-point ground-state line (the dashed red curve),
as well as one-peak specific heat capacity curve for the zero-order
single-point ground-state parameter values H/|J | = 2 and α = 1 (the
solid blue curve) are included for comparison.

for H/|J | = 1.95 in Fig. 19). Namely, the nearby presence of
this highly macroscopically degenerated lower-order ground
state seriously influences the entropy behavior in its vicinity
with appearance of noticeable slowing down of the entropy

FIG. 19. The dependence of the entropy per site on the reduced
temperature for α = 0.975 and for the same values of the external
magnetic field as in Figs. 17 and 18.
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decreasing in an interval of the temperature with subsequent
rapid change of the entropy when temperature decreases.

On the other hand, as follows from Fig. 18, the heights of
the third peaks in the behavior of the specific heat capacity
for the parameter values from the left and right vicinity of the
line H/|J | = 4 − 2α, for which the corresponding first-order
single-point ground state is formed, are different. Here, it is
related to the existence of considerable difference between
residual entropies of the corresponding neighboring plateau-
like ground states (see Fig. 6). The higher peak corresponds
to the plateau ground state with lower residual entropy. At
the same time, the origin of the formation of these peaks is
completely the same as in the previous case, as it follows
from the temperature dependence of the corresponding entropy
curves in Fig. 19 (see the dash-dotted green curves for H/|J | =
2.045 and 2.055 as well as the dashed red curve for H/|J | =
2.05).

In the same manner, the very existence of the second peaks
(the middle peak in the three-peak structure) in the behavior of
the specific heat capacity as well as their heights (see Figs. 17
and 18) are directly related to the corresponding differences
between residual entropies of the nearby first- and zeroth-order
single-point ground states. Again, the influence of the existence
of the zeroth-order single-point ground state on the entropy
behavior in its vicinity is manifested in the steplike entropy
behavior near the residual entropy value of the zeroth-order
single-point ground state in an interval of temperatures (see
Fig. 19). As also follows from Figs. 17 and 18, the second
peak in the three-peak structure of the specific heat capacity
is completely equivalent to the Schottky-peak in the two-peak
structure of the specific heat capacity for the values of the
parameters for which the first-order single-point ground state
is realized (see the dashed red curves in Figs. 17 and 18). This
behavior is a direct manifestation of the fact that all these peaks
have the same origin described above.

Finally, the existence of a common standard first peak in
the behavior of the specific heat capacity, which has the same
properties for all values of the parameters from the vicinity of
the zeroth-order single-point ground state (see Figs. 17 and 18),
is directly related to the form of the entropy evolution between
the entropy value which corresponds to the residual entropy
of the zeroth-order single-point ground state and the maximal
possible value of the entropy per site for any two-state system,
namely, smax = kB ln 2.

The complexity of the low-temperature specific heat capac-
ity behavior as the function of the external magnetic field in the
vicinity of the zeroth-order and the corresponding first-order
single-point ground states is explicitly shown in Fig. 20 for
α = 0.975. In Fig. 20, the formation of the second and third
peaks in the temperature behavior of the specific heat capacity
close to the first-order single point values of the external
magnetic field, i.e., close to H/|J | = 1.95 and 2.05, can be
seen. Note that the first standard peak in the specific heat
capacity behavior is not present in Fig. 20 because it is realized
for considerably higher temperatures (see Figs. 17 and 18). It
is also important to note that, as immediately follows from
Fig. 20, the field-induced double-peak structure in the specific
heat capacity behavior occurs in the vicinity of each value of
the external magnetic field where the first-order single-point
ground state is formed in the limit T → 0.

FIG. 20. The behavior of the low-temperature specific heat capac-
ity for α = 0.975 as the function of the values of the external magnetic
field from the vicinity of the zeroth-order single-point ground state
at the point H/|J | = 2 and α = 1 as well as from the vicinity of the
corresponding two first-order single-point ground states which are
realized on the lines H/|J | = 2α and H/|J | = 4 − 2α, respectively.

Typical temperature behavior of the specific heat capacity
in the left and right vicinity of a first-order single-point ground
state near the corresponding zeroth-order single-point ground
state is demonstrated in Figs. 21 and 22 for the first-order
single-point ground state which is realized for H/|J | = 1.7
and α = 0.85 on the line H/|J | = 2α in the vicinity of the
zeroth-order single-point ground state at the point H/|J | = 2
and α = 1 (see Fig. 16). As follows from Fig. 21, depending
on the value of the external magnetic field from the left vicinity

FIG. 21. One-peak (solid blue curves), two-peak (dashed red
curves), and three-peak (dash-dotted green curves) temperature be-
havior of the specific heat capacity for various external magnetic field
values from the left vicinity of the first-order single-point ground
state which is realized at H/|J | = 1.7 and α = 0.85 on the line
H/|J | = 2α for −1 < α < 1.
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FIG. 22. Two-peak (dashed red curves) and three-peak (dash-
dotted green curves) temperature behavior of the specific heat capacity
for various external magnetic field values from the right vicinity of the
first-order single-point ground state which is realized at H/|J | = 1.7
and α = 0.85 on the line H/|J | = 2α for −1 < α < 1.

of H/|J | = 1.7, the specific heat capacity exhibits one-peak,
two-peak, and three-peak temperature behavior. On the other
hand, in this case, as follows from Fig. 22, the specific heat
capacity exhibits only two-peak and three-peak temperature
behavior for the external magnetic fields from the right vicinity
of the single-point value of the magnetic field H/|J | = 1.7.
This is given by the fact that, in this case, the magnetic field
values from the right vicinity of this single point belong only
into the regions of the type II (dashed red curves) or III (dash-
dotted green curves), as can be explicitly seen in Fig. 16. Let
us note that similar temperature behavior of the specific heat
capacity with one-peak, two-peak, and three-peak structure can
be also obtained for the corresponding first-order single-point
ground states on the red parts of the lines H/|J | = ±4 − 2α for
α < 1 and α > −1 and H/|J | = ±2 for α > 1 and α < −1,
respectively (see Figs. 15 and 16).

C. Multipeak structure of the specific heat capacity
in frustrated magnetic systems

Detailed analysis of the specific heat capacity behavior
performed in the previous sections in the framework of the
studied geometrically frustrated magnetic system with two
independent parameters allows us to generalize our main ob-
servations and conclusions to the frustrated magnetic systems
with arbitrary number of independent parameters.

Our analysis shows that behavior of the specific heat
capacity as the function of the temperature strictly depends on
the existence of stepped hierarchies of the residual entropies
(of the macroscopic degeneracies, respectively) of the system
of the ground states of the model. In our case, in the framework
of the model with two interactions J1 and J2 and the external
magnetic field H one has two-dimensional ground-state para-
metric space defined by two independent parameters H/|J1|
and α = J2/|J1| and the entire parametric space is divided

into regions in which three different types of the ground
states are realized: the zeroth-order (points), first-order (lines),
and second-order ground states (two-dimensional regions). As
shown in the previous section, in the zeroth-order ground-state
parameter values, the specific heat capacity as the function of
the temperature always exhibits only standard one-peak be-
havior. On the other hand, depending on the parameter values,
the specific heat capacity exhibits standard one-peak behavior
or two-peak Schottky-type anomaly behavior in the regions
where the first-order ground states are realized. Finally, the
specific heat capacity as the function of the temperature shows
one-peak, two-peak, and three-peak anomalous behavior in the
regions for which the second-order ground states are formed in
the limit T → 0. It means that for model parameters from the
region of any ith-order ground state, one can see at most i + 1
peaks in the temperature behavior of the specific heat capacity.
The actual number of peaks depends on the position in the
parametric space of this ith-order ground state, as discussed in
detail in the previous section and explicitly shown in Figs. 15
and 16.

Our conclusions obtained in the framework of the studied
model can be directly generalized to arbitrary geometrically
frustrated magnetic system with n interactions in the external
magnetic field. Thus, suppose that one has an antiferromag-
netic geometrically frustrated system with n different inter-
actions J1, . . . ,Jn in the external magnetic field H . Then,
as discussed in detail at the end of Sec. III, the independent
ground-state parametric space of such a model is n dimensional
and divided into i-dimensional regions Gn,i in which ith-order
ground states are realized in the limit T → 0. Therefore, by
analogy with the studied model, depending on the parameter
values, the specific heat capacity as the function of the tem-
perature can exhibit at most i + 1 peaks for model parameters
from regions which form Gn,i . It also means that the maximal
possible number of peaks in the temperature behavior of the
specific heat capacity in the framework of such a model is
n + 1. Of course, the maximal possible number of peaks can
be realized only in the systems for which at least one complete
strict hierarchy of the residual entropies of neighboring ground
states of all orders exists. Note that in the model studied in this
paper all residual entropy hierarchies are strict, i.e., the residual
entropy of the lower-order ground state is always greater than
the residual entropy of any neighboring ground state of higher
order.

It is important to stress here that all our conclusions cannot
be applied to the regions of parameters of a model for which
the first-order phase transitions exist. There the situation is
different and needs separate analysis.

From a phenomenological point of view, our analysis also
allows us to make some conclusions for the experiment.
Namely, if in general an n-peak temperature structure of
the specific heat capacity is measured, then, from our pure
theoretical analysis, it follows that the corresponding magnetic
system is under influence of the hierarchical system of at
least n residual entropies of neighboring ground states of
different orders. In addition, it also automatically means that
the ground-state parametric space of such a magnetic system
must be at least n dimensional; i.e., the model must be driven
at least by n different interactions (parameters). It means that
a necessary condition for a theoretical model which would be
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able to describe such a magnetic system is that it must take into
account at least n different spin interactions.

Note that, as mentioned in the introduction, the nontrivial
multipeak structures in the temperature behavior of the specific
heat capacity are measured in real magnetic systems (see,
e.g., Refs. [20–29] and many others). We suppose that present
theoretical analysis can be considered as a well-defined starting
point for fundamental understanding of the specific heat
capacity behavior in such magnetic systems.

V. CONCLUSION

To conclude, let us briefly summarize the main results
obtained in the present paper.

In this paper, we have investigated in detail anomalous
properties of the specific heat capacity as the function of the
temperature in frustrated magnetic systems in the framework of
the geometrically frustrated exactly solvable antiferromagnetic
spin-1/2 Ising model with multisite interaction in the presence
of an external magnetic field on the kagome-like Husimi
recursive lattice.

First, the exact expression for the free energy per site is used
for investigation of the properties of the entropy per site of the
model. The expression for the entropy is derived, the influence
of the multisite interaction on its properties is discussed, and
the residual entropies of all ground states of the model are
determined. The existence of the ground states of different
orders is demonstrated and it is shown that the model exhibits
well-defined hierarchies of the macroscopic degeneracies of
neighboring ground states of different orders.

The behavior of the specific heat capacity is then investi-
gated in detail as the function of the temperature. First of all, de-
pending on the parameter values, the specific heat capacity can
exhibit at most a three-peak structure. The maximal number of
peaks is directly related to the dimension of the corresponding
ground-state parametric space of the model. The mechanism
of the formation of the multipeak structure in the behavior of
the specific heat capacity in the frustrated magnetic systems is
identified. The central role for the formation of the multipeak
structures in the behavior of the specific heat capacity is played
by the existence of the nontrivial multilevel hierarchies of the
residual entropies among various neighboring ground states
of different orders. Obtained results are generalized to an
arbitrary frustrated magnetic system with n independent spin
interactions.

Although all results and conclusions are obtained only in the
framework of a classical frustrated spin model, nevertheless we
suppose that the described general mechanism of the formation
of the multipeak structure in the specific heat capacity behavior
will be valid, at least at a qualitative level, in many real
frustrated magnetic systems.
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APPENDIX

The explicit expressions for the entropy per site s and the specific heat capacity cH defined in Eqs. (2) and (16), respectively,
have the following forms:

s

kB

= [−3e2(7h+2K+K ′)(h + 6K + 3K ′)x7 − 3e12h(h + 6K + 2K ′)x6 + e14h+8K+4K ′
(6h + 24K + 11K ′)x6

− 2e4(3h+K+K ′)[9h + 5(6K + K ′)]x6 − 3e2(5h+K ′)(9h + 26K − 3K ′)x5 − 8e10h+4K+6K ′
(3h + 6K − 2K ′)x5

+ 4e12h+8K+6K ′
(3h + 6K − 2K ′)x5 − 4e2(5h+4K+K ′)(3h + 4K ′)x5 + 2e2(6h+2K+K ′)(12h + 36K + 13K ′)x5

+ 2e10h+4(K+K ′)(33h + 72K − 4K ′)x4 + 6e10h(3h + 2K − 2K ′)x4 − 54e8h+4K ′
(h + 2K − K ′)x4

− 6e8(h+K)+4K ′
(5h − 2K + K ′)x4 + e10h+12K+4K ′

(6h − 24K + 5K ′)x4 − 3e8h+4K (7h − 6K + 6K ′)x4

+ 18e8h+2K ′
(3h + 2K − 3K ′)x3 − 24e6(h+K ′)(h + 2K − K ′)x3 + 12e8h+4K+6K ′

(3h + 6K − K ′)x3

− 8e6h+4K+2K ′
(9h − 6K + K ′)x3 + 30e8(h+K)+2K ′

(h − 2K + K ′)x3 − e2(3h+6K+K ′)(9h − 18K + 7K ′)x3

+ 3e6h+4K ′
(12h + 8K − 9K ′)x2 − 2e4(h+K+K ′)(21h − 6K − K ′)x2 + 2e6h+8K+4K ′

[15h + 4(K ′ − 3K)]x2

+ 12e4h+6K ′
K ′x + 2e4(h+K)+2K ′

(15h − 18K + K ′)x − 3e2(h+4K+K ′)(7h − 10K + 3K ′)x

+ 3e2[h+2(K+K ′)]K ′ + (8e6h+4Kx2 − 7e4h+8Kx2 + 2e2(2h+6K+K ′)x + 2e2h+8K − e12K )(3h − 6K + 2K ′)

+ [−3e4hx2 + 2e2(h+K ′)(−2 + e2h+4K )x + 2e2h − e4K ][e4hx2 + 2e2(h+K ′)x + e4K ]

× [3e4hx2 + e2(h+K ′)(e4(h+K)x2 + 3)x + e4K ](3 ln[e−2h−K−K ′
(e4hx2 + 2e2(h+K ′)x + e4K )]

− ln{e−3h−K−K ′
[3e4hx2 + e2(h+K ′)(e4(h+K)x2 + 3)x + e4K ]})]/

{3[−3e4hx2 + 2e2(h+K ′)(−2 + e2h+4K )x + 2e2h − e4K ][e4hx2 + 2e2(h+K ′)x + e4K ]

× [3e4hx2 + e2(h+K ′)(e4(h+K)x2 + 3)x + e4K ]},
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cH

kB

= e2h[3e18h+8K+4K ′
(Bx − A2)β2x8 + 3e2(8h+2K+K ′){−4(h + 2K + K ′)2x2 − 4A(h + 2K + K ′)βx

+ 2e4(K+K ′)[4x(h − K ′)2 + 4Aβ(h − K ′) + Bβ2]x + (7Bx − 8A2)β2}x7 + 12e14h{−3(A2 − Bx)β2

+ e4(3K+K ′)(2hx − 2Kx + Aβ)2 − e4(K+K ′)[4(−h2 + 6Kh + 8K ′h + 5K2 − 2K ′2 + 4KK ′)x2

− 4A(h − 3K − 4K ′)βx + (5A2 − 6Bx)β2]}x6 + e2(6h+K ′)(−24e4(K+K ′)[4(h2 + 6Kh + 4K ′h + 4K2 − K ′2

+ 2KK ′)x2 + 4A(h + 3K + 2K ′)βx + (4A2 − 3Bx)β2] + 6e4(3K+K ′)[4(h − 2K + K ′)2x2

+ 4A(h − 2K + K ′)βx + (2A2 − Bx)β2] + e8K{4[57h2 − 6(28K + 3K ′)h + 48K2 − 7K ′2 − 24KK ′]x2

+ 12A(19h − 28K − 3K ′)βx + 3(14A2 + 5Bx)β2} + 9[20(h − K ′)2x2 + 20A(h − K ′)βx + (19Bx

− 14A2)β2])x5 + e10h(−24e4K+8K ′
[8(h + K)2x2 + 8A(h + K)βx + (3A2 − Bx)β2] + 48e4K [8(h − K)2x2

+ 8A(h − K)βx + (A2 + Bx)β2] + e4K ′ {3e16K (A2 − Bx)β2 + 4e8K [16(3h2 − 24Kh + 9K2 + 2K ′2

− 12KK ′)x2 + 48A(h − 4K)βx + 3(3A2 + Bx)β2] + 9[32(h − K ′)2x2 + 32A(h − K ′)βx

+ (33Bx − 25A2)β2]})x4 + e8h+2K ′
(16e8K+4K ′

[−4(3h2 + 15Kh − 3K ′h − 6K2 − 2K ′2 + 9KK ′)x2

+ 6A(−2h − 5K + K ′)βx − 3A2β2] + e12K{4[−5K ′2 − 6(3h + 2K)K ′ + 3(h2 − 20Kh + 4K2)]x2

+ 12A(h − 10K − 3K ′)βx + 3(4A2 − 3Bx)β2} + 18e4K ′
[4(h − K ′)2x2 + 4A(h − K ′)βx + (13Bx − 12A2)β2]

+ 3e4K [4(79h2 − 180Kh + 22K ′h + 124K2 + 23K ′2 − 68KK ′)x2 + 4A(79h − 90K + 11K ′)βx

+ (28A2 + 51Bx)β2])x3 − 4e6h(18e8K ′
(A2 − Bx)β2 + e4(3K+K ′)[4(9h2 + 18Kh − 9K2 − 2K ′2 + 12KK ′)x2

+ 36A(h + K)βx + 3(2A2 + Bx)β2] − 3e8K [16(h − K)2x2 + 16A(h − K)βx + (3A2 + Bx)β2]

− 3e4(K+K ′){4[13h2 − 42Kh + 37K2 + 8K ′2 + 16(h − 2K)K ′]x2 + 4A(13h − 21K + 8K ′)βx

+ (15Bx − 2A2)β2})x2 + e4(h+K)+2K ′ {−e12K [4(3h + K ′)2x2 + 12A(3h + K ′)βx + 3(2A2 + Bx)β2]

+ 3e4K [4(17h2 − 56Kh + 22K ′h + 48K2 + 9K ′2 − 40KK ′)x2 + 4A(17h − 28K + 11K ′)βx + (6A2 + 11Bx)β2]

+ 6e4K ′
[28(h − 2K + K ′)2x2 + 28A(h − 2K + K ′)βx + (13Bx − 6A2)β2]}x + 3e2(6K+K ′)[4x(h − 2K + K ′)2

+ 4Aβ(h − 2K + K ′) + Bβ2
] + 3e2h+8K+4K ′

[32(h − 2K + K ′)2x2 + 32A(h − 2K + K ′)βx

− (A2 − 9Bx)β2]]/[3(2xe2h+2K ′ + e4hx2 + e4K )2(x3e6h+4K+2K ′ + 3xe2h+2K ′ + 3e4hx2 + e4K )2],

where

A = {−x2e4(h+K)+2K ′
[4(h + K) + K ′] + e4hx3(4h − K ′) + 2x2e2(h+K ′)(2h + K ′) + 2e2hx(K ′ − 2h)

+ e4Kx(4K − K ′) − e2K ′
K ′}/{β[2x(e2h+4K − 2)e2(h+K ′) − 3e4hx2 + 2e2h − e4K ]},

B = {−e4(h+K)+2K ′
[2A2β2 + 4Aβx(4h + 4K + K ′) + x2(4h + 4K + K ′)2]

+ 2e2(h+K ′)[2A2β2 + 4Aβx(2h + K ′) + x2(2h + K ′)2] + e4hx
[
6A2β2 + 6Aβx(4h − K ′) + x2(K ′ − 4h)2]

− 2e2h(2h − K ′)(2Aβ + 2hx − K ′x) + e4K (4K − K ′)(2Aβ + 4Kx − K ′x) − e2K ′
K ′2}/

{β2[2x(e2h+4K − 2)e2(h+K ′) − 3e4hx2 + 2e2h − e4K ]},
and x is given in Eq. (4).
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