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Statistical mechanics of high-density bond percolation
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High-density (HD) percolation describes the percolation of specific κ-clusters, which are the compact sets of
sites each connected to κ nearest filled sites at least. It takes place in the classical patterns of independently dis-
tributed sites or bonds in which the ordinary percolation transition also exists. Hence, the study of series of κ-type
HD percolations amounts to the description of classical clusters’ structure for which κ-clusters constitute κ-cores
nested one into another. Such data are needed for description of a number of physical, biological, and information
properties of complex systems on random lattices, graphs, and networks. They range from magnetic properties of
semiconductor alloys to anomalies in supercooled water and clustering in biological and social networks. Here
we present the statistical mechanics approach to study HD bond percolation on an arbitrary graph. It is shown that
the generating function for κ-clusters’ size distribution can be obtained from the partition function of the specific
q-state Potts-Ising model in the q → 1 limit. Using this approach we find exact κ-clusters’ size distributions for
the Bethe lattice and Erdos-Renyi graph. The application of the method to Euclidean lattices is also discussed.
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I. INTRODUCTION

A number of physical properties of disordered materials
depend on the structure of the clusters they contain. Among
them are the ferromagnetism of dilute semiconductors [1], the
catalytic ability of random films [2], electrolytic dissolution
of binary alloys [3], diffusion in a crowded environment [4],
and many others. Phase transitions in such materials often
result from percolation transitions—the emergence of a giant
cluster of a specific sort, relevant for specific property of the
material. Mechanisms of some phase transforms in random
media such as stainless steel corrosion [5] and anomalies in
supercooled H2O and D2O [6] are possibly related to the
emergence of various compact tightly bound clusters. High-
density (HD) percolation was introduced for description of
percolation via clusters of varying compactness, which are the
set of sites each connected to κ nearest filled sites at least
(κ-clusters for short) [6,7,8]. Contrary to many other models of
correlated percolation [9], the original HD percolation [6,7,8]
takes place in the classical uncorrelated patterns of randomly
and independently distributed sites or bonds which feature
also the classical percolation transition, that is, the transition
with κ = 0, 1. Apparently, HD κ-clusters constitute what can
be termed as κ-cores of conventional clusters (see Fig. 1)
while HD giant κ-clusters are the κ-cores of the usual giant
component of classical sites or bond percolation. Accordingly,
it is shown in Refs. [7,8] that in classical site percolation on
a Bethe lattice such giant κ-cores emerge at concentrations
above the classical percolation threshold pκ > pc = p1 = p0,
κ > 1, and pκ+1 > pκ . Thus, the sequence of HD percolation
transitions at pκ manifests the appearance of more and more
connected infinite κ-cores (one nested to another) in the
usual percolation cluster. This is a common feature of phase

*pntim@live.ru

transitions with nonlocal order parameters; they allow for a
multitude of other nonlocal order parameters and cascades of
corresponding transitions [10].

The conventional way to study the critical properties of HD
percolation transitions is to find the clusters’ size distribution
for them. In the implicit form, this has been done for HD site
percolation on the Bethe lattice using the theory of random
walks [7]. For some 2D and 3D lattices these HD distributions
are found numerically via enumeration of clusters of κ or more
coordinated sites in random bond [6] and site [11,12] patterns.
Yet such numerics is very time consuming for sufficiently
large samples. So one may try to diminish the computa-
tional problems via casting HD percolation into a statistical
mechanics framework as has been done for classical bond
percolation [13,14]. This may help to diminish the numerical
efforts due to a number of methods developed for partition
function calculation such as the transfer matrix technique
in conjunction with renormalization group and Monte Carlo
simulations.

We can expect that such high-precision numerics would es-
tablish the reliable values of transition points, critical indexes,
their scaling relations, and universality classes of HD percola-
tion transitions on various graphs and Euclidean lattices. The
statistical mechanics approach could also give some exact re-
sults for various hierarchical lattices and deterministic fractals
through simple algebraic derivation, i.e., without resorting to
probability theory constructions.

Here we show how the generating function of κ-clusters’
size distribution for HD bond percolation can be obtained
on an arbitrary graph from the q → 1 limit of the partition
function of the specific q-state Potts-Ising model using the
ideas of Refs. [13,14]. In Sec. II we describe the general
formalism, in Sec. III we apply it to obtain the exact clusters’
size distribution for HD bond percolation on the Bethe lattice
and Erdos-Renyi graph, and in Sec. IV and the Appendix we
discuss its application to the Euclidean lattices
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FIG. 1. The example of the decomposition of the ordinary cluster
on a square lattice (black circles) into κ-clusters. The numbers at
cluster sites denote their coordination numbers. Full line encircles
4-cluster, dotted line encircles 3-cluster, and dashed line encircles
2-cluster.

II. GENERAL FORMALISM

The present method is based on the Fortuin-Kasteleyn
cluster representation of the Potts model [13] and its imple-
mentation for classical bond percolation [14].

Consider a graph with N sites and set of edges E. To describe
the bond configurations on it we assign to each edge the vari-
able ni,j = 0,1 with 0/1 corresponding to the absence/presence
of a bond. For each bond present with probability p we have
the probability of a general configuration:

W (n) =
∏

i,j∈E

ρ(ni,j ),

ρ(ni,j ) = (1 − p)(1 − ni,j ) + pni,j = 1 − p + ni,j (2p − 1).

Our task is to discern in each bond configuration the clusters
of sites having at least κ bonds attached. As in the original
mapping of the classical bond percolation problem onto the
q-state Potts model [13,14], to do this we should provide the
bonds of these κ-clusters with the factor δ(σi,σj ) (Kronecker
delta) making all Potts variables σ = {0,1, . . . ,q − 1} in a κ-
cluster equal. This job is done by putting to each edge the
factor

g(κ)
σi ,σj

(n,ki,kj ) = 1 + ni,jϑ(ki − κ)ϑ(kj − κ)[δ(σi,σj ) − 1].

(1)

Here ϑ(x) is Heaviside step function, ϑ(0) = 1, and km =∑
〈l,m〉∈E nm,l is the number of bonds attached to the mth site

in a given configuration. So when a bond is present on the
〈i,j 〉 edge and the number of bonds attached to ith and j th
sites exceeds κ − 1 then g(κ)

σi ,σj
(n,ki,kj ) = δ(σi,σj ); otherwise

g(κ)
σi ,σj

(n,ki,kj ) = 1.

Also we need the fields at each site [14]

hσi
= h[δ(σi,0) − 1] (2)

to count the number of sites in the κ-clusters. Thus, we have
the partition function, which contains essential data for κ-type
HD bond percolation:

Zκ (p,h,q) = Trσ,nW (n)
∏

〈i,j 〉∈E

g(κ)
σi ,σj

(n,ki,kj )

×
N∏

i=1

δ

⎛
⎝ki,

∑
〈l,i〉∈E

ni,l

⎞
⎠ exp hσi

≡ Trσ,n exp(−Hκ ). (3)

Indeed, in the cluster representation using the equality of
Potts variables σ on sites belonging to κ-clusters we get

Zκ (p,h,q) =
∑
C

pB(C)(1 − p)|E|−B(C)

×
∏

κ−clusters

[1 + (q − 1)ehscl ]

=
〈∏

s=1

[1 + (q − 1)ehs]
N

(κ)
s (C)

〉
C

, (4)

where B(C) is the number of bonds in configuration C, N (κ)
s (C)

is the number of κ-clusters with s sites in them, and 〈. . .〉C
means the average over bond configurations

〈A(C)〉C =
∑
C

pB(C)(1 − p)|E|−B(C)A(C).

Hence, at q → 1,

Zκ (p,h,q) ≈ 1 + (q − 1)NGκ (p,h), (5)

Gκ (p,h) being the generating function for κ-clusters’ size
distribution

Gκ (p,h) =
∑
s=1

ν(κ)
s ehs,ν(κ)

s =
〈
N (κ)

s (C)

N

〉
C

. (6)

The effective Hamiltonian Hκ defined in the last equality of
Eq. (3) is linear in the Potts interaction δ(σi,σj ) and polynomial
in Ising-like variables ni,j . Thus we have the specific Potts-
Ising model with Potts spins at the sites and ni,j at the edges
of a graph which describes essential properties of HD bond
percolation at q → 1.

III. HD PERCOLATION ON THE BETHE LATTICE

The Bethe lattice with large coordination number z can be
a sufficiently adequate approximation for highly coordinated
Euclidean lattices as well as for the Erdos-Renyi network when
z → ∞ and pz → c [15–17]. So we can test the consistency
of the described approach applying it to HD bond percolation
on the Bethe lattice the more so as this can give some analytical
mean-field results for κ-clusters’ size distribution.

We use the standard method to obtain the density of ther-
modynamic potential N−1 ln Zκ (p,h,q) of the model on the
Bethe lattice via the partial partition functions on Caley trees
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[18], which can be found from the recurrence relations between
the trees of the lth and (l + 1)th levels. In the thermodynamic
limit, l → ∞, we find the stable stationary values for the
parameters defining these partition functions and the density
of the thermodynamic potential. Then, according to (5), for
q → 1,

lim
N→∞

N−1 ln Zκ (p,h,q) ≈ (q − 1)Gκ (p,h),

and we obtain the generating function Gκ (p,h) for the Bethe
lattice.

First, we introduce the partial partition function of our
model on the l-level Caley tree U

(κ)
σ,l (k,n) summed over all

dynamic variables except the root ones, σ being the Potts
variable of the root site, k the number of bonds attached to
it, and n the root edge variable. Recurrence relations for these
quantities are

U
(κ)
σ,l+1(k,n) = [1 − p + n(2p − 1)]

∑
σ ′,k′,n1,...,nz−1

{
1 + nϑ(k − κ)ϑ(k′ − κ)[δ(σ,σ ′) − 1] exp hσ ′δ

(
k′,n +

z−1∑
i=1

ni

)
z−1∏
i=1

U
(κ)
σ ′,l(k

′,ni)

}
.

(7)

Equation (7) suggests the following form of U
(κ)
σ,l (k,n):

U
(κ)
σ,l (k,n) = (1 − n)al + n[bl + ϑ(k − κ)(cσ,l − bl)], cσ,l = c1,l + δ(σ,0)(c0,l − c1,l),

that is,

U
(κ)
σ,l (k,0) = al, U

(κ)
σ,l (k,1)

∣∣
κ<k

= bl, U
(κ)
σ,l (k,1)

∣∣
κ�k

= cσ,l . (8)

From Eqs. (7) and (8) we have

al+1 = (1 − p)

{
κ−1∑
m=0

(
z − 1

m

)
az−1−m

l bm
l +

z−1∑
m=κ

(
z − 1

m

)
az−1−m

l cm
0,l

+ (q − 1)eh

[
κ−1∑
m=0

(
z − 1

m

)
az−1−m

l bm
l +

z−1∑
m=κ

(
z − 1

m

)
az−1−m

l cm
1,l

]}
, (9)

bl+1 = p

{
κ−2∑
m=0

(
z − 1

m

)
az−1−m

l bm
l +

z−1∑
m=κ−1

(
z − 1

m

)
az−1−m

l cm
0,l

+ (q − 1)eh

[
κ−2∑
m=0

(
z − 1

m

)
az−1−m

l bm
l +

z−1∑
m=κ−1

(
z − 1

m

)
az−1−m

l cm
1,l

]}
, (10)

c1,l+1 = bl+1 − p

z−1∑
m=k−1

(
z − 1

m

)
az−1−m

l cm
0,l + (2 − q)ehp

z−1∑
m=k−1

(
z − 1

m

)
az−1−m

l cm
1,l . (11)

The combinatorial coefficients here obey the usual convention for m > n or m < 0:(
n

m

)
= 0.

Parameters al , bl , and cσ,l tend to some stable stationary points a, b, and cσ when l → ∞. These stationary values define the
density of the thermodynamic potential of our model on the Bethe lattice [18] as follows:

lim
N→∞

2

N
ln Zκ (h,p,q)

= (2 − z) lim
l→∞

ln
∑

σ,n1,...,nz,m

exp hσ δ

(
m,

z∑
i=1

ni

)
z∏

i=1

U
(κ)
σ,l (m,ni)

= (2 − z) ln
∑

σ

exp hσ

z∑
m=0

(
z

m

)[
U (κ)

σ (m,1)
]m[

U (κ)
σ (m,0)

]z−m

= (2 − z) ln

{
κ−1∑
m=0

(
z

m

)
az−mbm +

z∑
m=κ

(
z

m

)
az−mc0

m + (q − 1)eh

[
κ−1∑
m=0

(
z

m

)
az−mbm +

z∑
m=κ

(
z

m

)
az−mc0

m

]}

= (2 − z) ln

{
(a + b)z +

z∑
m=κ

(
z

m

)
az−m

(
c0

m − bm
) + (q − 1)eh

[
κ−1∑
m=0

(
z

m

)
az−mbm +

z∑
m=κ

(
z

m

)
az−mc0

m

]}
. (12)
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For q → 1 we have from Eqs. (9)–(11)

a = 1 − p + O(q − 1), b = p + O(q − 1),

a + b ≈ 1 + q − 1

2 − z
eh{1 − pDκ−1(p) − (1 − p)Dκ (p) − (1 − p)[Dκ−1(u) − Dκ (u)] + Dκ−1(u)[1 − (z − 1)Dκ−1(p)]},

c0 ≈ b − (q − 1)ehpDκ−1(u). (13)

Here

Dκ (u) ≡
z−1∑
m=κ

(
z − 1

m

)
(1 − p)z−1−mum, u ≡ c1|q=1. (14)

Variable u = c1|q=1 = u(eh,p,κ) is the solution to the
equation [see Eq. (11)]

u = uκ (p) + ehpDκ−1(u), uκ (p) ≡ p[1 − Dκ−1(p)],

(15)

obeying the stationary point stability condition

p|eh∂uDκ−1(u)| < 1. (16)

From Eqs. (5) and (12)–(15) we have the following expres-
sion for the generating function of κ-clusters’ size distribution
in HD bond percolation:

e−hGk(eh,p) = G̃k(u,p)|u=u(eh,p,κ),

G̃k(u,p) = 1 + z

2

{
[uk(p) − u]Dk−1(u)

+ 2
∫ u

p

dxDk−1(x)

}
. (17)

To derive (17) we used the identity

z

∫ u

0
dxDk−1(x) = (1 − p)Dk(u) + uDk−1(u). (18)

Also it follows from Eq. (18)

(z − 1)Dk−1(u) = (1 − p)D′
k(u) + uD′

k−1(u), (19)

(z − 2)D′
k−1(u) = (1 − p)D′′

k (u) + uD′′
k−1(u). (20)

Here D′
κ−1(u) ≡ ∂uDκ−1(u), D′′

κ−1(u) ≡ ∂2
uDκ−1(u).

Thus we have for the average number of κ-clusters (per site)

N
(κ)
cl (p) = 1 + rκ (p) − p

p
[1 + rκ (p) − uκ (p)]

− z

2p
[rκ (p) − uκ (p)]2

+
(

z − 1
κ − 1

)
(1 − p)z−κ+1

[
pκ−1 − rκ−1

κ (p)
]
. (21)

Here rκ (p) ≡ u(1,p,κ) is the solution to the equation

rκ − p = p[Dκ−1(rκ ) − Dκ−1(p)], (22)

obeying the condition

p
∣∣∂rκ

Dκ−1(rκ )
∣∣ < 1; (23)

cf. Eqs. (15) and (16).

For the fraction of sites belonging to the giant κ-cluster

Sκ (p) = 1 − ∂ζGκ (ζ,p)|ζ=1

= 1 − G̃k[rκ (p),p] − ∂uG̃κ (u,p)/∂uζ |u=rκ (p),

we get using (22)

Sκ (p) = 1 − N
(κ)
cl (p) − z

2p
[rκ (p) − uκ (p)]2

= p − rκ (p)

p
[1 + rκ (p) − uκ (p)]

+
(

z − 1
κ − 1

)
(1 − p)z−κ+1

[
rκ−1
κ (p) − pκ−1

]
. (24)

There is the solution rκ (p) = p to Eq. (22). According to
(23) it is stable when

pD′
κ−1(p) =

z−1∑
m=κ−1

(
z − 1

m

)
mpm(1 − p)z−1−m < 1. (25)

In this region the percolation cluster is absent, Sκ (p) = 0,
and

N
(κ)
cl (p) = 1 − z

2p
[p − uκ (p)]2 = 1 − z

2
pD2

κ−1(p).

When condition (25) breaks, another stable solution to (22)
emerges:

rκ (p) = p(1 − δκ ), δκ > 0. (26)

For small δκ we have from (19), (20), and (22)

3p2D′′
κ−1(p)δκ ≈ 6[pD′

κ−1(p) − 1] + p2D′′′
κ−1(p)δ2

κ , (27)

while the stability condition (23) becomes

p2D′′
κ−1(p)δκ > [pD′

κ−1(p) − 1],

justifying the stability of the solution (26). With it we get from
(21) and (24)

N
(κ)
cl (p) ≈ 1 − z

2
pD2

κ−1(p) + z

12
D′′

κ−1(p)p3δ3
κ , (28)

Sκ (p) ≈ zpD2
κ−1(p)δκ . (29)

Thus at concentration pκ defined through the equation

pκD
′
κ−1(pκ ) =

z−1∑
m=κ−1

(
z − 1

m

)
mpm

κ (1 − pκ )z−1−m = 1,

(30)

the phase transition into the percolating phase takes place. As
pD′

κ−1(p) > pD′
κ (p) it follows from (30) that

pκ+1 > pκ.
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Near pκ we have from (27)

δκ ≈ A(pκ )(p − pκ ), A(pκ ) > 0.

Hence, at p > pκ the order parameter Sκ ∼ p − pκ and
singular part of the “thermodynamic potential” N

(κ)
cl (p) is

proportional to (p − pκ )3. This means that for all κ the scaling
indexes for the transition coincide with those for the ordinary
percolation on the Bethe lattice:

α = −1, β = 1. (31)

Equation (30) was first obtained in Refs. [7,8] for HD site
percolation on the Bethe lattice so critical concentrations for
HD site and bond percolation on it are the same. This is a
consequence of the strict relation between number of sites and
bonds b of Bethe clusters b = s − 1 and equal numbers of
empty sites and edges in their perimeters. Also p0 = p1 =
p2 = (z − 1)−1 for apparent reasons [7,8].

From (17) we can also obtain the explicit expression for
the size distribution of κ-clusters ν(κ)

s (p) using the Lagrange
inversion formula [19] for the implicitly defined expansion:

G̃k(u(ζ,p,κ),p) =
∑
s=0

ν
(k)
s+1(p)ζ s, ζ ≡ eh. (32)

From (15), (17), and (32) we get for s > 1

ν(κ)
s (p) = ps−1

(s − 1)!
∂s−2
u

[
Ds−1

κ−1(u)∂uG̃κ (u,p)
]∣∣

u=uκ (p)

= z
ps−1

s!
∂s−2
u Ds

κ−1(u)
∣∣
u=uκ (p), (33)

while from (15) and (17) we get

ν
(κ)
1 (p) = 1 + z

∫ uκ (p)

p

dxDκ−1(x)

=
κ−1∑
m=0

(
z

m

)
pm(1 − p)z−m

+
z∑

m=κ

(
z

m

)
um

κ (p)(1 − p)z−m. (34)

Using the integral representation of Eq. (33)

ν(κ)
s (p) = z

s(s − 1)

∮
|u−uκ (p)|=1

du

2πi

[
pDκ−1(u)

u − uκ (p)

]s−1

Dκ−1(u)

(35)

and the method of steepest descent we get the large s asymp-
totic

ν(κ)
s (p) ∼ s−5/2 exp −hκ (p)s, hκ (p) = ln

u∗ − uκ (p)

pDκ−1(u∗)
,

where u∗ is the solution to the equation

Dκ−1(u∗) = D′
κ−1(u∗)[u∗ − uκ (p)]. (36)

For p = pκ we get from (22), (30), and (36) u∗ = pκ ,
hκ (p) = 0 and

∂phκ (p)|p=pκ
= ∂p ln

pκ − uκ (p)

p

∣∣∣∣
p=pκ

= pκD
′
κ−1(pκ ) − 1

pκDκ−1(pκ )
= 0.

Hence, for p close to pκ , hκ (p) ∼ (p − pκ )2 so

χκ (p) =
∑

s

s2ν(κ)
s (p) ∼ |p − pκ |−1.

Thus the critical index γ = 1 in accordance with scaling
relation α + 2β + γ = 2; see (31).

When Dκ−1(u) (14) has a simple form we get simple
expressions for ν(κ)

s (p) for s > 1 from Eq. (33):

ν(0,1)
s (p) = z

ps−1(1 − p)t

st

(
s(z − 1)
s − 1

)
,

ν(2)
s (p) = z

s
ps−1(1 − p)t

s∑
n=0

(
s

n

)(
(s − n)(z − 1)

s − 1

)
(−1)n

× [1 + p(1 − p)z−2]
t−n(z−1)

t − n(z − 1)
,

ν(z−1)
s (p) = z

s
ps−1

s∑
n=0

(
s

n

)(
(s − n)(z − 1)

s − 1

)

× [(z − 1)(1 − p)]n

t − n(z − 1)
ut−n

z−1,

uz−1 = p − pz − (z − 1)(1 − p)pz−1,

ν(z)
s (p) = z

ps−1(p − pz)t

st

(
s(z − 1)
s − 1

)
.

Here t = (z − 2)s + 2 is the perimeter of an s-site cluster
(the number of empty edges surrounding it [20]). ν(0,1)

s (p) co-
incides with that of classical bond percolation [19] as expected.

In the limit of infinite coordination number z → ∞ and
pz → c the ensemble of percolation patterns on the Bethe
lattice becomes equivalent to a random Erdos-Renyi (ER)
graph [15–17]. Introducing a new variable v = zu we find in
this limit

Dκ−1(v) = e−c

∞∑
m=κ−1

vm

m!
, (37)

and from (15)–(17) we have

e−hGk(eh,p) = G̃k(v,p)|v=v(eh,p,κ),

G̃k(v,p) = 1 + 1

2

{
[vk(p) − v]Dk−1(v)

+ 2
∫ v

c

dxDk−1(x)

}
, (38)

where vκ (p) = ce−c
∑κ−2

m=0
vm

m! and v = v(eh,p,κ) is the solu-
tion to the equation

v = vκ (p) + ehcDκ−1(v), (39)

which obeys the condition c|eh∂vDκ−1(v)| < 1.
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These equations describe the infinite series of κ-cluster
percolation transitions on the ER graph, which take place at
critical connectivities cκ defined by the equation

cκD
′
κ−1(cκ ) = e−cκ

∞∑
m=κ−2

cm+1
κ

m!
= 1. (40)

In (39) and (40), 1
m! is the relic of combinatorial coefficients

assumed to be zero at negative m so c0 = c1 = c2 = 1 as
expected for the ER graph [15–17].

As before, one can easily confirm the validity of mean-
field indexes (31) for these transitions and get expression for
κ-clusters’ size distribution for s > 1:

ν(κ)
s (p) = cs−1

s!
∂s−2
v Ds

κ−1(v)
∣∣
v=vκ (p). (41)

For κ = 1 Eq. (41) gives the classical result [15–17]

ν(1)
s (p) = ss−2

s!
cs−1e−cs ,

and for κ = 2 we have

ν(2)
s (p) = cs−1e−cs

s!

s∑
n=0

(
s

n

)
(−1)s−nns−2ececn.

For larger κ the expressions are more cumbersome yet
Eq. (41) can potentially give any number of exact relations
for the ER graph. Therefore, the results obtained here certify
that the present approach is useful and adequate.

IV. DISCUSSION

We can consider the present results as a Bethe-Peierls
approximation for Euclidean lattices with coordination number
z. For z � 1 (say, for a body-centered cubic lattice with z = 8)
it can be quite adequate for all p except for a close vicinity of
pκ . To extend the region of its validity one can turn to the cluster
variants of this approximation [21] in which the points of the
Bethe lattice are changed into unit cells of a corresponding
Euclidean lattice or even into the group of them. For the critical
region, the real space renormalization group for Hκ in Eq. (3)
can be used to obtain the approximate values of critical indexes.

The present approach can also be useful for numerical
studies of HD bond percolation on real lattices. Thus, for a
rough estimate of clusters’ size generation function the plain
Metropolis Monte Carlo simulations can be used to obtain
Zκ (h,p,q) for q = 2, 3, 4 and interpolate it to q = 1. To get
more precise results one should extend the expression (3) for
Zκ (h,p,q) to real q. This can be done, for example, within the
transfer matrix representation of Zκ (h,p,q). This procedure
is developed for 2D Potts models in Refs. [22,23] and its
application to the present model on a 2D lattice is described in
the Appendix.

To conclude, we present here the statistical mechanics
approach to HD bond percolation which is able to give the
exact results for the Bethe lattice, ER graph and, probably, other
hierarchical lattices. It paves the way to many analytical and
numerical methods for the studies of series of HD percolation
transitions in the classical random bond environment on an
arbitrary graph.
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APPENDIX

Here we consider the numerical procedure for description
of HD percolation on 2D lattices. For an N-column sample
of 2D lattices with periodic boundary conditions the partition
function is expressed via the transfer matrix as

Zk(h,p,q) = Tr[T(κ)]N.

To be specific, we consider the L-leg strip of a square lattice.
For it, we can choose the following form of the transfer matrix:

T
(κ)
σ,σ ′(nh,k,n′

h,k′) = V (κ)
σ (k,nh,n′

h)H (κ)
σ,σ ′(n′

h,k,k′),

V (κ)
σ (k,nh,n′

h) =
∑

nv

L−1∏
i=1

ρ(nv,i)g
(κ)
σi ,σi+1

(nv,i ,ki,ki+1)

×
L∏

i=1

δ(ki,nh,i + n′
h,i + nv,i + nv,i−1),

H
(κ)
σ,σ ′ (n′

h,k,k′) =
L∏

i=1

ρ(n′
h,i)g

(κ)
σi ,σ ′

i
(n′

h,i ,ki,k
′
i)e

hσ ′ .

Here ki = {0,1, . . . ,4} is the coordination number of the ith
site in the column, the same is k′

i for the adjacent right column,
nv,i is the 〈i,i + 1〉 vertical edge variable in the column, and
nh,i and n′

h,i are the horizontal edge variables for the edges
joining the ith site in the column from the left and from the
right correspondingly.

The specific dependence of this transfer matrix on Potts
variables, cf. Eqs. (1) and (2), implies the limited number
of distinct components in its (right) eigenvectors vσ (k,n) the
same as in the ordinary q-state 2D Potts model. The distinct
components are characterized by the presence of sequences
of equal σi and the distribution of zeroes among them. The
scheme of numbering of distinct components is developed in
the context of the 2D Potts model [22] and it is described in
detail in Ref. [23]. Thus, eigenvectors vσ (k,n) can be expressed
as

vσ (k,n) =
dL∑

α=1

Rσ,αfα(k,n),

where the number of distinct components dL depends on L only
[22,23]. Applying the transformation to such “connectivity”
basis, we get the equivalent transfer matrix

T
(κ)
α,α′ (nh,k,n′

h,k′) = (R−1)α,σ T
(κ)
σ,σ ′(nh,k,n′

h,k′)Rσ ′,α′ ,

elements of which depend on q explicitly [22,23] (as well as
on ζ ≡ eh and p). According to Eq. (5), at small ζ and q close
to 1 the largest eigenvalue of T

(κ)
α,α′ (nh,k,n′

h,k′) is

λmax = 1 + (q − 1)Gκ (ζ,p).

Hence, we can get κ-clusters’ size generating function
Gκ (ζ,p) for the infinite strips of square lattices acting by
T

(κ)
α,α′ (nh,k,n′

h,k′) iteratively on an arbitrary vector.
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This scheme involves the operations with rather large ma-
trices as dL ∼ 5L [22] and indexes nh,k provide also the factor
2L × 5L to matrix dimensions. However, T

(κ)
α,α′ (nh,k,n′

h,k′)
can be factorized into series of sparse matrices [22,23]
making the procedure amenable for computer calculations.
Therefore, it may need less computer time compared to

the direct enumeration of κ-clusters on long strips in a
number of bond configurations, the more so as we get in
this scheme Gκ (ζ,p) for infinite strips. Having Gκ (ζ,p)
for several L one can get critical concentrations and crit-
ical indexes of infinite square lattices from the finite-size
scaling [24].
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