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Phase diagram and re-entrant fermionic entanglement in a hybrid Ising-Hubbard ladder
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The degree of fermionic entanglement is examined in an exactly solvable Ising-Hubbard ladder, which involves
interacting electrons on the ladder’s rungs described by Hubbard dimers at half-filling on each rung, accounting for
intrarung hopping and Coulomb terms. The coupling between neighboring Hubbard dimers is assumed to have an
Ising-like nature. The ground-state phase diagram consists of four distinct regions corresponding to the saturated
paramagnetic, the classical antiferromagnetic, the quantum antiferromagnetic, and the mixed classical-quantum
phase. We have exactly computed the fermionic concurrence, which measures the degree of quantum entanglement
between the pair of electrons on the ladder rungs. The effects of the hopping amplitude, the Coulomb term,
temperature, and magnetic fields on the fermionic entanglement are explored in detail. It is shown that the
fermionic concurrence displays a re-entrant behavior when quantum entanglement is being generated at moderate
temperatures above the classical saturated paramagnetic ground state.
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I. INTRODUCTION

Low-dimensional quantum spin chains have been exten-
sively explored in the context of quantum information pro-
cessing due to the possibility of creation and distribution of
quantum entanglement between specific spin units acting as
qubits [1–13]. The degree of entanglement can also be tuned
by a local magnetic field, thus allowing a fine control of
intrinsic quantum correlations. Many magnetic compounds
have their relevant magnetic interactions along spin chains and
ladders, the latter ones are, for instance, realized in a large
family of copper oxide superconducting ceramics [14–18]. In
addition, analogical structures can also be realized in arrays of
coupled cavity-QED and NMR systems [19–22]. Very recently,
progress has been made towards the experimental extraction
of entanglement witnesses using ultracold atoms trapped in
optical lattices [23,24].

Theoretical studies of quantum entanglement in low-
dimensional spin chains are traditionally focused on systems
composed of localized spins interacting through an antiferro-
magnetic Heisenberg-like exchange coupling [1,25–32]. In this
case, the unsaturated nature of the sublattice magnetization of
the antiferromagnetic ground state results in a very localized
and relatively low degree of quantum entanglement between
neighboring spins, especially for isotropic Heisenberg cou-
plings [33–35]. Besides, thermal fluctuations and the action
of an external magnetic field have been shown to degrade
the bipartite entanglement, which may occasionally display
re-entrant features [1].

The degree of quantum entanglement has also been inves-
tigated in hybrid spin models assuming both classical Ising as
well as quantum Heisenberg exchange interactions [36–50].
The intercalation of Ising and Heisenberg couplings in spin
chains is motivated by two main features. First, most of
these models become exactly solvable, and they thus offer

a deeper understanding of the role of thermal fluctuations
and external magnetic field on the quantum entanglement
between neighboring spins. Second, the absence of quantum
correlations between spins separated by classical Ising cou-
plings leads to a pronounced enhancement of the quantum
entanglement between the Heisenberg-coupled spin pair in
comparison with the one achieved in pure Heisenberg chains.
From this perspective, hybrid classical-quantum spin models
afford an interesting class of physical systems, which exhibit a
high degree of quantum entanglement surviving over a wider
range of temperatures and magnetic fields. To date, exact solu-
tions have been found for several model geometries including
alternating Ising-Heisenberg chains, diamond chains, ladders,
and tubes [36–50].

Recently, a new class of hybrid quantum spin models being
composed of localized Ising spins intercalated by mobile
electrons was introduced [51,52]. A hybrid model of this type
was first introduced for a diamond chain and demonstrated
to display several unconventional features, such as a rich
phase diagram, magnetization plateaus, multipeaked specific
heat curves [51], as well as a pronounced magnetocaloric
effect [52]. The fermionic quantum entanglement between
a pair of intercalating electrons has also been explored in
several variants of such a hybrid diamond chain [44,53–55].
In addition, we have also proposed a hybrid spin-electron
ladder, which captures some features present in a family of
superconducting cuprates [56].

Motivated by the recent experimental advances on the quan-
tification of quantum entanglement in Bose-Hubbard chains
[24], we will introduce a new solvable Ising-Hubbard ladder
on which the degree of quantum entanglement on the ladder
rungs can be analytically computed. Each ladder rung will
be composed of the Hubbard dimer containing two mobile
electrons, which may undergo a quantum-mechanical hopping
process between the dimer sites and will be subject to an
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FIG. 1. A schematic of the Ising-Hubbard ladder. The ladder
rungs are composed of Hubbard dimers at half-filling on each rung,
which contain two mobile electrons per dimer being subject to the
hopping term t and the on-site Coulomb term U . The inter-rung
coupling J has an Ising-like nature.

on-site Coulomb term. The neighboring rungs will be coupled
together through an Ising-like exchange coupling. We will
report the exact ground-state phase diagram of the present
model. The fermionic concurrence between the electrons
localized in a given rung will be examined as a function of
temperature and magnetic field. Particularly, we will show
that thermal fluctuations can induce a quantum entanglement
above a classical ground state. We will also provide a detailed
analysis of the influence of hopping term, Coulomb term,
temperature, and magnetic field on the degree of fermionic
entanglement.

II. THE ISING-HUBBARD LADDER AND
GROUND-STATE PHASE DIAGRAM

Let us consider a hybrid Ising-Hubbard ladder at half-filling
on each rung (see Fig. 1). Each ladder rung is composed
of a Hubbard dimer containing two mobile electrons, which
undergo a quantum-mechanical hopping process between two
sites of a specific dimer characterized by the hopping ampli-
tude t . In this sense, the electrons become strictly localized
when they possess the same spin state due to the validity
of Pauli’s exclusion principle. The electrons with opposite
spins can eventually occupy the same site of a dimer and,
in this case, they experience an on-site Coulomb interaction.
Both cases of repulsive and attractive Coulomb interactions
will be considered hereafter. Although most of the physi-
cal systems are being subject to a repulsive Coulomb term
U > 0 due to the repulsive character of the electron-electron
interaction, there may eventually appear an effective attractive
Coulomb term U < 0 as a result of underlying interactions of
the electrons with molecular vibrations or excited electronic
states favoring electron-electron pairing in superconductors
[57,58]. The interaction between the electrons from neigh-
boring rungs is taken into account by an Ising-like exchange
coupling J . The introduced model thus retains a quantum-
mechanical interaction between two electrons from the same
rung, whereas the interaction between electrons from neigh-
boring rungs is treated classically through an Ising exchange
coupling.

It is important to stress some relevant aspects of the
presently introduced model. First, the Ising-like inter-rung
coupling impairs a quantum entanglement between electrons
from distinct rungs, at least, for magnetic fields applied along
the Ising (easy) axis. Therefore, the present model can only

generate quantum entanglement between electrons from the
same rung. The transfer of the entangled quantum state along
the chain would require some degree of inter-rung coupling
between the transversal components of the spins. Despite
that, it has been demonstrated that mixed Ising-Heisenberg
spin ladders can accurately capture the ground-state properties
of fully quantum Heisenberg ladders in the regime of weak
inter-rung coupling [39,47] where the ground state is composed
of rung singlets [59,60]. In this sense, the build up of intrarung
entanglement can be fairly analyzed considering an Ising-like
inter-rung coupling. In order to describe the dynamics of
this quantum entanglement transfer, some transverse coupling
would be in order. Even though quantum entanglement in
the ground-state would remain strongly localized [33–35].
For example, it just appears between first neighbor spins in
the ground state of an isotropic antiferromagnetic Heisenberg
chain [33,34]. The study of quantum-state transfer dynamics
is out of the scope of the present paper and will be left for a
future contribution. As a final remark, we would like to state
that, although we are not deriving the introduced model from a
more fundamental microscopic model, such as a fully quantum
many-body Hubbard model, several magnetic compounds have
the Ising-like character of their exchange couplings due to
an underlying zero-field splitting leading to a strong Ising
anisotropy [61,62].

The Hamiltonian of the hybrid Ising-Hubbard ladder we are
introducing has the form

H =
N∑

i=1

⎧⎨
⎩J

2∑
�,�

′=1

Sz
�,iS

z

�
′
,i+1

+ t
∑

γ=↑,↓
(c†1,i,γ c2,i,γ + H.c.)

+U

2∑
�=1

(n�,i,↑n�,i,↓) − H

2∑
�=1

Sz
�,i

}
, (1)

where c
†
�,i,γ and c�,i,γ are fermionic creation and annihilation

operators for an electron with the spin γ =↑ , ↓ and n�,i,γ =
c
†
�,i,γ c�,i,γ is the respective number operator.Sz

�,i stands for the z

component of the total spin operator at the dimer site � = 1,2
of the ith rung, which takes the value of Sz

�,i = 0 when the
site is empty or contains two electrons with opposite spins,
otherwise, it takes the values of Sz

�,i = ±1. The parameter J

denotes the Ising-like exchange coupling between the electrons
from neighboring rungs, whereas we will further focus on the
most interesting case of an antiferromagnetic coupling J > 0.
The other parameters have the following physical meaning: t is
the intrarung hopping amplitude, U is the Coulomb term [U >

0 (U < 0) stands for repulsive (attractive) electron-electron
interaction], and H is an external magnetic field applied along
the z direction.

The Hamiltonian (1) can be exactly diagonalized due to
the Ising-like nature of the inter-rung coupling J and the
magnetic field H coupled to the z component of spin. We start
by diagonalizing the Hubbard-like Hamiltonian of an isolated
rung, which can be put in the local state basis spanned over six
available electronic configurations of a single Hubbard dimer
{|↑↓; 0〉,|0; ↑↓〉,|↑; ↓〉,|↓; ↑〉,|↑; ↑〉,|↓; ↓〉} into the following
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matrix form:

H0
i =

⎛
⎜⎜⎜⎜⎜⎝

U 0 t t 0 0
0 U t t 0 0
t t 0 0 0 0
t t 0 0 0 0
0 0 0 0 −2H 0
0 0 0 0 0 2H

⎞
⎟⎟⎟⎟⎟⎠. (2)

The eigenvalues of the dimer Hamiltonian (2) can be obtained
by a straightforward diagonalization procedure,

λ1 = U + √
�

2
,

λ2 = U − √
�

2
,

λ3 = U,

λ4 = 0,

λ5 = −2H,

λ6 = 2H,

whereas the respective eigenvectors are given by

|λ1〉 = 2t√
� − U

√
�

[|↑↓; 0〉 + |0; ↑↓〉 − α1|↑; ↓〉

−α1|↓; ↑〉],
|λ2〉 = 2t√

� + U
√

�
[|↑↓; 0〉 + |0; ↑↓〉 − α2|↑; ↓〉

−α2|↓; ↑〉],
|λ3〉 = 1√

2
[|↑↓; 0〉 − |0; ↑↓〉],

|λ4〉 = 1√
2

[|↑; ↓〉 − |↓; ↑〉],

|λ5〉 = |↑; ↑〉,
|λ6〉 = |↓; ↓〉,

where

� = U 2 + 16t2,

α1 = U − √
�

4t
,

α2 = U + √
�

4t
.

With all dimer eigenvalues and eigenstates at hand, one can
readily find all possible ground states of the Ising-Hubbard
ladder. Among the ladder’s states with antiparallel spins, |λ2〉
has the lowest energy for all finite values of the Hubbard
coupling and hopping amplitude. This rung state has no net
spin along the z direction to interact with the neighboring
rungs via the Ising exchange coupling or to couple with the
external field. States |λ5〉 and |λ6〉 have a net spin. Therefore,
the possible ground states will be composed of combinations
of |λ2〉, |λ5〉, and |λ6〉 on the ladder rungs that minimize the
total energy in distinct regions of the parameters. Following
this prescription, one can identify four possible ground states.
The fully saturated paramagnetic state with the energy per rung

EP = −2H + 4J is given by the eigenvector with all cells in
the classical ferromagnetic dimer state |λ5〉,

|P 〉 =
N∏

i=1

|λ5〉i . (3)

The second possible ground state is the classical antiferro-
magnetic state with an energy per rung EAF = −4J , which is
composed of a regular alternation of fully polarized rungs |λ5〉
and |λ6〉,

|AF〉 =
N/2∏
i=1

|λ5〉2i−1 ⊗ |λ6〉2i . (4)

The two phases |P 〉 and |AF 〉 have a classical character with
no quantum correlation between the electron states. The third
ground state is fully quantum with energy per rung EQ = (U −√

�)/2 and all rungs in the dimer state |λ2〉,

|Q〉 =
N∏

i=1

|λ2〉i . (5)

This state cannot be written as a direct product of individual
states of two mobile electrons on the same rung, which unveils
the presence of quantum correlations between them. The fourth
ground state with an energy per rung EP,Q = −H + (U −√

�)/4 has a mixed classical-quantum character because it
involves a regular alternation of the classical ferromagnetic
dimer state |λ5〉 with the quantum antiferromagnetic dimer
state |λ2〉,

|PQ〉 =
N/2∏
i=1

|λ5〉2i−1 ⊗ |λ2〉2i . (6)

The full ground-state phase diagram can be obtained by
searching for the lowest-energy state among the four aforemen-
tioned eigenstates. All phase boundaries can be analytically
obtained from a comparison of the corresponding eigenen-
ergies. In Fig. 2 we plot a set of phase diagrams on the
t/J -H/J plane for a few representative values of the Coulomb
term. In the absence of Coulomb interaction U = 0 all phase
boundaries are straight linear lines as shown in Fig. 2(a). At
sufficiently low fields, the system undergoes a discontinuous
phase transition between the classical antiferromagnetic state
AF and the quantum dimer state Q at t/J = 2. These two
ground states are replaced with the mixed classical-quantum
phase PQ at moderate magnetic fields. Finally, the classical
saturated paramagnetic phase P appears at strong enough
magnetic fields.

The repulsive Coulomb term U > 0 leads to a suppression
of the parameter regions corresponding to both quantum
ground states Q and PQ [see Fig. 2(b)]. The phase boundary
between the classical antiferromagnetic state AF and the
quantum dimer state Q is, for instance, displaced to larger
values of the hopping amplitude t/J = √

U/J + 4. Similarly,
the phase boundaries between the classical ground states (P
and AF ) and the mixed classical-quantum phase PQ become
nonlinear (curved), which results in a reduction of the field
range corresponding to the mixed classical-quantum phase
PQ.
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FIG. 2. The ground-state phase diagrams on the t/J -H/J plane
for four distinct values of the Coulomb term. The four possible
ground states are as follows: the saturated paramagnetic P , the
classical antiferromagnetic AF , the fully quantum Q, and the mixed
classical-quantum PQ ground state.

For an attractive Coulomb term U < 0 there exist two dis-
tinct regimes. For weakly attractive electron-electron coupling
|U | < 4J , the ground-state phase diagram still involves all four
available ground states [see Fig. 2(c)], whereas the classical
antiferromagnetic phase AF is substantially suppressed. The
range of magnetic fields corresponding to the mixed classical-
quantum phase PQ emergent in between the classical phases
AF and P generally increases, whereas it remains finite even
if the hopping term vanishes t → 0. In the strongly attractive
regime of the Coulomb interaction |U | > 4J , the classical
AF phase is fully suppressed, and the system undergoes a
sequence of field-induced phase transitions Q → PQ → P

upon strengthening of the magnetic field regardless of the
hopping amplitude [see Fig. 2(d) for an illustration].

III. FERMIONIC QUANTUM ENTANGLEMENT ON THE
LADDER RUNGS

Nonseparable physical states imply the presence of intrinsic
quantum correlations. This is the case of the dimer eigenstates
|λi〉 (i = 1–4). Several quantities have been introduced in
the literature to quantify quantum entanglement, the most
natural of them is being von Neumann entropy (also called
entropy of formation) [63]. For pure states |�〉 of a two-parties
(AB) system, the degree of quantum entanglement can be
directly computed by performing the partial trace of the density
matrix ρ = |�〉〈�| over the states of one of the parties.
From the reduced density matrix ρA = TrBρ, the intrinsic
quantum entanglement between the parties can be quantified
by computing the entropy of formation S = −∑

j pj ln pj ,
where pj ’s are the eigenvalues of the reduced density matrix.
Note that S = 0 when the state of the parties is a nonentangled
direct product of each party state. On the other hand it becomes
S = ln n for the maximal entanglement of n states.

After performing the partial trace over the states of the dimer
sites it can be directly seen that the resulting density matrix
for states |λ3〉 and |λ4〉 is an even mixture of two states and

S = ln 2. On the other hand, states |λ1〉 and |λ2〉 produce a
partial density matrix composed on an uneven mixture of four
states. A straightforward calculation provides for these states
the entropy of formation,

S = 2

2 + 2α2
2

[
ln

(
2 + 2α2

2

) + α2
2 ln

2 + 2α2
2

α2
2

]
, (7)

where α2 is the state coefficient defined in the previous
section. It reaches a maximal value of S = ln 4 for U = 0,
corresponding to the even mixtures of all four state components
with antiparallel spin orientation of the dimer electrons. The
minimal value of S = ln 2 occurs at |U | → ∞ on which the
state has the electrons in the same or in distinct sites for strongly
attractive or repulsive U , respectively.

At finite temperatures, the dimer state will become a
statistical mixture of all possible dimer eigenstates. In this
case, there is no simple measure of quantum entanglement
of a general bipartite system except for the case in which each
party expands a two-dimensional space vector, i.e., for two
entangled qubits. In this case, the entanglement of formation
is the minimum average entanglement of an ensemble of
pure states that represents the density matrix ρ [64,65]. A
closely related quantifier is the quantum concurrence that is a
monotonic function of the entropy of formation. The quantum
concurrence can be directly extracted from the density matrix
of the two qubits. Because the entanglement of formation is
a monotonous function of the concurrence, one may directly
use the concurrence as a measure of quantum entanglement
ranging from 0 (no entanglement) up to 1 (maximum entan-
glement).

In the present model, each dimer site spans a four-
dimensional vector state space with base vectors |0〉, |↑〉, |↓〉,
and |↑↓〉. As such, there is no general prescription to fully
evaluate the degree of entanglement within a dimer when it is in
a thermal statistical mixture of states. An alternative approach
is to evaluate the degree of quantum entanglement in specific
sectors of the state vector space [66–68]. For example, the
charge degrees of freedom within each dimer site with a fixed
spin orientation spans a two-dimensional Hilbert space with
basis vectors |0〉 and |↑〉. In this sector of the Hilbert space, the
dimer behaves effectively as two qubits. Here, we will follow
a prescription previously introduced to compute the fermionic
concurrence of Hubbard dimers in this sector which captures
the intrinsic quantum correlations associated with the charge
degrees of freedom [44,66,67]. However, it is important to have
in mind that the charge correlations represent only a fraction of
the actual quantum entanglement between the two parties. In
this subspace, the density matrix written in the basis composed
of the dimer states |0,0〉, |0,↑〉, |↑,0〉, and |↑,↑〉 can be put in
the form

ρ1,2 =

⎛
⎜⎝

a 0 0 0
0 x z 0
0 z∗ y 0
0 0 0 b

⎞
⎟⎠, (8)

where the elements represent the expectation values of distinct
correlations between the two sites,

b = 〈n1,↑,n2,↑〉,
x = 〈n1,↑〉 − 〈n1,↑,n2,↑〉,

052115-4



PHASE DIAGRAM AND RE-ENTRANT FERMIONIC … PHYSICAL REVIEW E 97, 052115 (2018)

y = 〈n2,↑〉 − 〈n1,↑,n2,↑〉,
a = 〈(1 − n1,↑)(1 − n2,↑)〉,
z = z∗ = 〈c†1,↑,c2,↑〉. (9)

The concurrence is defined in terms of the spectra of the matrix
ρ1,2ρ̄1,2 [65], where ρ̄1,2 = σ

y

1 ⊗ σ
y

2 ρ∗
1,2σ

y

1 ⊗ σ
y

2 with σ
y

i as a
standard Pauli matrix. Being 
i the eigenvalues of ρ1,2ρ̄1,2, the
quantum concurrence is simply given by C = max[0,

√

1 −√


2 − √

3 − √


4] with 
1 being the largest eigenvalue
[65]. The resulting expression for such fermionic concurrence
can be written as

C = 2 max{0,|〈c†1,↑c2,↑〉|
−√〈n1,↑n2,↑〉(1 − 2〈n1,↑〉 + 〈n1,↑n2,↑〉)}. (10)

The fermionic concurrence in the up spin subspace is null
in the nonseparable eigenstates |λ3〉 and |λ4〉. This feature
reflects that fact that it only captures a fraction of the underlying
quantum correlations. However, the fermionic concurrence be-
comes nonzero in the other two dimer eigenstates |λ1〉 and |λ2〉
for which it acquires the nonzero value C = 1/

√
1 + (U/4t)2.

In Fig. 3 we compare the entropy of formation and the above
fermionic concurrence for the pure entangled state |λ2〉 as
a function of the ratio U/t . Both quantities are maximal at
U = 0 for which the dimer state is an even superposition of all
its four possible states with antiparallel spins. The minimal
entanglement of these states takes place in the regime of
|U | → ∞ at which two state components are suppressed. This
trend is captured by both entanglement quantifiers, although
the fermionic concurrence vanishes in this limit because it
does not retain information concerning the remaining quantum
correlation between the spin degrees of freedom. Considering
that the fermionic concurrence can be also computed for the

FIG. 3. The entropy of formation S and fermionic concurrence C
as a function of U/t for the dimer eigenstate |λ2〉. Both entanglement
measures have similar trends being maximal at U = 0 and decaying
as |U | increases. Note that the fermionic concurrence vanishes
when |U | → ∞ whereas the entropy of formation remains finite.
This behavior signals that the asymptotic state presents quantum
correlations in other degrees of freedom besides the charge ones
probed by C.

statistically mixed states appearing at finite temperatures, we
will discuss its main features under the light of the ground-state
phase diagram and the influence of thermal excitations on it.

Accordingly, the two classical ground-states P and AF

have C = 0 at zero temperature. The quantum dimer phase Q

has the same fermionic quantum concurrence as the eigenstate
|λ2〉, whereas the averaged fermionic concurrence of the mixed
classical-quantum ground-state PQ has half of this value.
Bearing this in mind, the fermionic quantum concurrence
exhibits a discontinuous jump at all phase boundaries. In Fig. 4
we illustrate the dependence of the fermionic concurrence on
the hopping amplitude in the low-field and intermediate-field
regimes for the same representative values of the Coulomb
interaction as previously used in the ground-state phase dia-
grams. In the low-field regime [Fig. 4(a)] the system exhibits a
direct field-induced transition from the classical antiferromag-
netic phase AF to the quantum antiferromagnetic phase Q.
Notice that maximal fermionic entanglementC = 1 is achieved
in the quantum dimer phase Q when the Coulomb term is
absent U = 0 or, equivalently, in the limit of t/J → ∞. Note
furthermore that the quantum dimer phase Q becomes the
only possible ground state at low enough magnetic fields for
strong attractive Coulomb terms U/J < −4. In the regime of

FIG. 4. The zero-temperature fermionic concurrence at the dimer
rungs as a function of the normalized hopping amplitude t/J for
two representative values of the magnetic field and four distinct
values of the Coulomb term U/J . The discontinuous jumps signal
the field-driven phase transitions. A full entanglement is achieved in
the quantum antiferromagnetic phase Q in the limit t/|U | → ∞.
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intermediate magnetic fields [Fig. 4(b)], the two discontinuous
jumps in the fermionic concurrence signal the field-driven
phase transitions AF → PQ and PQ → Q, respectively. The
complete suppression of the classical antiferromagnetic phase
AF for strongly attractive Coulomb interactions either leads
to a single discontinuous jump in the fermionic concurrence
closely connected with the field-driven phase transitionPQ →
Q [see the curve U/J = −2 in Fig. 4(b)] or to a monotonous
rise of the fermionic concurrence within the quantum dimer
ground state Q [see the curve U/J = −10 in Fig. 4(b)].

In order to investigate how thermal fluctuations affect the
fermionic concurrence on the present Ising-Hubbard ladder,
we have computed the partition function using the standard
transfer-matrix formalism. The partition function can be writ-
ten as Z = Tr 
N , where 
 = e−βHi,i+1 with Hi,i+1 being the
symmetrized cell Hamiltonian connecting the ladder rungs i

and i + 1 and β = 1/kBT . In the basis of the dimer eigenstates,
the elements of the transfer matrix are given by

〈λi |
|λj 〉 = e−β[JSz
i S

z
j +(Ei+Ej )/2], (11)

where Sz
i is the z component of the total spin of the ith dimer

eigenstate. The full transfer matrix has the following explicit
form:


 =

⎛
⎜⎜⎜⎜⎜⎝

x2r−2 x2 x3r−1 xr−1 xzr−1 xz−1r−1

x2 x2r2 x3r xr xzr xrz−1

x3r−1 x3r x4 x2 x2z x2z−1

xr−1 xr x2 1 z z−1

xzr−1 xzr x2z z yz2 y−1

xz−1r−1 xrz−1 x2z−1 z−1 y−1 yz−2

⎞
⎟⎟⎟⎟⎟⎠,

(12)

where

x = e−βU/4, (13)

r = eβ
√

�/4, (14)

z = eβH , (15)

y = e−4βJ . (16)

The above transfer matrix can be diagonalized with a high
numerical accuracy in order to get the partition function Z =
Tr λN = λN , which is expressed in terms of the largest eigen-
value λ of the transfer-matrix (12). Alternatively, the eigen-
values and eigenvectors can be obtained from the algebraic
solution of a fourth order polynomial equation after noting that
the above transfer matrix has two null eigenvalues. However,
the resulting expressions are quite cumbersome and do not
unveil any relevant aspect of the system’s thermodynamics. All
thermodynamic averages can be directly computed from the
knowledge of the transfer-matrix eigenvalues and eigenvectors.
In the following, we will focus in the resulting temperature
dependence of the fermionic concurrence.

In Fig. 5 we plot the fermionic concurrence as a function
of temperature for the particular case without the Coulomb
interaction [Fig. 5(a)] and the particular case with a strong
repulsive Coulomb interaction [Fig. 5(b)]. Four distinct sets
of physical parameters were used to probe all possible ground
states. Similar trends are obtained in both noninteracting and

FIG. 5. Temperature dependence of the fermionic concurrence
for a few representative values of the magnetic field, the hopping
amplitude, and two selected values of the Coulomb term: (a) U/J =
0; (b) U/J = 10. Thermal fluctuations may induce emergence of
fermionic concurrence above the classical saturated paramagnetic
phase P but not above the classical antiferromagnetic phase AF .

strongly repulsive cases. Whenever the ground state has a
finite fermionic entanglement (PQ and Q phases), thermal
fluctuations continuously degrade the quantum correlations
until the fermionic concurrence finally vanishes above a certain
threshold temperature. However, thermal fluctuations play
quite distinct roles above the classical ground states. Although
the fermionic concurrence remains zero for all temperatures
above the classical antiferromagnetic phase AF , some degree
of quantum entanglement can be thermally induced above the
saturated paramagnetic phase P .

The aforedescribed thermally induced entanglement can
also be clearly seen from the field dependence of the fermionic
concurrence shown in Fig. 6 for a few different temperatures.
For illustration, the fermionic concurrence is only plotted for
the special case without the Coulomb interaction, but the
main features remain the same also for finite values of the
Coulomb term. In Fig. 6(a) we have used a set of parameters for
which the classical antiferromagnetic phase AF constitutes the
zero-field ground state. It is noteworthy that the lower threshold
temperature at which the fermionic concurrence starts to
develop is displaced to larger field values as the temperature is
raised from zero. This means that no fermionic entanglement
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FIG. 6. The fermionic concurrence versus the magnetic field
for the particular case with zero Coulomb term U = 0 and two
representative values of the hopping amplitude, which drive the zero-
field ground state of the investigated system either to: (a) the classical
antiferromagnetic phase AF or (b) the quantum antiferromagnetic
phase Q. Both threshold fields shift towards higher values with in-
creasing temperatures, which means that thermal fluctuations induce
the fermionic concurrence above the saturated paramagnetic phase P .

can be generated at finite temperatures above the classical
antiferromagnetic ground state AF . The second threshold
temperature at which the fermionic concurrence returns to zero
is also displaced to larger fields. This result is taken to mean that
thermal fluctuations promote the emergence of fermionic con-
currence above the saturated paramagnetic phase P although
the maximum entanglement that can be produced by tuning
the magnetic field decreases as the temperature increases.

A full understanding of the field and temperature depen-
dences of the fermionic concurrence can be obtained from the
density plots displayed in Fig. 7. At low hopping amplitudes
[see Fig. 7(a)], the low-field ground state is the classical
antiferromagnetic phase AF with zero fermionic concurrence.
The re-entrant behavior of the concurrence is clearly signaled
by the bending of the region with finite concurrence towards
larger fields. For high hopping amplitudes [see Fig. 7(b)],
the low-field ground state is the quantum antiferromagnetic
phase Q with maximal concurrence. In this regime, the
thermally induced entanglement is also reflected by the re-
entrant behavior of the quantum concurrence. It is interesting
to note that the largest temperatures at which some degree of
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FIG. 7. Density plots of the fermionic concurrence on the
kBT /J -H/J plane for the particular case without the Coulomb term
U = 0 and two distinct values of the hopping amplitude leading to
different zero-field ground states. Note the re-entrance of the region
with finite fermionic concurrence. The higher temperatures at which
fermionic entanglement can still be achieved are found for magnetic
fields strong enough to drive the system to the classical saturated
paramagnetic ground state.

quantum fermionic entanglement can be generated are found
at magnetic fields corresponding to the disentangled saturated
paramagnetic phase P at low enough temperatures.

The physical mechanism leading to the re-entrant character
of the fermionic entanglement is the thermal excitation from
a nonentangled ground state to an entangled excited state. In
general, thermal fluctuations degrade quantum entanglement
due to the incoherent coupling with degrees of freedom of
the heat bath. However, when the energy gap between the
nonentangled ground state and an excited entangled state is
small (usually in the vicinity of ground-state phase transitions),
the system populates the entangled state at temperatures that
are not sufficient to degrade its quantum correlations. Under
this condition, quantum entanglement appears at finite tem-
peratures above a nonentangled ground state. A similar trend
also occurs in other quantum spin models as, for example,
in antiferromagnetic Heisenberg chains for magnetic fields
slightly above the saturation value [1].
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IV. SUMMARY AND CONCLUSIONS

To summarize, we have introduced a new exactly solvable
Ising-Hubbard ladder model. The ladder rungs were consid-
ered to be composed of the Hubbard dimers at half-filling
on each rung, which take into account a quantum-mechanical
intrarung hopping process of the mobile electrons as well
as the on-site Coulomb interaction. The interaction between
the electrons from neighboring rungs was assumed to be
Ising-like. The model was exactly solved using the exact
diagonalization and transfer-matrix technique, whereas our
attention was particularly focused on the most interesting
case with the antiferromagnetic Ising coupling. Both cases of
attractive and repulsive Hubbard interactions were considered.

It has been shown that the investigated model exhibits four
possible ground states. Two of them are classical: the saturated
paramagnetic phase P and the classical antiferromagnetic
phase AF . The other two ground states are of quantum nature.
There exists a fully quantum dimer ground-state Q with all
Hubbard dimers in the same quantum entangled state. The
fourth ground-state PQ has a mixed classical-quantum nature
because of a regular alternation of the Hubbard dimers in
the disentangled and entangled states. It has been demon-
strated that the classical antiferromagnetic phase AF is fully
suppressed when the Hubbard interaction becomes strongly
attractive.

The degree of quantum entanglement between the pair of
electrons in a given ladder rung was evaluated by comput-
ing the fermionic concurrence in the subspace of up spins.
It has been convincingly evidenced that the fully quantum
antiferromagnetic phase Q is maximally entangled for the
special case with zero Coulomb term U = 0. The fermionic
concurrence continuously decreases as the Coulomb term |U |
strengthens, whereas it approaches zero in the atomic limit
U → ∞. It has been also shown that thermal fluctuations
generally degrade the degree of quantum entanglement es-
pecially when the ground state is of a quantum nature. The
electrons remain disentangled at any temperature when the
ground state is formed by the classical antiferromagnetic
phase AF . By contrast, thermal fluctuations may induce

a finite degree of quantum entanglement above the classical
saturated paramagnetic state. This striking finding is evidenced
by a re-entrant character of the fermionic concurrence as a
function of temperature when the magnetic field is chosen
slightly above its saturation value. Some degree of quantum
fermionic entanglement can be thus achieved at relatively high
temperatures when a sufficiently strong magnetic field drives
the system towards the classical paramagnetic phase. Under
this condition, quantum information processing schemes can
be implemented at moderated temperatures even when the
system has a factorizable ground state [69].

It is worth emphasizing that the quantum concurrence in a
Bose-Hubbard chain has been experimentally probed between
ultracold atoms trapped in optical lattices through measures
of transverse spin correlations [24]. It is our hope that the
here obtained results are of general validity and provide
insight for more realistic fermionic models. We believe that
the phenomenology reported here will remain valid when the
electron hopping is also allowed between neighboring dimers,
at least, in the regime of weak inter-rung hopping amplitudes
for which the Mott insulator regime is developed. However, the
corresponding strongly correlated itinerant electron model is
not exactly solvable, and numerical calculations based on the
density matrix renormalization group technique [70] or exact
diagonalization of finite chains [68] will be required to address
this question. We hope that the present paper will stimulate
future efforts along this line.
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