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This article has to do with the derivation and solution of the Fokker-Planck equation associated to the
momentum-integrated Wigner function of a particle subjected to a harmonic external field in contact with an
ohmic thermal bath of quantum harmonic oscillators. The strategy employed is a simplified version of the
phenomenological approach of Schramm, Jung, and Grabert of interpreting the operators as c numbers to derive the
quantum master equation arising from a twofold transformation of the Wigner function of the entire phase space.
The statistical properties of the random noise comes from the integral functional theory of Grabert, Schramm, and
Ingold. By means of a single Wigner transformation, a simpler equation than that mentioned before is found. The
Wigner function reproduces the known results of the classical limit. This allowed us to rewrite the underdamped
classical Langevin equation as a first-order stochastic differential equation with time-dependent drift and diffusion
terms.
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I. INTRODUCTION

For a particle trapped in a harmonic potential, for instance,
in an optical trap, immersed in a thermal bath, various
approaches can be used to describe its dynamics. Let the
Langevin equation be the chosen one. Now, it is asked, what
is the probability the particle actually be at q? Classically,
this question has been already answered in the calculation
of the maximum work performed by the particle when the
system is driven by a particular measurement protocol. This
has been done as much for the Markovian underdamped [1]
and overdamped [2] and in the generalized regime [3] as well.
But what about if the thermal reservoir behaves quantumly?
This is the aim of the article: starting from the Ohmic version
of the quantum Langevin equation (QLE), the reduced Wigner
function W (q,t), which gives the desired probability density,
will be derived from the solution of its associate Fokker-Planck
equation (FPE).

The first derivation of the quantum generalized Langevin
equation (QGLE) dated back to 1965 in the work by Ford
et al. [4]. They consider a set of 2N + 1 interacting harmonic
oscillators and focus their work on studying the dynamics in
a particular one due to the effect of the rest of the oscillators
acting as a heat bath. The resulting operators equation resem-
bles the classical generalized Langevin equation in coordinate
space. Another derivation is that of Ford et al. [5]. Starting
from the Heisenberg equation of motion, they provided a purely
quantum derivation of the QGLE with a random force operator
acting on the Hilbert space of the entire system. Limiting the
analysis to Ohmic baths, i.e., where the hydrodynamics drag
depends on the instantaneous velocity, Ford and Kac [6] found
out that the QLE should have an extra term, the so called
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“slip term,” which has an infinitesimal dependence in time.
It vanishes after a very short period of relaxation. In the strict
Ohmic dissipation, it reduces to a δ contribution. As Hänggi
[7] indicated, it is frequently omitted for t > t0, although it
will affect the trajectory of the phase point. For the purposes
of physical applications, this fine detail can be put aside, but
not mathematically, since the universality of the Langevin
equation would not be guaranteed in the quantum regime [6].
By universal it is meant that many physical problems satisfy
an equation whose form shall be equal for all. An important
result to assure the validity of the Ohmic QLE was the finding
of Benguria and Kac [8] about the requirement that to get
a quantum mechanical canonical probability distribution, the
noise operator has to be a purely Gaussian process. It is
important to remark that van Kampen [9] proved that the QLE is
true only in the lowest level of interaction between the particle
and the thermostat, that is, when the interaction is bilinear.
In all these works, the noise operator acts over the Hilbert
space of the entire system. This brings as consequence that the
bath coordinates cannot be eliminated and the utility of both
the QGLE and QLE is of limited practical usefulness [7]. A
QGLE derived from the Heisenberg equation of motion acting
solely on the Hilbert space of the system simply does not exist
[7]. Even worse, badly managed stochastic approximations on
the colored noise and time-dependent friction have a definite
impact in the breaking of the quantum behavior. “Where one
could go wrong” and many other fundamental aspects about the
QGLE can be found in the review by Hänggi and Ingold [10].

The route chosen to successfully eliminate the undesir-
able bath coordinates was throughout path integrals of the
Feynman-Vernon theory of damped quantum systems [11].
Thus, Caldeira and Leggett [12] applied such a theory to
study the quantum dissipation without the presence of initial
correlations between the particle and the bath, that is, without
the dependence of the initial preparation over the evolution
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of the system. They found a semiclassical Fokker-Planck
equation by making a transformation from Hilbert space to
the classical phase space by way of the Wigner distribution
functions. Grabert et al. [13] refined the Feynman-Vernon
approach and developed the functional integral method which
include the initial preparation. It provides an exact description
of the system in terms of the mass of the particle, the spectral
density of the bath, and the external potential. Although the
equations are rather complex, they reduce to manageable
mathematical objects for Ohmic baths. They were used by
Schramm, Jung, and Grabert (SJG) [14] in the exact derivation
of the Wigner function using a phenomenological approach
based on considering the operators as c numbers in the whole
phase space. In the classical limit, it agrees with the findings by
Adelman [15]. Additionally, they derived the master equation
for the quantum operators (QME), also known by some
authors [16] as the adjoint equation, using the transformation
rules from the Wigner function to quantum operators [17,18].
Later, Karrlein and Grabert [19] validate these findings by
demonstrating that the functional integral approach for an
initial thermal preparation function reproduces the generalized
FPE for the classical harmonic oscillator of Adelman [15].
They also found that the Wigner function is that of SJG and
furthermore show that an initial factorization of the entire
density matrix does not yield the Adelman equation. In 2006,
Isar and Sandulescu [20] derived, among other things, the
FPE for the Wigner function. They show that the Wigner
quasiprobability distribution is a two-dimensional Gaussian
with a width determined by the diffusion coefficients. With a
theory of their own, Ding et al. [21] recently review Caldeira
and Leggett theory to develop a QME by approximating the
bath coordinates correlation function with a biexponential
function. For its own nature, this approximated work is out
and beyond the scope of the goals of this research.

The purpose of the present work is to rephrase the exact
derivation procedure of SJG such that it simplifies the structure
of the QME of those already mentioned. As a subproduct, it is
submitted as a first order stochastic differential equation (SDE)
complementary to the classical Langevin equation.

The manuscript is composed of two main parts. The general
theory is developed in the first with some auto explanatory
sections. A Concluding Remarks section closes the article, and
an Appendix is included to complement some derivations.

II. GENERAL THEORY

This section parcels the main results of the proposed
method. The derivation and solution of the Fokker-Planck
equation (FPE) associated to the reduced Wigner function
of the system is presented in a first place. The QME is
subsequently derived in the second section and thirdly, the cor-
responding classical limit is investigated, comparing the results
achieved with those already known. Finally, in the fourth part, a
first order SDE equivalent to the classical Markovian-Langevin
equation is proposed.

A. The FPE for the reduced Wigner function

Subscribing entirely the phenomenological approach of
SJG [14] of considering the QLE as a c-number equation, the

dynamics of a particle with mass M , subjected to an external
potential ω2

0q(t)/2, in contact with an Ohmic bath of quantum
harmonic oscillators at temperatureT with a friction coefficient
γ is given by

q̈(t) = −γ q̇(t) − ω2
0

M
q(t) + 1

M
ξ (t), (1)

where ξ (t) is the Gaussian quantum noise with zero mean and
two-time correlation function [13,14]:

〈ξ (t) ξ (s)〉 = −
(

γM

2β

)
ν sinh

[
1

2
ν(t − s)

]−2

+ i γ M h̄ δ̇(t − s). (2)

Here, h̄ is the Planck constant divided by 2π , β = (kBT )−1,
kB is the Boltzmann constant, and frequency ν = 2π (h̄β)−1.
Unlike the Markovian-Langevin equation, the noise has a
colored spectrum and is correlated with q(0) due to the
preparation procedure. The latter is [14]

〈ξ (t)q(0)〉 = −2 γ

β

∞∑
n=1

νn

(νn + λ1 )(νn + λ2 )
e−νn t , (3)

where νn = nν is the Matsubara frequency and frequency
λ1,2 = [γ ± (γ 2 − 4ω2

0/M)1/2 ]/2. The sum can be solved to
give [22]

〈ξ (t)q(0)〉 = −2 γ

β

e−νt

(λ1 − λ2 )(λ1 + ν)(λ2 + ν)

× [λ1 (λ2 + ν) 2F1(1; a1 ; b1 ; e−νt )

− λ2 (λ1 + ν) 2F1(1; a2 ; b2 ; e−νt )], (4)

where the parameters a1,2 = (λ1,2 + ν)/ν and b1,2 = 2 +
λ1,2/ν are two of the arguments of the hypergeo-
metric series 2F1(A; B; C; x) = ∑∞

n=0[(A)n(B)n/(C)n]xn/n!,
respectively [23].

Applying the Laplace transform to Eq. (1) and inverting,
the solution of the QLE and its derivative read as

q(t) = χq (t)q(0) + χv (t)v(0) + ϕq (t), (5a)

q̇(t) = χ̇q (t)q(0) + χ̇v (t)v(0) + ϕv (t), (5b)

where the noises ϕq (t) and ϕv (t) are functional of ξ (t), and the
Laplace transforms of the susceptibilities χq(t) and χv(t) are,
respectively,

ϕq (t) = 1

M

∫ t

0
dt ′χv (t − t ′)ξ (t ′), (6a)

ϕv (t) = 1

M

∫ t

0
dt ′χ̇v (t − t ′)ξ (t ′), (6b)

χq (s) = (s + γ )χv (s), (6c)

χv (s) = M

Ms(s + γ ) + ω2
0

. (6d)

A relationship between the susceptibilities is obtained from
Eq. (6c), i.e., χq(t) = 1 − ω2

0M
−1

∫ t

0 dt ′χv(t
′) [24,25]. Their

explicit dependence on γ and ω0 is shown in Sec. II C.
For a given realization of the quantum noise, Eq. (5b) de-

scribes a flow in q space. The density of this flow, f (q[ξ (t)],t),
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where the functional dependence of the coordinate on the
noise has been made explicitly, evolves in time according the
continuity equation:

∂f (q[ξ (t)],t)

∂t
= − ∂

∂q
[q̇[ξ (t)]f (q[ξ (t)],t)]. (7)

For an ensemble of trajectories, the probability density is just
the ensemble average of f (q[ξ (t)],t) [26], i.e.,

p(q,t,q0 ,v0 ) = 〈f (q[ξ (t)],t〉ξ
= 〈δ(q(t) − q)δ(q(0) − q0 )〉ξ ,

where the subindex ξ indicates that the average has to be taken
over the distribution of the quantum noise. Then, carrying out
the proper substitutions in Eq. (7),

∂p(q,t,q0 ,v0 )

∂t
= − ∂

∂q
〈ϕv (t)δ(q(t) − q)δ

× (q(0) − q0 )〉ξ − v(t)
∂p

∂q
, (8)

where for short, v(t) = χ̇q (t)q0 + χ̇v (t)v0 is the drift velocity.
As in SJG [14], expanding the average of Eq. (8) in terms

of the cumulants of the noise and, adding upon the extra
term arising from the correlation between ξ (t) and q(0), the
following is obtained:

∂p(q,t,q0 ,v0 )

∂t
= −v(t)

∂p

∂q
+ ∂

∂q

[∫ t

0
dt ′〈ϕv (t)ϕv (t ′)〉∂p

∂q

−〈ξ (t)q(0)〉 ∂

∂q(0)
〈δ(q(t) − q)δ(q(0) − q0 )〉ξ

]
. (9)

Knowing that ∂δ(x − y)/∂x = −∂δ(x − y)/∂y, then

∂

∂q(0)
〈δ(q(t) − q)δ(q(0) − q0 )〉ξ = − ∂p

∂q0

, (10)

and from Eq. (5a) ∂/∂q0 = χq(t)∂/∂q for a fixed value of q0 .
Then the final equation for the evolution of the probability
density p(q,t,q0 ,v0 ) is

∂p(q,t,q0 ,v0 )

∂t
= − v(t)

∂p

∂q
+ 1

2
D1 (t)

∂2p

∂q2
, (11)

where the function D1 (t) is defined as

D1 (t) = 2

[∫ t

0
dt ′〈ϕv (t)ϕv (t ′)〉 + χq (t)〈ξ (t)q(0)〉

]
. (12)

The linear transformations y = q − ∫ t

0 dt ′v(t ′) and r =∫ t

0 dt ′DQ (t ′) applied to Eq. (11) give the simple diffusion
equation [27],

∂p

∂r
= 1

2

∂2 p

∂ y2
, (13)

whose solution for the initial condition p(y,0,y0 ,v0 ) = δ(y −
y0 ) is a Gaussian centered at y0 with standard deviation r .
Transforming to the original variables gives

p(q,t |q0 ,v0 ) = 1√
2π σ1 (t)

exp

[
− (q − q(t))2

2 σ1 (t)

]
, (14a)

q(t) = χq (t) q0 + χv (t) v0 , (14b)

σ1 (t) =
∫ t

0
dt ′D1 (t ′). (14c)

In general, position and velocity relax to equilibrium at
different rates. The velocity achieves the canonical distribution
faster than position [25]. Then, the density p(q,t | q0 ) given
an initial thermal distribution of initial velocity v0 is found by
averaging the solution p(q,t | q0 ,v0 ) over the Maxwell velocity
distribution. The result for an initial thermal condition will be

p(q,t |q0 ) = 1√
2πσQ(t)

exp

[
− (q − χq (t)q0 )2

2 σQ(t)

]
, (15a)

σQ(t) = σ1 (t) + kBT

M
χ2

v
(t). (15b)

The FPE given as a solution of Eq. (15a) is obtained by a
procedure due to Adelman and Garrison (AG) [24] and shown
in the Appendix. It gives

∂p(q,t,q0 )

∂t
= −�(t)

∂

∂q
[q p] + 1

2
DQ (t)

∂2p

∂q2
, (16a)

�(t) = χ̇q (t)

χq (t)
, (16b)

DQ (t) = σ̇Q(t) − 2 σQ(t) �(t). (16c)

Since the reduced Wigner function W (q,t) obeys the rela-
tions [28]

W (q,t) = p(q,t |q0 ) = 1

2πh̄

∫ ∞

−∞
dp W (q,p,t), (17)

the FPE associated to W (q,t) has the same form of Eq. (16a).
The desired result is then

∂W (q,t)

∂t
= −�(t)

∂

∂q
[q W ] + 1

2
DQ (t)

∂2W

∂q2
, (18)

whose solution is identical to Eq. (15a). The density matrix
ρ(q,t) is also the reduced Wigner function [28].

It is important to remark that there are other methods to
find the reduced Wigner function besides that developed here.
For instance, one can appeal to Eq. (17) to get it by integrating
SJG’s Wigner function in the momentum space. Even more, the
procedure developed by Ford and O’Connell [29] can also be
used to find the solution of the quantum master equation of Hu
et al. [30]. In any case, whatever procedure is employed, all of
them should give the same answer. In particular, by including
in the master equation of Hu et al., the dependence of the initial
correlation between the system and the thermal bath over the
dynamics of the Brownian particle, two results will show up.
On one hand, Hu et al. should replicate the QME of SJG and
second, the procedure developed in this work will agree with
that of Ford and O’Connell. The main difference between the
last two approaches is just operational.

B. The quantum master equation

In quantum mechanics, the QME can be obtained using
the transformation rules of the Wigner function in terms of
the density operator ρ̂(t) [16–18]. The rules for W (q,t) and
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W (q,p,t) are the same, so the two partial derivatives in Eq. (18)
are transformed as

∂

∂q
(qW ) = W + q

∂W

∂q
−→ ρ̂ + i

2h̄
{̂q,[̂p,ρ̂]}, (19)

∂2W

∂q2
−→ − 1

h̄2 [̂p,[̂p,ρ̂]], (20)

where p̂ = −ih̄∂/∂q is the momentum operator, and {Â,B̂} =
(Â · B̂ + B̂ · Â) denotes the anticommutator of Â and B̂.

The reduced QME will be

∂ρ̂

∂t
= − �(t)

(
ρ̂ + i

2h̄
{̂q,[̂p,ρ̂]}

)
− 1

2h̄2 DQ (t)[̂p,[̂p,ρ̂]]. (21)

Compare this result with Eq. (38) of SJG [14] derived from the
Wigner distribution of the whole phase space:

∂ρ̂

∂t
= γ̃ (t)ρ̂ − i

Mh̄
p̂[̂p,ρ̂] − i

h̄
Mω̃2(t )̂q [̂q,ρ̂]

− iγ̃ (t)

h̄
p̂[̂q,ρ̂] − i

2Mh̄
[̂p,[̂p,ρ̂]]

−
{

iMω̃2(t)

2h̄
+ γ̃ (t)

〈
p2

〉
h̄2

}
[̂q,[̂q,ρ̂]]

+
{

Mω̃2(t)〈q2〉
h̄2 − 〈p2〉

Mh̄2 − iγ̃ (t)

2h̄

}
[̂p,[̂q,ρ̂]], (22)

where the coefficients γ̃ (t) and ω̃(t) are defined in the text [14].
They are complex and become real in the classical limit [19].
The averages 〈q2〉 and 〈p2〉 are defined in Ref. [31]. These two
results are exact because no approximations were invoked in
obtaining them, the former being structurally simpler than the
latter.

Now, although these two equations describe the same
phenomenon from different approaches, they seem to generate
rather different outcomes for the same set of initial conditions.
It may be that, in explicit calculations, both equations will
render the same results whenever the density operator is used
to determine the properties of the system. Such a calculation is
beyond the scope of the present work. However, as expected,
since they share a common classical origin, it will be shown
in the next section that the probability density of the present
work coincides with the SJG’s density integrated over the
momentum space.

Finally, although it is not one of the main objectives of
this research, it is important to make some remarks about
the mathematical proof of the quantum equivalence between
Eqs. (21) and (22).

First of all, something has to be said about the methodology
employed to include the quantum correlations 〈ξ (t)q(0)〉 and
〈ϕv (t)ϕv (t ′)〉 in the two descriptions. In this work, the trans-
formation given by Eq. (10) allows to write the diffusive term
DQ (t) of Eq. (21) by preserving the structure of the correlations
in the way that they were derived. A different strategy was used
by SJG. Using their Eq. (32), the effect of the correlations
is absorbed in the functions ω̃(t) and γ̃ (t), which are linear
combinations of both the position correlation functions and

of its first, second, and third time derivative. The algebra to
go from one equation to the other is cumbersome so that
another scheme could be invoked to get an insight about such
an equivalence. That is, in the absence of a general proof, then it
would be appropriate instead to find a correspondence between
�(t) with γ̃ (t) and DQ (t) with ω̃(t) [32]. Applying this strategy,
whose algebra is also relatively lengthy, it would allow us to
find a way to at least attain a partial compatibility between
Eqs. (21) and (22).

There is a fact for sure, independently of the approach, that
any average calculation should have to give the same result.
This was done previously by Grabert et al. [31] in the derivation
of the different correlations involving position and momentum
for the c-number Ohmic QLE. Obviously, these results do not
prove that Eqs. (21) and (22) are equivalent in the quantum
regime, but they give a glimpse that there must be a proper
way to prove it.

For the sake of simplicity, let ρ(p,q,t) be the SJG matrix
density. For any observable O, its dispersion is given by
〈O2〉 = Tr{Ô2ρ̂} = ∫

dp
∫

dx O2ρ(x,p,t). However accord-
ing to Eq. (17), this is equivalent to 〈O2〉 = ∫

dx O2ρ(x,t).
That is, the statistical average coincides whatever scheme is
invoked, which means that the density matrix obtained from
any of the operator equations will provide the same statistical
result. The main difference is that the QME of this work is
simpler that of SJG.

The above is a consequence of the contraction applied in
this proposal. Since the rules to transform the Wigner function
dynamics into one involving the density operator are the
same in the two procedures, the alluded contraction should be
kept in the quantum regime. It is transferred to the functions
�(t) and DQ (t) but not to the density operator. The physical
interpretation of the latter is unique and has to be independent
of its derivation. In this sense, the previous argument permits us
to circumvent any algebraic manipulation needed to prove the
equivalence between the Eqs. (21) and (22). They will provide
same statistical results for any operator properly defined in the
Hilbert space.

C. The classical limit

It corresponds to take h̄ → 0. In this regime, the correlation
between the noise ξ (t) and q(0) vanishes, 〈ξ (t)q(0)〉 = 0,
and the two-time noise correlation reduces to the well-known
Markovian expression 〈ξ (t)ξ (t ′)〉 = 2kBT γMδ(t − t ′) [14].
The susceptibilities defined in Eqs. (6c) and (6d) become

χq (t) = e−γ t/2

(
cosh

[
ω t

2

]
+ γ

ω
sinh

[
ω t

2

])
, (23a)

χv (t) = 2

ω
e−γ t/2 sinh

[
ω t

2

]
, (23b)

ω2 = γ 2 − 4ω2
0

M
. (23c)

Similarly, from Eqs. (12) and (14c),

D1 (t)CL = 2kBT

Mω2
e−γ t [cosh[ωt] − 1],
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σ1 (t)CL = kBT

ω2
0

[
1 − e−γ t

(
2γ 2

ω2
sinh2

[
ωt

2

]
+ γ

ω
sinh[ωt] + 1

)]
. (24)

Finally, �(t) and the diffusion constant DCL(t) are calculated
from Eqs. (16b) and (16c), respectively:

�(t) = 2ω2
0

Mω
sinh

[
ωt

2

][
cosh

[
ωt

2

]
+ γ

ω
sinh

[
ωt

2

]]−1

,

DCL (t) = 4kBT

Mγ
sinh

[
ωt

2

][
sinh

[
ωt

2

]
+ ω

γ
cosh

[
ωt

2

]]−1

.

The FPE, Eq. (16a), reduces simply to

∂pCL (q,t,q0 )

∂t
= −�(t)

∂

∂q
q pCL + 1

2
DCL (t)

∂2pCL

∂q2
.

(25)

Its solution has the form of Eq. (15a), with a standard deviation
obtained from Eq. (15b) as follows:

pCL (q,t | q0 ) = 1√
2πσCL (t)

exp

[
− (q − χq (t)q0 )2

2 σCL (t)

]
,

(26a)

σCL (t) = kBT

ω2
0

[
1 − e−γ t

(
cosh

[
ω t

2

]

+ γ

ω
sinh

[
ω t

2

])2 ]
. (26b)

Equations (26a) and (26b) reproduce the classical results
of Chandrasekhar [33] and AG [24] if the time-dependent
friction kernel is substituted in the latter by 2γ δ(t), i.e., the
Markovian limit. It has the structure of the Kramers equation
[26,34,35], from which all statistical properties of the system
can be derived from.

Of course, anyone would think in the alternate way to
construct the FPE by reversing the method of the derivation of
Eq. (13). Although it sounds logical, it gives unphysical results.
The diffusion coefficient exhibits a maximum and vanishes at
long times.

Since SJG arrives to the Markovian version of Adelman’s
equation [15], then the probability density of the two ap-
proaches agrees. To demonstrate the equivalence between SJG
and this work, for simplicity let Adelman’s version of the
bivariate Gaussian probability density be chosen to show that
effectively, p(q,t |q0 ) is the contracted version of the phase
space density used by SJG, i.e.,

p(q,v,t,q0 ,v0 ) = 1

2π

1√
detA

exp

[
− 1

2
y† · A

−1 · y
]
, (27)

where the vector y(t) defines the deviation of the fluctuations
of the phase point, and detA is the determinant of the matrix of

their second moments defined in Ref. [15], respectively, i.e.,

y =
(

q(t) − [χq (t)q0 + χv (t)v0 ]

v(t) − [χ̇q (t)q0 + χ̇v (t)v0 ]

)
,

A =
{ 〈

y2
1
(t)

〉 〈y 1(t)y 2(t)〉
〈y 2(t)y 1(t)〉 〈

y2
2(t)

〉 }
.

The marginal distribution p(q,t,q0 ) is found from

p(q,t,q0 ) =
∫ ∞

−∞
dv0 pst (v0 )

∫ ∞

−∞
dv p(q,v,t,q0 ,v0 ),

where pst(v0 ) is the initial canonical velocity distribution.
As a matter of fact, after solving the Gaussian integrals, the
result is exactly the conditional probability densitypCL (q,t | q0 )
given by Eq. (25). In AG [24], the inner integral was replaced
by p(q,t,q0 ,v0 ) once it was assumed to be a Gaussian cen-
tered around q(t) with standard deviation equal to Eq. (24)
in the Markovian limit. Accordingly, the phenomenological
approach worked upon in this article for the classical limit
of the reduced Wigner function and the Markovian limit of
AG [24] are equivalents. The same argument holds to the SJG
method and that of Adelman [15] for the whole phase space
in the Ohmic regime. Therefore, the QMEs of this article and
SJG describe the same phenomenon. The Wigner function of
the latter is the contracted version of the former.

Finally, it has to be pointed out that AG procedure is
different from this work. While in the former the FPE equation
is built by assuming its solution, here it is employed as the
inverse procedure: the FPE is built first and it is shown that the
solution is the Gaussian of AG. The two approaches are total
equivalents.

D. Alternate picture of the classical dynamics

An additional result is obtained by appealing to Ito’s
formula [35] about the relationship between SDEs and their
associated FPEs. That is, the SDE whose FPE is given by
Eq. (25) will be

q̇(t) = q(t) �(t) +
√

Dcl(t) dB(t), (28)

where B(t) is a Wiener process. This SDE suggests that the
problem could be analyzed as a Markovian-Brownian particle
moving in the fluid with a position- and time-dependent drift
velocity q(t)�(t), with noise intensity given in terms of a time-
dependent diffusion constant. It is stochastically equivalent
with the underdamped Markovian-Langevin version. Even
though they will surely have different outcomes, their FPEs
will provide the same statistics. It could also have benefits from
a mathematical point of view: its form is that of the ubiquitous
SDE studied extensively in the theory of stochastic processes
[36] rather than the noise functional Eq. (5b). It is simpler
to manipulate mathematically because of the additive white
noise.

III. CONCLUDING REMARKS

The results are interesting. First, the classical limit of the
conditional probability density p(q,t |q0 ) matches the results of
Chandrasekhar [33] and Adelman and Garrison [24], such as

052126-5



PEDRO J. COLMENARES PHYSICAL REVIEW E 97, 052126 (2018)

the agreement between Schramm et al. [14] and the Adelman
equation [15] for the entire phase space. It is an indication that
the FPE for the reduced Wigner function should have been
correctly derived. Such a conjecture was proved by contracting
the whole probability density of the phase space of Schramm
et al. to a coordinate-dependent distribution.

It is to be noted that quantum contribution in p(q,t |q0 ) due
to the initial correlation shows up as an additive function in the
diffusion term of the FPE, while in SJG it is spread out through
the different functions that conform it.

Since the transformation rules of the Wigner function in
terms of the density operator are unique, then the proposed
QME, Eq. (21), and that of SJG, Eq. (22), describes the same
dynamics. In other words, the exact master equation of SJG
can be rewritten in a simpler form by searching the evolution
equation of the Wigner function regardless of the momentum.

On the other hand, the agreement mentioned above allows
the interpretation of the original dynamics as a first order SDE.
It preserves all the statistical attributes of the original Langevin
equation.

A potential application of this work appeared very recently
in the literature. It is the analysis by Maggazù et al. [37] on
the quantum Zeno effect, which is related to the response of
a quantum system after a measurement protocol monitors its
state. This could be the entry door to extend to the quantum
regime the already-mentioned works [1–3] and investigate
how a quantum measurement affects the thermodynamical
outcomes.
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APPENDIX: DERIVATION OF EQ. (16a)

According to AG [24], the probability density is given by
the Gaussian

p(x,t |x0) = 1√
2πσ

exp

(
− (x − x0g)2

2σ

)
,

where σ and g are functions of t . The following expressions
arise:

∂p

∂t
= − (x0g − x)

σ

(
x0ġ − (x0g − x)

2σ
σ̇

)
p − σ̇

2σ
p, (A1)

∂p

∂x
= − (x − x0g)

σ
p, (A2)

∂2p

∂x2
= − p

σ
+

(
x − x0g

σ

)2

p, (A3)

g2 d

dt
(g−2σ ) = −2σ

(
ġ

g
− σ̇

2σ

)
. (A4)

From (A4),

x0ġ − (x0g − x)

2σ
σ̇ = (x − x0g)

2σ
g2 d

dt
(g−2σ ) + x

ġ

g
. (A5)

Substituting (A5) into (A1),

∂p

∂t
=

[
(x − x0g)xġ

σg
− σ̇

2σ

]
p + 1

2

(
x − x0g

σ

)2

pg2 d

dt
(g−2σ ).

Making use of (A3),

∂p

∂t
= 1

2

[
g2 d

dt
(g−2σ )

]
∂2p

∂x2

+
[

(x − x0g)xġ

σg
− σ̇

2σ
+ g2

2σ

d

dt
(g−2σ )

]
p,

and replacing (A4),

∂p

∂t
= ġ

g

[
x(x − x0g)

σ
− 1

]
p + 1

2

[
σ̇ − 2σ

ġ

g

]
∂2p

∂x2
.

From (A2),

∂

∂x
(x p) = −

[
x(x − x0g)

σ
− 1

]
p.

Hence, the desired equation is

∂p

∂t
= − ġ

g

∂

∂x

[
x p

] + 1

2

[
σ̇ − 2σ

ġ

g

]
∂2p

∂x2
.

Equation (16a) is obtained by identifying p, g and the term
into the brackets with p(q,t,q0 ), χq (t) and DQ (t), respectively.
Both σ and x should be respectively replaced by σQ(t) and q.
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