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Two-temperature Brownian dynamics of a particle in a confining potential
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We consider the two-dimensional motion of a particle in a confining potential, subject to Brownian orthogonal
forces associated with two different temperatures. Exact solutions are obtained for an asymmetric harmonic
potential in the overdamped and underdamped regimes. For more general confining potentials, a perturbative
approach shows that the stationary state exhibits some universal properties. The nonequilibrium stationary state
is characterized with a nonzero orthoradial mean current, corresponding to a global rotation of the particle around
the center. The rotation is due to two broken symmetries: two different temperatures and a mismatch between the
principal axes of the confining asymmetric potential and the temperature axes. We confirm our predictions by per-
forming a Brownian dynamics simulation. Finally, we propose to observe this effect on a laser-cooled atomic gas.
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I. INTRODUCTION

When a system is in contact with two reservoirs of dif-
ferent temperatures or of different chemical potentials, the
system does not relax to equilibrium but is driven toward a
nonequilibrium stationary state. Moreover, for small systems,
both the mean value and the fluctuations characterize the
observables. Brownian particles driven by an external force
provide paradigmatic models for studying fluctuation theorems
and stochastic thermodynamics. When two heat reservoirs are
in contact with a system, a conversion of fluctuations into
directed transport and useful work can be observed. Derrida
and Brunet [1] considered a one-dimensional stochastic model
in contact with two thermostats in order to describe the time
evolution of a hard rod whose extremities are in contact with
two different thermostats. Visco [2] obtained the exact large
deviation function of the work fluctuations of this model, show-
ing that the fluctuation relations have a finite range of validity.
(See also [3,4] for some generalizations.) Van den Broeck
et al. [5] proposed an underdamped version of the Derrida
and Brunet model and their analysis revealed that it contains
the fundamental building blocks for thermal Brownian motors.
(For reviews on Brownian motors, see [6,7]). More recently
Murashita and Esposito [8] have revisited the one-dimensional
stochastic models with multiple thermostats in the overdamped
limit. They showed that it must be carefully considered, as
one cannot simply derive the overdamped limit from the
underdamped regime. Conversely, matching each reservoir to
an independent degree of freedom of the particle, should ensure
a proper overdamped limit. This latter situation, illustrated by
two coupled particles in contact with two heat reservoirs, was
recently experimentally and theoretically studied: Ciliberto
et al. [9,10] measured the energy exchanged between two con-
ductors kept at two different temperatures and linearly coupled.

They analyzed experimental results in terms of two Brownian
particles kept at different temperatures and coupled by an
elastic force. Bérut et al. [11,12] measured the energy flux, the
correlation functions and the probability distribution functions
of a system of two particles hydrodynamically coupled at
two different temperatures in optical traps. Finally, primacy
of the coupling strength between particles in minimal thermal
motors was demonstrated in [13]. (See also the recent review
on experiments in stochastic thermodynamics [14]). Argun
et al. [15] conducted an experiment with a single colloidal
particle suspended in aqueous solution at room temperature
and trapped in an elliptical optical potential, for which physical
quantities were obtained from recorded particle trajectories.
Chiang et al. [16] studied a simple stochastic electronic system
featuring two resistor-capacitor circuits coupled by a third
capacitor, which also represents an experimental realization of
the overdamped version of the two-temperature model. Ryabov
et al. [17,18] have considered the diffusion of a Brownian
particle in a parabolic potential, in which the temperatures
differed along the transversal and longitudinal directions.

In this paper, we consider the two-dimensional motion
of a particle subject to two orthogonal Brownian forces of
different temperatures, denotedTx andTy , respectively. Filliger
and Reimann [19] initially proposed this simple model of
an autonomous heat engine. This particle of mass m is also
subjected to an external conservative force. The overdamped
version of this model, in the case of an asymmetric harmonic
potential, was previously studied by Dotsenko et al. [20]. They
derived the nonequilibrium probability distribution function
(PDF) of the positions and showed the presence of a nonzero
current as long as the principal axes of the potential do
not coincide with the temperature axes. We show that the
emergence of this current is more general and is associated
with the altogether two broken symmetries: two different
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temperatures in two orthogonal directions and a mismatch
between the temperature axes and the principal axes of the
potential. Furthermore, we demonstrate that the macroscopic
rotation is still present for an overdamped Brownian motion
and for general confining potentials.

The article is organized as follows. In Sec. II, we consider
the motion of a particle in an anisotropic harmonic trap
for which we obtain exact expressions for PDF of positions
and velocities as well as for the mean current. The latter
is characterized by a mean angular velocity. In Sec. III, we
address the general potential cases: performing a perturbative
expansion with respect to a small temperature difference (Ty −
Tx) and a small asymmetry of the confining potential U (x,y),
characterized by a dimensionless parameter u. At the lowest
order, the mean current velocity is proportional to u(Ty − Tx).
In Sec. IV, we perform numerical simulations of these models,
both to confirm exact solutions obtained previously for a
harmonic potential and to validate the perturbative approach
for the general confining potentials. In Sec V, we discuss a
possible experiment that may be carried out on a laser-cooled
atomic gas. The rotation could be simply observed using
standard time-of-flight (TOF) techniques.

II. HARMONIC POTENTIAL: EXACT SOLUTIONS

We consider a particle of mass m moving in a plane. This
particle is subjected to a conservative force derived from a
confining potential U (x,y), a viscous linear force −ηv, and two
stochastic forces

√
2Tiηξi(t). Here, η is the constant friction

coefficient and Ti are the temperatures (expressed in units of
energy) along the i axis where i = x,y. ξi(t) are uncorrelated
Gaussian white noises: 〈ξi(t)〉 = 0 and 〈ξi(t ′)ξj (t)〉 = δ(t −
t ′)δij , where δ(t) is the Dirac distribution and δij is the
Kronecker symbol.

A. Overdamped motion

1. Model A

We now assume that U (x,y) = k( x2+y2

2 + uxy) (with |u| <

1 for a confining potential), where k is the elasticity constant
and u is a dimensionless parameter characterizing the potential
anisotropy. More precisely, the principal axes of the potential
are rotated by π/4 with respect to x̂ and ŷ, the temperature
axes, and

√
2u/(1 − u) is the eccentricity of the isopotentials.

Figure 1 shows a contour plot of U (x,y) with k = 1 and u =
0.5 with the two principal axes (red arrows) and the temperature
axes (black arrows).

We first consider the overdamped motion in order to
introduce the method used to solve the harmonic case [20].
The time evolution is given by the equations

dx

dt
= −k

η
(x + uy) +

√
2Tx

η
ξx(t),

dy

dt
= −k

η
(y + ux) +

√
2Ty

η
ξy(t). (1)

The associated Fokker-Planck equation is given by

∂P (x,y,t)

∂t
= −∇ · J, (2)

FIG. 1. Contour plot of U (x,y) with k = 1 and u = 0.5. Red
arrows correspond to the principal axes of the potential, and black
arrows to the temperature axes.

where ∇ = (∂x,∂y) and

J =
⎧⎨
⎩

Jx = − k
η
(x + uy)P (x,y) − Tx

η
∂P
∂x

,

Jy = − k
η
(y + ux)P (x,y) − Ty

η
∂P
∂y

.
(3)

To obtain the stationary position PDFs, we follow the method
detailed in Appendix A. For this purpose, we introduce the
2 × 2 matrices A, B, and � as

A = −k

η

(
1 u

u 1

)
, B = 2

η

(
Tx 0
0 Ty

)
, (4)

and

� = 1

2k(1 − u2)

(
2Tx + (Ty − Tx)u2 −(Tx + Ty)u

−(Tx + Ty)u 2Ty + (Tx − Ty)u2

)
.

(5)

The solution of Eq. (2) is the multivariate Gaussian distribution

P (z) = 1

2π
√

Det(�)
exp

(
−1

2
(z − 〈z〉)T �−1(z − 〈z〉)

)
, (6)

where z is a two-dimensional vector of components (x,y), zT

is its transpose vector, and 〈z〉 its statistical average. Finally,
the stationary PDF reads

P (x,y) = k
√

1 − u2e−(γ1x
2+γ2y

2+γ3xy)

π
√

4TxTy + u2(Ty − Tx)2
, (7)

where

γ1 = k
2Ty + u2(Tx − Ty)

4TxTy + u2(Tx − Ty)2
, (8)

γ2 = k
2Tx + u2(Ty − Tx)

4TxTy + u2(Tx − Ty)2
, (9)

γ3 = k
2u(Tx + Ty)

4TxTy + u2(Tx − Ty)2
. (10)

052121-2



TWO-TEMPERATURE BROWNIAN DYNAMICS OF A … PHYSICAL REVIEW E 97, 052121 (2018)

When u = 0, one recovers P (x,y) ∼ e−(kx2/2Tx )−(ky2/2Ty ),
which corresponds to the equilibrium distribution of two
decoupled oscillators. Integrating Eq. (7) over y or x, one
obtains the marginal distributions P (x) and P (y), respectively,
which have a Gaussian profile. The variances 〈x2〉 and 〈y2〉 are
given by

〈x2〉 = Tx + u2

2 (Ty − Tx)

k(1 − u2)
, (11)

〈y2〉 = Ty + u2

2 (Tx − Ty)

k(1 − u2)
, (12)

with a cross correlation

〈xy〉 = −u(Tx + Ty)

2k(1 − u2)
. (13)

This term is nonzero only if u �= 0.
The nonequilibrium stationary state is also characterized

by a nonzero current probability J = vP [21]. The angular
velocity is defined as

ω(t) = 1

r2
(r × v). (14)

The mean angular velocity at long time is given by

〈ω〉 = lim
t→∞

1

t

∫ t

0
dt ′ω(t ′). (15)

Assuming ergodicity of the system, the time average is equiv-
alent to the ensemble average, therefore gving

〈ω〉 =
∫

d2r
1

r2
(r × v)P (r). (16)

Reexpressing in polar coordinates, one obtains

〈ω〉 =
∫ 2π

0
dθ

∫ ∞

0
dr Jθ (r,θ ), (17)

with

Jθ (r,θ ) = −kur cos(2θ )P

η
− 1

2ηr
(Tx + Ty)

∂P

∂θ

− Ty − Tx

2η

[
cos(2θ )

r

∂P

∂θ
+ sin(2θ )

∂P

∂r

]
. (18)

The position PDF P (r,θ ) is then given by

P (r,θ ) = k
√

1 − u2e−[γ++γ− cos(2θ)+uγ+ sin(2θ)]r2

π
√

4TxTy + u2(Ty − Tx)2
, (19)

with

γ+ = k
Tx + Ty

4TxTy + u2(Tx − Ty)2
, (20)

γ− = k
(1 − u2)(Ty − Tx)

4TxTy + u2(Tx − Ty)2
. (21)

By inserting Eq. (19) into Eq. (18), the orthoradial current
Jθ (r,θ ) reads

Jθ (r,θ ) = u(Ty − Tx)r

η
[γ+ + γ− cos(2θ ) + uγ+ sin(2θ )]

×P (r,θ ). (22)

FIG. 2. Density plot of the position PDF P (x,y) and vector field
of the orthoradial velocity (white arrows), vθ (r,θ ), for a harmonic
potential with u = 0.2, Tx = 1, and Ty = 2. The color bar displays
the relative density scale.

Finally, the mean angular velocity is given by

〈ω〉 = k

η
u(Ty − Tx)

√
1 − u2

4TxTy + u2(Tx − Ty)2
. (23)

Higher moments of 〈ω〉 can also be calculated,

〈ωn〉 = k

(
u(Ty − Tx)

η

)n
√

1 − u2

4TxTy + u2(Tx − Ty)2

×
∫ 2π

0

dθ

2π
[γ+ + γ− cos(2θ ) + uγ+ sin(2θ )]n−1 (24)

which gives the following variance:

〈ω2〉 − 〈ω〉2 = k

(
u(Ty − Tx)

η

)2 1 − u2

4TxTy + u2(Tx − Ty)2

×
[

Tx + Ty√
4TxTy + u2(Tx − Ty)2

− 1

]
. (25)

All moments also vanish when u = 0 or Ty = Tx = 0, which
means a complete absence of global rotation if the two
symmetries are not broken.

Figure 2 shows the density plot of the position PDF, P (x,y),
and the vector field of the orthoradial velocity, vθ (r,θ ) =
Jθ (r,θ )/P (r,θ ), for a harmonic potential with an asymmetry
parameter u = 0.2 and two temperatures Ty = 2Tx = 1. The
particle density displays a maximum at the center, whereas
vθ (r,θ ) increases linearly with the distance r .

We see that a nonzero current requires two broken sym-
metries: two different temperatures along the orthogonal axes
which do not match the principal axes of the potential.

2. Model B

In order to show that the nonzero current does not originate
from the anisotropy of the potential, but from the mismatch
between the principal axes of the potential and the temperature
axes, one considers a second model where the particle evolves
in a potential U (x,y) = k( x2+a2y2

2 + uxy). Stable potentials

052121-3



MANCOIS, MARCOS, VIOT, AND WILKOWSKI PHYSICAL REVIEW E 97, 052121 (2018)

require |a| > |u|. By using the same method, one obtains an
exact solution of the stationary probability P (x,y), which reads

P (x,y) = k(1 + a2)
√

a2 − u2e−(γ ′
1x

2+γ ′
2y

2+γ ′
3xy)

π
√

(1 + a2)2TxTy + u2(Ty − Tx)2
, (26)

where

γ ′
1 = k

(1 + a2)[Ty(1 + a2) + u2(Tx − Ty)]

2[(1 + a2)2TxTy + u2(Tx − Ty)2]
, (27)

γ ′
2 = k

(1 + a2)[2Tx + u2(Ty − Tx)]

2[(1 + a2)2TxTy + u2(Tx − Ty)2]
, (28)

γ ′
3 = k

(1 + a2)u(a2Tx + Ty)

(1 + a2)2TxTy + u2(Tx − Ty)2
. (29)

Inserting Eq. (26) into Eq. (17), one obtains the mean angular
velocity:

〈ω〉 = k

η
u(Ty − Tx)

√
a2 − u2

(1 + a2)2TxTy + u2(Tx − Ty)2
. (30)

For an anisotropic potential where the confinement is
different along the two temperature axes, it is noticeable that
a nonzero mean angular velocity is still proportional to the
product u(Ty − Tx), which means that the joint effect of the
temperature difference and of the anisotropy of the potential
whose principal axes are different from temperature axes leads
to a global rotation. The effect of this anisotropy along the y

axis only modifies the amplitude of angular velocity, but is not
responsible for the global rotation [see Eq. (30)]. The principal
axes of the anisotropic potential are rotated by an angle α, such
that

tan(2α) = 2u

1 − a2
(31)

which varies continuously from 0 to 1
2 arctan( 2∗a

1−a2 ) when u
goes from 0 to a.

B. Underdamped motion

Returning to the previous anisotropic potential U (x,y) =
k( x2+y2

2 + uxy), we now consider an underdamped motion (see

also [22]). The equations of motion of a particle are given by

dvx

dt
= − 1

m

∂U (x,y)

∂x
− η

m
vx +

√
2ηTx

m2
ξx(t),

dvy

dt
= − 1

m

∂U (x,y)

∂y
− η

m
vy +

√
2ηTy

m2
ξy(t),

dx

dt
= vx,

dy

dt
= vy. (32)

The Kramers-Fokker-Planck equation corresponding to the
underdamped motion, is expressed as

∂P (x,y,vx,vy,t)

∂t
= −∇ · J, (33)

where ∇ = (∂x,∂y,∂vx
∂vy

) and

J =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Jx = vxP,

Jy = vyP,

Jvx
= (− 1

m

∂U (x,y)
∂x

− η vx

m

)
P − ∂

∂vx

(
ηTx

m2 P
)
,

Jvy
= (− 1

m

∂U (x,y)
∂y

− η
vy

m

)
P − ∂

∂vy

( ηTy

m2 P
)
.

(34)

The stationary PDF now depends on the variables x, y, vx ,
and vy which are defined as components of a four-component
vector z. The associated matrices A and B are given by

A = 1

m

⎛
⎜⎜⎜⎝

0 0 m 0

0 0 0 m

−k −ku −η 0

−ku −k 0 −η

⎞
⎟⎟⎟⎠,

B = η

m2

⎛
⎜⎜⎜⎝

0 0 0 0

0 0 0 0

0 0 2Tx 0

0 0 0 2Ty

⎞
⎟⎟⎟⎠. (35)

Introducing a dimensionless viscosity η′ = η/
√

km and
solving Eq. (A3), one obtains

� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2η′2Tx+u2(Tx+Ty )+η′2(Ty−Tx )
2k(η′2+u2)(1−u2) − u(Tx+Ty)

2k(1−u2) 0 − η′(Tx−Ty)u
2
√

km(η′2+u2)

−u(Tx+Ty)
2k(1−u2)

2η′2Ty+u2(Tx+Ty )+η′2(Tx−Ty )
2k(η′2+u2)(1−u2)

η′(Tx−Ty)u
2
√

km(η′2+u2)
0

0
η′(Tx−Ty)u

2
√

km(η′2+u2)

2Txη
′2+(Tx+Ty )u2

2m(η′2+u2) 0

− η′(Tx−Ty)u
2
√

km(η′2+u2)
0 0 2Tyη

′2+(Tx+Ty )u2

2m(η′2+u2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (36)

Inverting � leads to the probability distribution P (x,y,vx,vy). The marginal probability distributions, namely, the position, Px,Py

and velocity Pvx
,Pvy

PDFs can be easily calculated. The position PDFs Px,Py are given by

Pz(z) =
√

1

2πTze

exp

(
− z2

2Tze

)
, (37)

where z = x,y.
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FIG. 3. Effective temperatures Txe and Tye of the position PDFs
versus the viscosity η for Tx = 1, Ty = 2 and u = 0.25 (lower
curves) and u = 0.4 (upper curves). The full lines correspond to the
temperatures along the directions x̂ (blue) and ŷ (red). The dashed
lines give the high friction limit, where the two effective temperatures
are larger and smaller than Tx and Ty . The dashed-dotted lines indicate
the zero friction limit, respectively.

Txe is the effective temperature of Px given by

Txe = η′2Tx + u2

2 [η′2(Ty − Tx) + (Tx + Ty)]

(1 − u2)(η′2 + u2)
. (38)

A similar expression for Tye is obtained:

Tye = η′2Ty + u2

2 [η′2(Tx − Ty) + (Tx + Ty)]

(1 − u2)(η′2 + u2)
. (39)

When η′ � 1, Eqs. (38) and (39) go to the overdamped limit
given by Eqs. (11) and (12). Conversely, when η′ → 0, the two
effective temperatures become equal, Txe = Tye = Tx+Ty

2(1−u2) .
Figure 3 shows how Txe and Tye depend on the dimen-

sionless viscosity η′ for Tx = 1 and Ty = 2 (full lines). Note
that effective temperatures Txe and Tye, which start from the
same value (Tx + Ty)/2(1 − u2), respectively decrease and
increase toward their asymptotic values, Txe(∞) and Tye(∞).
In other words, at low viscosity, the widths of the position
PDF are given by the mean temperature of both directions
[up to a (1 − u2)−1 factor]. When the dimensionless viscosity
increases, the effective temperatures go rapidly toward the
asymptotic values (which are independent of the viscosity).
It may be noted that the effective temperatures along each
direction are different from Tx and Ty , respectively. Another
feature, shown in Fig. 3, is the interplay between u and η′.
Moreover, the inflection point, located at η′ ≈ u/

√
3, marks

the crossover between overdamped and underdamped regimes.
Figure 4 shows the position PDFs, Px and Py for two

temperatures Tx and Ty and η′ = 1 (full curves). The dashed
curves represent the underdamped Langevin simulation (see
Sec. IV for more details) and closely agree with the exact
expressions, Eq. (37).

We now consider the velocity PDFs for which one ob-
tains an exact expression for the harmonic model. Integrating
P (x,y,vx,vy) over the position and one velocity component,

FIG. 4. Stationary position PDF P (x) (blue) and P (y) (red) for an
asymmetric harmonic potential (u = 0.5), a dimensionless viscosity
η′ = 1, with Tx = 1 and Ty = 2.

it is easy to show that the velocity PDFs keep also a Gaussian
shape with an effective temperature Tvxe and Tvye, respectively:

Tvxe = 2Txη
′2 + u2(Tx + Ty)

2(u2 + η′2)
, (40)

Tvye = 2Tyη
′2 + u2(Tx + Ty)

2(u2 + η′2)
. (41)

As expected, when η′ → ∞, one recovers that Tvxe = Tx and
Tvye = Ty irrespective of u, which means that the velocity
distribution is independent of the potential in the high friction
limit. Conversely, when η′ → 0, the two effective tempera-
tures, Tvxe and Tvy,e, go to the same limit (Tx + Ty)/2.

Figure 5 shows Tvx,e and Tvy,e as a function of viscosity
for two values of the asymmetry parameter u = 0.25,0.4. As
previously observed for the effective temperatures Tx,e and Ty,e

of the position PDFs, the asymptotic values of the high friction

FIG. 5. Effective temperatures Tvx ,e and Tvy ,e of the velocity PDFs
for an asymmetric harmonic potential with a viscosity η = 1, Tx = 1,
Ty = 2 and for two values of the asymmetry parameter u = 0.25 (full
curves) and u = 0.4 (dot-dashed curves). The magenta lines give the
η′ → +∞ limit.
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FIG. 6. Mean angular velocity 〈ω〉 (in rad s−1) as a function of the
asymmetry parameter u for two different viscosities η′ = 1,5, when
Tx = 1, Ty = 2 (circles and stars). The full curves correspond to the
exact expression, Eq. (44). The dots correspond to the simulation
results.

limit are rapidly reached (η′ > 2). However, although Tx,e and
Ty,e goes to asymptotic values which depend on the asymmetry
parameter u and on the two temperatures Tx and Ty , Tvx,e and
Tvy,e instead go to Tx and Ty , respectively.

Whereas the stationary positions and velocities PDFs are
symmetric and have a Gaussian shape, the particle motion
exhibits a mean rotation velocity. The mean angular velocity
is given by

〈ω〉 =
∫

d2r
∫

d2v
1

r2
(r × v)P (r,v). (42)

Converting the above expression to polar coordinates gives

〈ω〉 =
∫

dvr

∫
dvθ

∫
dθ

∫
dr vθP (r,θ,vr ,vθ ). (43)

After some calculation, one obtains the expression

〈ω〉 = ku(Ty − Tx)
√

1 − u2

η

√
[4Tx Ty + u2(Tx − Ty)2] + (

u4

η′4 + 2 u2

η′2
)
(Ty + Tx)2

.

(44)

In the overdamped limit (η′ → ∞) one recovers Eq. (23). In
the opposite limit η′ → 0, the mean angular velocity decreases
to zero as the inverse of the particle mass.

Figure 6 shows the evolution of 〈ω〉 as a function of the
asymmetry parameter u for two values η′ = 1,5. The full
curves correspond to Eq. (44). As previously observed with
the effective temperatures, shown in Figs 3 and 5, for η′ >

3, the mean angular velocity matches the exact expression
corresponding to the high-friction limit. Note that for a given
value u, the friction coefficient has a weaker impact than the
asymmetry parameter u.

We have shown that the two-temperature model has a
stationary solution with a nonzero current when both the
potential is asymmetric and the temperatures are different. One
notes that the current is maximum in the overdamped situation.

III. WEAK ASYMMETRIC POTENTIAL

We now consider the overdamped motion of a particle of
mass m in a weak asymmetric potential U (r,θ ) = U0(r) +
uU1(r,θ ), where u 
 1 is a small dimensionless parameter and
U1(r,θ ) � U0(r) when r is large. Moreover, both temperatures
are taken to be close in order to perform a perturbative
expansion of the Fokker-Planck equation. One defines the
mean temperature T = (Tx + Ty)/2. The two temperatures
along the two axes are then expressed as Tx = T (1 − α/2)
and Ty = T (1 + α/2), and |α| 
 1 is a small dimensionless
parameter. Using Eq. (3) and expressing the current in polar
coordinates, the stationary solution P (r,θ ) satisfies

1

r

∂(rJr )

∂r
+ 1

r

∂Jθ

∂θ
= 0, (45)

where the radial and orthoradial currents, Jr and Jθ , are the
sum of the two contributions

Jr,θ = J 1
r,θ + J 2

r,θ , (46)

where

J 1
r (r,θ ) = −P

η

∂U

∂r
− T

η

∂P

∂r
, (47)

J 1
θ (r,θ ) = − P

ηr

∂U

∂θ
− T

ηr

∂P

∂θ
(48)

and

J 2
r (r,θ ) = −αT

2η

(
− cos(2θ )

∂P

∂r
+ sin(2θ )

r

∂P

∂θ

)
, (49)

J 2
θ (r,θ ) = −αT

2η

(
sin(2θ )

∂P

∂r
+ cos(2θ )

r

∂P

∂θ

)
. (50)

J 1 and J 2 are the currents associated with the mean tem-
perature and with the temperature difference along the two
axes, respectively. When α = 0, the stationary solution of
the Fokker-Planck equation is the equilibrium distribution
P u

0 (r,θ ) ∝ e−[U0(r)+uU1(r,θ)]/T , where the associated current
vanishes.

We now propose the following ansatz for the stationary
distribution

P (r,θ ) = P u
0 (r,θ )P1(r,θ ), (51)

which gives

J 1
r (r,θ ) = −T P u

0 (r,θ )

η

∂P1(r,θ )

∂r
,

J 1
θ (r,θ ) = −T P u

0 (r,θ )

ηr

∂P1(r,θ )

∂θ
. (52)

Inserting Eq. (52) into Eq. (45), one finally obtains

P u
0 (r,θ )�P1(r,θ ) + �∇P u

0 (r,θ ) · �∇P1(r,θ ) = − η

T
�∇ · �J 2. (53)

Assuming that P1(r,θ ) ∝ exp [−αf (r,θ,u,α)], and performing
a first-order expansion in α (and a zeroth-order expansion in
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u), one has

�P1(r,θ ) = −αP1(r,θ )�f (r,θ ) + O(α2), (54)

�∇P u
0 (r,θ ) · �∇P1(r,θ ) = α

T
P 0

0 (r)P1(r,θ )
∂U0(r)

∂r

∂f (r,θ )

∂r

+O(α2), (55)

and

�∇ · �J 2 = α cos(2θ )

2η
P 0

0 (r)P1(r,θ )

[
1

r

∂

∂r

(
r
∂U0(r)

∂r

)

− 1

T

(
∂U0(r)

∂r

)2

− 2

r

∂U0(r)

∂r

]
+ O(α2). (56)

Therefore, the function f (r,θ ) satisfies the partial differential
equation

�f (r,θ ) − 1

T

∂U0(r)

∂r

∂f (r,θ )

∂r

= cos(2θ )

2T

[
1

r

∂

∂r

(
r
∂U0(r)

∂r

)
− 1

T

(
∂U0(r)

∂r

)2

− 2

r

∂U0(r)

∂r

]
.

(57)

Assuming that f (r,θ ) = cos(2θ )g(r), one obtains a differential
equation for g(r).

d2g(r)

dr2
+ 1

r

dg(r)

dr
− 4

g(r)

r2
− 1

T

∂U0(r)

∂r

dg(r)

dr

= 1

2T

[
1

r

∂

∂r

(
r
∂U0(r)

∂r

)
− 1

T

(
∂U0(r)

∂r

)2

− 2

r

∂U0(r)

∂r

]
.

(58)

The analytical solution of the differential cannot be obtained
in general. However, assuming that U0(r) ∼ rp (with p � 2)
when r → ∞, one obtains that the asymptotic behavior of
g(r) is g(r) ∼ U0(r)/(2T ). A solution exists for the harmonic
potential where g(r) = kr2/(4T ). The probability distribution
is then given by

P (r,θ ) ∝ exp

{
−kr2

2T

[
1 + u sin(2θ ) + α

2
cos(2θ )

]}
, (59)

which corresponds to the lowest-order expansion in u and α of
Eq. (19). Hence, the mean angular velocity is given by 〈ω〉 ∝
αukT /η.

Similarly, we now show that the ansatz gives the leading
behavior of the mean angular velocity. Inserting P (r,θ ) ∝
exp[−(U0(r) + uU1(r,θ )]/T − α cos(2θ )g(r))) into Eq. (48),
one obtains

J 1
θ (r,θ ) = −2T α

ηr
g(r) sin(2θ )P (r,θ ). (60)

The Fourier series of the anisotropic part of the potential is
U1(r,θ ) = ∑

n�2[an(r) cos(nθ ) + bn(r) sin(nθ )]. Because the
principal axes of the potential mismatch of the temperature
axes, this implies that b2(r) is nonzero ([or at least a single
bn(r), n � 2, is nonzero]. Performing an expansion in u and α

of Eq. (59), one obtains that the integral of J 1(r,θ ) over θ is
proportional to αuT .

Similarly, inserting the ansatz for P (r,θ ) into Eq. (50), the
leading term of the current is given by

J 2
θ (r,θ ) = α

2η

(
sin(2θ )

∂U0(r,θ )

∂r

)
P (r,θ ). (61)

The integration of J 2
θ (r,θ ) provides a second contribution to

〈ω〉, also proportional to αuT . Note that when g(r) = r
4T

∂U0(r)
∂r

the two contributions vanish. For this case which corresponds
to the harmonic potential, the orthogonal current must be
calculated to the next order, which is proportional to uαT/η.
One then recovers results obtained in Sec. II, where the mean
angular velocity is proportional to uαT/η. Finally, we have
shown that the mean angular velocity is proportional to uαT/η

(for u,α 
 1) which confirms the existence of the mean current
linked to the double symmetry breaking.

IV. SIMULATION

We performed a stochastic simulation of a particle in the
underdamped situation in order to test the results obtained in
the high friction limit. To solve the stochastic differential equa-
tion in the underdamped situation, we implement a Verlet-like
algorithm which has the property of using one random number
per time step [23] (see Appendix B). Each run is performed
with a total reduced elapsed time 3000. Position and velocity
PDFs are monitored in the stationary regime. To obtain reliable
statistics, one considers the probability distribution along each
axis instead of two-dimensional probability distribution.

We first consider the harmonic potential: all monitored
quantities such as position PDFs, velocity PDFs, and the mean
angular velocity match the exact results for any value of the
viscosity. In particular, we recover the overdamped limit very
rapidly when η′ > 3.

As discussed above, no exact expression is obtained even
for a spherical potential except the harmonic one. We first
simulate the model for U (x,y) = (x2 + y2)2/4 + uxy. Fig-
ure 7 displays the asymmetry of the potential for u = 3 and
u = −3. The mean angular velocity is plotted as a function of
the asymmetry parameter u (see Fig. 8) for different values of
Ty = 2,1.5,1.2,0.8,0.5 and Tx = 1. These values correspond
to α = 1,0.5,0.2, − 0.2, − 0.5 and T = 1.5,1.1,0.9,0.75, re-
spectively. The perturbative analysis of Sec. III predicts that the
mean angular velocity is proportional to αuT when u,α 
 1.
Figure 8 shows the reduced mean angular velocity ω as a
function of u (for different α), and we observe that all the

FIG. 7. Contour plot of the potential U (x,y) = (x2 + y2)2/4 +
uxy for u = 3 (left) and u = −3 (right).
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FIG. 8. Reduced mean angular velocity versus the asymmetry
parameter u for a potential U (x,y) = (x2 + y2)2/4 + uxy, with
different values of α.

curves collapse for small values of u (see Fig. 9). For u = 0,
no mean current exists. For u > 1.5, a nonlinear dependence on
u appears and two extreme values of the mean angular velocity
exist for u � ±2. In addition, the intensity of the mean angular
velocity is increased compared to the harmonic case.

V. OBSERVATION ON COLD ATOMS

Cold atom experiments can deal with intensity or laser
detuning imbalance during the cooling phase, leading to
different temperatures along the different cooling axes. By
adding a two-dimensional optical dipole trap, one can tailor the
asymmetric parameter u at will. Breaking the two symmetries
in this case, we raise the question to what extent this thermal
rotation can be observed. The rotation of atomic clouds has
been previously reported in the context of a beam-misaligned
vortex trap [24,25] and more recently using synthetic Lorentz
forces [26–28]. As opposed to those previous studies where
the rotation is due to a net mean radiation pressure force, our
proposal is based on a stochastic force with zero mean value.

We compute 〈ω〉 for optical molasses, in the presence of an
optical dipole trap using a semiclassical approach of laser cool-

FIG. 9. Rescaled mean angular velocity ω/(αT ) versus the asym-
metry parameter u for the potential U (x,y) = (x2 + y2)2/4 + uxy

and α = 1,0.5,0.2,−0.2,−0.5.

ing (see, for example, [29]). For simple experimental imple-
mentation, we consider a two-dimensional laser cooling where
all laser beams have the same frequency detuning δ with respect
to an atomic transition but with different laser intensities Ix and
Iy , respectively, along the x axis and y axis. We can then define
the saturation parameter si = (Ii/Is)/(1 + 4δ2/
2), where Is

is the saturation intensity of the atomic transition and 
 is the
atomic linewidth and i = x,y. In what follows, we consider the
low saturation limit, namely, si 
 1, so we can sum up the in-
dividual contributions of each laser beam to the total radiation
pressure force (mean and fluctuating parts). The expansion for
the viscous force (mean component) along the i axis reads

Fi = −ηiv, ηi = −4h̄k2si

2δ/


1 + (2δ/
)2
, (62)

where k the wave vector of the laser beams and h̄ the Planck
constant.

The diffusion constant (fluctuating component), along the
x axis reads

Dx = 1
4 h̄2k2
(sx + sy) + 1

2 h̄2k2
sx. (63)

The first term on the right-hand side of Eq. (63) comes from
the photon spontaneous emission events (isotropic radiation
pattern), whereas the second term is due to the laser photon ab-
sorption events. A similar expression is found along the y axis
by swapping subscripts x and y in Eq. (63). Additionally, we
assume η = (ηx + ηy)/2 in order to simplify the calculation.
More precisely, we could set ηx = ηy and Dx �= Dy by choos-
ing different frequencies detuning and different intensities.

The temperatures along each direction i = x,y are given by
the Einstein-Smoluchowski relation:

Ti = Di

η
. (64)

The presence of an asymmetric optical dipole trapU (x,y) =
mω2

T

2 (x2 + y2 + 2uxy), leads to the second broken symmetry.
According to Eq. (44) the mean angular frequency reads

〈ω〉 = m(h̄kωT )2

2η2
u(sy − sx)

√
1 − u2

4TxTy + u2(Tx − Ty)2
. (65)

The scheme could not be implemented on standard alka-
line atoms where broad transitions usually lead to Doppler
temperatures higher than the potential depth. In contrast,
narrow intercombination lines of alkaline-earth-metal atoms
are favorable to such experiments. For instance, cooling of
bosonic strontium 88 on the intercombination line 1S0 →
3P1 of linewidth 
/2π = 7.5 kHz, leads to temperatures in
the microkelvin range compatible with usual dipole trap
depth [30,31]. For an illustrative and realistic example, we
take a dipole trap frequency of ωT = 250 Hz, saturation
parameters { Ix

Is
,
Iy

Is
} = 1,4, and a detuning δ = −3. We choose

a trap anisotropy parameter u = 0.4. Our model gives Tx =
0.39 μK, Ty = 0.72 μK, and a mean angular velocity of 15
Hz. Additionally, the inverse quality factor (dimensionless
viscosity) η′ is close to 2, indicating an overdamped dynamic.
Figure 10 displays a simple TOF experiment to visualize
the effect. After stirring the atoms, we release them from
the trap and follow their ballistic expansion along x and y.
The clockwise (upper) and counterclockwise (lower) cases
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FIG. 10. Time-of-flight simulations (TOF) emphasizing the difference of behavior when reversing the rotation. The spatial density is plotted
after different times of TOF for both clockwise rotation (upper) and counterclockwise rotation (lower).

clearly show a net mean rotation. Those figures were realized
using a Cholesky decomposition of the covariance matrix �,
which gives access to (x,y,vx,vy) for an arbitrary number of
independent particles. Here this number of atoms is chosen to
be reasonably high (n = 2 × 107) for a clear reading of the
figures. Initially small, the cloud will expand and maintain an
asymmetric shape, as if the rotation was rigid. Nevertheless,
we keep in mind two important facts: first, the rotation is not
strictly rigid due to the θ dependence in Eq. (22). Second,
our model is for independent particles and thus, the optical
depth has to be low such that multiple scattering, which couples
atoms, can be disregarded. Finally, we note that the rotation is
done in the strong overdamped limit. Indeed, the characteristic
damping time of the velocity is given by m/η which is in the
millisecond range, and therefore much shorter than |〈ω〉|−1.

VI. CONCLUSION

We have shown that for a two-dimensional particle un-
dergoing a stochastic motion with two different temperatures
along perpendicular axes, and subjected to an external force
deriving from a confining potential, the system evolves toward
a stationary state, in which a permanent current is present when
the two principal axes of the confining potential do not coincide
with the temperature axes. We finally proposed to observe this
phenomenon in an experiment with ultr-cold atomic gas.
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APPENDIX A: METHOD

We first introduce the method allowing one to obtain the
complete solution of the two above models. Indeed, these
models belong to the class of linear multivariate Fokker-Planck
equations [32–34]. If z denotes an r-dimensional vector, the
linear Fokker-Planck equation is then given by

∂P (z,t)
∂t

= −
∑
i,j

Aij

∂zjP (z,t)
∂yi

+ 1

2
Bij

∂2

∂zi∂zj

P (z,t). (A1)

The solution of this linear Fokker-Planck equation is a Gaus-
sian distribution

P (z,t) =
√

(2π )r

Det(�)
exp

(
−1

2
(z − 〈z〉)T �−1(z − 〈z〉)

)
, (A2)

where 〈·〉 denote the average over the variable, zT the transpose
of z, and � ≡ �(t) is a time-dependent r × r covariance
matrix. By taking the first and the second moments of the
Fokker equation, the covariance matrix satisfies the differential
equation

d�

dt
= A� + �AT + B, (A3)

where A and B are r × r matrices with coefficients Aij and
Bij , respectively.

Note that for the two models defined above, the matrices
A and B are symmetric. Moreover, for the sake of simplicity,
one first considers the stationary solution, where the stationary
covariance matrix is denoted as �s obeying to the algebraic
equation

A�s + �T
s A = −B. (A4)

APPENDIX B: EFFECTIVE VERLET-TYPE ALGORITHM

For the sake of simplicity, one considers a one-dimensional
Langevin equation [23], but the generalization of this

052121-9



MANCOIS, MARCOS, VIOT, AND WILKOWSKI PHYSICAL REVIEW E 97, 052121 (2018)

algorithm in higher dimensions is straightforward. The
Langevin equation is given by

dx

dt
= v, (B1)

m
dv

dt
= f − ηv + ξ (t), (B2)

where f denotes an external force, η the friction coefficient, m
the particle mass, and ξ (t) a Gaussian white noise [〈ξ (t)〉 = 0
and 〈ξ (t)ξ (t ′)〉 = 2ηT δ(t − t ′), T is the bath temperature and
δ(t) the Dirac function]. Integrating the above equations over
a time step dt , one obtains

xn+1 = xn +
∫ tn+1

tn

v(t ′)dt ′, (B3)

m(vn+1 − vn) =
∫ tn+1

tn

f dt ′ − η(xn+1 − xn) + Rn+1, (B4)

where xn,vn,xn+1,vn+1 denote the positions and velocities at
times tn and tn+1 = tn + dt , respectively. Rn+1 is a Gaussian
random number such that 〈Ri〉 = 0 and 〈RiRj 〉 = 2ηT dt δij .

Approximating
∫ tn+1

tn
v(t ′)dt ′ � dt

2 (vn+1 + vn), and insert-
ing Eq. (B4) into Eq. (B3), one obtains

xn+1 = xn + b dt

(
vn + 1

2m

[ ∫ tn+1

tn

f dt ′ + Rn+1

])
, (B5)

with

b =
(

1 + ηdt

2m

)−1

. (B6)

Performing a second-order expansion of the integral of the
deterministic force, the equations of motion become

xn+1 = xn + b dt

(
vn + dt

2m
fn + Rn+1

)
, (B7)

vn+1 = vn + dt

2m
(fn + fn+1) − η

m
(xn+1 − xn) + 1

m
Rn+1.

(B8)

Finally, by inserting Eq. (B7) into Eq. (B8), the discretized
equation of velocity is then given by

vn+1 = avn + dt

2m
(afn + fn+1) + b

m
Rn+1, (B9)

with

a =
(

1 − ηdt

2m

)
b. (B10)
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