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In this paper, the virial series expansion and constant pressure Monte Carlo method are used to study the
longitudinal pressure equation of state for hard spheres in narrow cylindrical pores. We invoke dimensional
reduction and map the model into an effective one-dimensional fluid model with interacting internal degrees of
freedom. The one-dimensional model is extensive. The Euler relation holds, and longitudinal pressure can be
probed with the standard virial series expansion method. Virial coefficients B2 and B3 were obtained analytically,
and numerical quadrature was used for B4. A range of narrow pore widths (2Rp), Rp < (

√
3 + 2)/4 = 0.9330 . . .

(in units of the hard sphere diameter) was used, corresponding to fluids in the important single-file formations.
We have also computed the virial pressure series coefficients B ′

2, B ′
3, and B ′

4 to compare a truncated virial pressure
series equation of state with accurate constant pressure Monte Carlo data. We find very good agreement for a wide
range of pressures for narrow pores. These results contribute toward increasing the rather limited understanding
of virial coefficients and the equation of state of hard sphere fluids in narrow cylindrical pores.
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I. INTRODUCTION

The thermodynamics of fluids in narrow pores and the
crossovers from the one-dimensional limit has been a subject of
long-standing interest [1–13], but much more remains basically
unsolved. In this paper, we use the virial expansion method
to study hard sphere fluid in very narrow cylindrical pores.
Virial expansion has been used extensively to study interacting
fluids [14–19]. For the bulk fluids, many virial coefficients
[14–19] can be evaluated. This is especially true for hard
sphere fluids. Analytical results have been obtained in low
and high dimensions for hard spheres [14–24]. There is also
much interest in applications of virial series expansions to
inhomogeneous fluids with surfaces and walls [25].

The second virial coefficient for hard disks in narrow
hard channels has been computed analytically [9,11,12]. For
homogeneous fluids in very narrow cylindrical pores, much
less is known. There are some numerical results for the second
virial coefficients for hard spheres in cylindrical pores [9]. The
third and fourth virial coefficients of hard spheres in cylindrical
pores are basically unexplored. In this paper we have evaluated
them. Virial coefficients B2 and B3 were obtained analytically,
and numerical quadrature was used for B4. A range of narrow
pore widths (2Rp), Rp < (

√
3 + 2)/4 = 0.9330 . . . (in units

of the hard sphere diameter) was used, corresponding to fluids
in the important single-file formations. They correspond to
three-dimensional single-file fluids with only nearest-neighbor
interactions and are of some interest [26].

We have also computed the virial pressure series coefficients
B ′

2, B ′
3, and B ′

4 to compare a truncated virial pressure series
equation of state with accurate constant pressure Monte Carlo
data. We find very good agreement for a wide range of pressures
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for narrow pores. These results contribute toward increasing
the rather limited understanding of virial coefficients and
equation of state of hard sphere fluids in narrow cylindrical
pores.

In Sec. II, the Euler relation, dimensional reduction, and
method of virial expansion for hard spheres in cylindrical pores
will be discussed. Computational techniques are considered in
Sec. III. The virial expansion equations of state are compared
to accurate Monte Carlo data in Sec. IV, and the paper ends
with some remarks in Sec. V.

II. DIMENSIONAL REDUCTION, EULER RELATION, AND
VIRIAL SERIES EXPANSION

In this section, we will review the dimensional reduction
analysis to show that fluids in narrow cylindrical pores can
be reduced to an effectively one-dimensional fluid model. It
is extensive in the longitudinal length L, and the longitudinal
pressure can be studied with standard virial series expansion
method. We will take the dimensional reduction approach,
related to that used in Ref. [4]; see also Ref. [2].

The hard spheres are in narrow cylindrical pores with the
length of the pore taken to the thermodynamic limit (N,L →
∞). The linear number density is fixed at l−1 = N/L. One
starts by rewriting the partition function:

QN (V,T ) = 1

N !�3N

∫ L

0
dz1 · · ·

∫ L

0
dzN

×
{∫ R̂

0
r1dr1

∫ 2π

0
dθ1 · · ·

∫ R̂

0
rN drN

∫ 2π

0
dθN

× exp[−βU (r1,θ1,z1, . . . ,rN ,θN ,zN )]

}
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= 1

N !�3N

∫ L

0
dz1 · · ·

∫ L

0
dzN × Weff (R̂,z1, . . . ,zN ), (1)

Weff (R̂,z1, . . . ,zN ) =
{∫ R̂

0
r1 dr1

∫ 2π

0
dθ1 · · ·

∫ R̂

0
rN drN

×
∫ 2π

0
dθN exp[−βU (r1,θ1,z1, . . . ,rN ,θN ,zN )]

}
. (2)

R̂ = Rp − 1
2 and � is the thermal de Broglie wavelength.

Lengths are in units of the hard sphere diameter, σhs = 1, and
U is the sum of nearest-neighbor hard sphere potentials. Weff

in general is complicated [4], but we do not need to evaluate it
for our analysis.

For fixed R̂, and constant linear number density l−1 = N/L,
there is only one spatial extensive parameter L. The transverse
lengths are fixed and do not scale with N. Thus, this model
is one-dimensional and extensive in the longitudinal direction,
and the pressure is anisotropic:

QN (V = πR̂2L,T ) = QN (L,R̂,T ) = QN (L,T ). (3)

It then follows from Euler’s theorem that the longitudinal
pressure PL is related to the grand partition function � as

βPL = 1

V
ln � = 1

πR̂2L
ln �, (4)

and β = 1/kBT . For the partition function, one can apply the
Mayer cluster integral expansion method (see Ref. [14]) to
obtain

�(μ,T ,L) = exp

[
πR̂2L

∞∑
k=0

ξkbk(T )

]
, (5)

where bk(T ) are the cluster integrals,

bk(T ) = limL→∞
1

k!πR̂2L

∫
V

d3r1 · · · d3rkUk(r1, . . . ,rN).

(6)

Uk(r1, . . . ,rN) are the Ursell functions defined as the sum
of all connected numbered Mayer graphs of k points [14]. We
have introduced the fugacity ξ in terms of absolute activity
λ = exp(βμ), chemical potential μ, and thermal de Broglie
wavelength �:

ξ = λ

�3
. (7)

This reduces to

βPL =
∞∑

k=0

ξkbk(T ). (8)

.
In the grand ensemble, the average number of particles in

the system is

N = kBT
∂ln�

∂μ

∣∣∣∣
V,T

= λ
∂ln�

∂λ

∣∣∣∣
V,T

= πR̂2L

∞∑
k=0

kξkbk(T ).

(9)

The number density ρ is

ρ = N

πR̂2L
=

∞∑
k=0

kξkbk(T ). (10)

A virial series for the longitudinal pressure βPL in terms of
density ρ can be introduced:

βPL = ρ
(
1 + B

(ρ)
2 ρ + B

(ρ)
3 ρ2 + B

(ρ)
4 ρ3 + · · · ). (11)

To obtain the equation for the virial coefficients B
(ρ)
n , start

by eliminating ρ with Eq. (10). Then equating it to Eq. (8) for
βPL will lead to

B
(ρ)
k+1 = − k

k + 1
βk, (12)

where B
(ρ)
k+1 are the virial coefficients and βk are the irreducible

cluster integrals. For a good reference, see Ref. [14].
This shows that we can apply the standard virial series

expansion method to study the longitudinal pressure PL of
fluids in cylindrical pores. Since the Euler relation does not
hold for the transverse length scale, which is not extensive,
the way to study the transverse pressure is different. It has to
be computed by taking the appropriate derivative of the free
energy and will be considered elsewhere.

Since R̂ is a constant, ρ is related to l−1 as

ρ = N

πR̂2L
= 1

πR̂2

N

L
= 1

πR̂2
l−1. (13)

Now Eq. (11) can be rewritten as a virial expansion for a
one-dimensional system with linear density l−1:

βp = l−1(1 + B2l−1 + B3l−2 + B4l−3 + · · · ). (14)

p = PLπR̂2 is the linear pressure for the equivalent one-
dimensional system with one-dimensional density virial ex-
pansion coefficients Bn defined by

Bn = B
(ρ)
n

(πR̂2)n−1
. (15)

III. EVALUATION OF VIRIAL COEFFICIENTS: B2,B3,B4

There are some numerical estimates [9] for the B2, but
no virial coefficients of hard spheres in cylindrical pores are
known to have been calculated analytically. We have evaluated
B2 and B3 analytically. Parts of the multi-integrals can be done
in closed form and the remaining by expanding in a power
series and integrating term by term analytically.

The second virial coefficient in the ρ series expansion is

B
(ρ)
2 = −1

2V

∫
dv1

∫
dv2f12 = −1

2V

∫ R̂

0
r1 dr1

∫ 2π

0
dθ1

×
∫ R̂

0
r2 dr2

∫ 2π

0
dθ2

∫ L

0
dz1

∫ L

0
dz2f12.

= −2π

2(πR̂2)

∫ 2π

0
dθ12

∫ R̂

0
r1 dr1

∫ R̂

0
r2 dr2

∫ 1

−1
dz12f12

(16)

with

f12 ≡ f12(r12) = e−βVhs (r12) − 1. (17)
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(a) (b)

(c) (d)

FIG. 1. Ree-Hoover diagrams for virial coefficients. (a) B2,
(b) B3, (c) S̃1 for B4, (d) S̃2 for B4. The solid lines denote the Mayer
fij function, and dashed lines denote f̃ij = 1 + fij .

R̂ = Rp − 1
2 ,θ12 = |θ1 − θ2|, r12 = |�r1 − �r2| =√

z2
12 + r2

1 + r2
2 − 2r1r2 cos(θ12), and Vhs(r12) is the hard

sphere potential.

Then, the one-dimensional virial expansion coefficients for
B2 is

B2 = B
(ρ)
2

(πR̂2)
= −2π

2(πR̂2)2

∫ 2π

0
dθ12

×
∫ R̂

0
r1dr1

∫ R̂

0
r2 dr2

∫ 1

−1
dz12f12. (18)

This corresponds to the Ree-Hoover diagram [18] of Fig. 1(a).
The integration over z12 is elementary,

∫ 1

−1
dz12f12 = −2

√
1 − ε12(r1,r2,θ12), (19)

with

εij (ri,rj ,θij ) = [r2
i + r2

j − 2rirj cos(θij )]. (20)

One can expand the
√

1 − ε12 in a power series of ε12:

√
1 − ε12 =

∞∑
n=0

(2n)!

(1 − 2n)(n!)2(4n)
(ε12)n. (21)

Each term can be integrated exactly to yield a power series in powers of R̂ with

B2
(
R̂

) = 1 − 1

2
R̂2 − 5

24
R̂4 − 7

32
R̂6 − 21

64
R̂8 − 77

128
R̂10

− 1287

1024
R̂12 − 23 595

8192
R̂14 − 347 633

49 152
R̂16 − 600 457

32 768
R̂18 − 6 495 853

131 072
R̂20

− 218 360 597

1 572 860
R̂22 − 419 924 225

1 048 576
R̂24 − 2 483 551 845

2 097 152
R̂26 − 120 038 339 175

33 554 432
R̂28

− 5 910 122 934 675

536 870 912
R̂30 − 36 967 239 532 575

1 073 741 824
R̂32 − 234 558 215 747 625

2 147 483 648
R̂34 · · · . (22)

More terms can be easily calculated with the help of symbolic computations. Convergence is rapid, and we have checked it with
numerical integrations. For example, with R̂ = 0.4, Eq. (22) yields 0.91345843 versus 0.91345844 from numerical quadrature.
The uncertainty is in the last digit.

The third virial coefficient also has only one Ree-Hoover diagram [Fig. 1(b)]:

B
(ρ)
3 = −1

3V

∫
dv1

∫
dv2

∫
dv3f12f13f23 (23)

and

B3 = −2π

3(πR̂2)3

∫ 2π

0
dθ12

∫ 2π

0
dθ13

∫ R̂

0
r1dr1

∫ R̂

0
r2 dr2

∫ R̂

0
r3 dr3 ×

∫ 1

−1
dz12f12

∫ 1

−1
dz13f13f23, (24)

where θij = |θi − θj |, rij = |�ri − �rj | =
√

z2
ij + r2

i + r2
j − 2rirj cos(θij ).

The integrations over z12,z13 can be done analytically and denoted as −A:

−A ≡
∫ 1

−1
dz12f12

∫ 1

−1
dz13f13f23, (25)

A = 2(σcσb + σaσc + σaσb) − (
σ 2

a + σ 2
b + σ 2

c

)
, (26)

σa = σ12, σb = σ13,σc = σ23, (27)
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σij = √
1 − εij , (28)

and

B3 = 2π

3(πR̂2)3

∫ 2π

0
dθ12

∫ 2π

0
dθ13

∫ R̂

0
r1 dr1

∫ R̂

0
r2 dr2

∫ R̂

0
r3 dr3 × [

2(σcσb + σaσc + σaσb) − (
σ 2

a + σ 2
b + σ 2

c

)]
. (29)

By symmetry, there are only two types of integrals to do:

B =
∫ 2π

0
dθ12

∫ 2π

0
dθ13

∫ R̂

0
r1 dr1

∫ R̂

0
r2 dr2

∫ R̂

0
r3 dr3σασβ, α �= β, (30)

C =
∫ 2π

0
dθ12

∫ 2π

0
dθ13

∫ R̂

0
r1 dr1

∫ R̂

0
r2 dr2

∫ R̂

0
r3 dr3(σα)2. (31)

C can be evaluated in closed form as

C = π2R̂6

2
(1 − R̂2). (32)

The B term appears to be different and has to be calculated as for B2 by expanding the
√· · · and integrate term by term to

yield a power series in R̂. The final result for B3 is

B3
(
R̂

) = 1 − R̂2 − 7

24
R̂4 − 19

48
R̂6 − 65

96
R̂8 − 1291

960
R̂10

− 6073

2048
R̂12 − 1 822 885

258 048
R̂14 − 3 072 455

172 032
R̂16 − 13 960 009

294 912
R̂18 − 2 306 857 403

17 694 720
R̂20

− 3 206 519 887

8 650 752
R̂22 − 18 728 895 875

17 301 504
R̂24 − 88 185 547 953

27 262 976
R̂26 − 361 234 293 689 153

36 641 439 744
R̂28

− 287 223 536 237 301

9 395 240 960
R̂30 − 155 026 303 764 017

1 610 612 736
R̂32 − 33 641 701 357 295 089

109 521 666 048
R̂34

− 434 647 739 535 045 095

438 086 664 192
R̂36 − 1 057 439 817 596 234 513

326 417 514 496
R̂38 · · · . (33)

Again, more terms can be easily calculated with the help
of symbolic computations. Convergence is also rapid, and we
have checked it with numerical integrations. For example, with
R̂ = 0.4, Eq. (33) yields 0.830244942 versus 0.830248 from
numerical quadrature. The uncertainty is in the last digit for
the numerical integration. The terms decreases rapidly, and
the last term shown in Eq. (33) contributes a small value of
0.000000002.

The fourth virial coefficient has two Ree-Hoover diagrams.
The first diagram S̃1 [Fig. 1(c)] contributes:

B4a = 2π

4(πR̂2)4

∫ 2π

0
dθ12

∫ 2π

0
dθ13

∫ 2π

0
dθ14

×
∫ R̂

0
r1 dr1

∫ R̂

0
r2 dr2

∫ R̂

0
r3 dr3

∫ R̂

0
r4 dr4

×
∫ 1

−1
f12 dz12

∫ 1

−1
f13f23 dz13

∫ 1

−1
f14f24f34 dz14.

(34)

The second Ree-Hoover diagram S̃2 [Fig. 1(d)] is denoted
as B4b. In these diagrams, the solid lines denote the Mayer
fij functions, and dashed lines denote f̃ij = 1 + fij . Both

diagrams contribute to B4 = B4a + B4b:

B4b = −3

8

[
2π

(πR̂2)4

] ∫ 2π

0
dθ12

∫ 2π

0
dθ13

∫ 2π

0
dθ14

×
∫ R̂

0
r1 dr1

∫ R̂

0
r2 dr2

∫ R̂

0
r3 dr3

∫ R̂

0
r4 dr4

×
∫ 1

−1
f12 dz12

∫ 1

−1
f̃13f23 dz13

∫ 1

−1
f14f̃24f34 dz14.

(35)

For now, we are not able to reduce the B4 calculations to
be suitable for symbolic computations. To provide estimates
which will be useful for future analytical calculations, we
have used numerical Gaussian integrations [27] for nine
different values of R̂. See Table I. The number of Gaussian
integration points used for each integral(�1000) was varied
and extrapolated to the large number limits. We have checked
our numerical method by using the same routines to obtain
estimates for B2 and B3. As noted above, they are in good
agreement with our analytic results.

We have also computed the virial pressure series coefficients
B ′

2, B ′
3, and B ′

4 to compare a truncated virial pressure series
equation of state with accurate constant pressure Monte Carlo
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TABLE I. Second, third, and fourth virial coefficients for hard spheres in cylindrical pores with widths 2Rp . Rp = 1
2 is the exactly soluble

hard rod model [28], and all virial coefficients are 1. For Rp > 1
2 , B2, B3 are analytic predictions of Eqs. (22) and (23), respectively. B4

are extrapolated values from numerical integrations with B4 = B4a + B4b. For B4, the last two digits are uncertain. The magnitude of the
uncertainties are in parentheses. The pressure virial series B ′

3,B
′
4 from Eqs. (40) and (39), respectively, are also shown.

Rp B2 B3 B ′
3 B4 B ′

4

1
2 1 1 0 1 0
0.52 0.999799966... 0.99959995... −0.00000002... 0.9993130 (10) −0.000000 (01)
0.55 0.998748694... 0.99749817... −0.00000078... 0.9962235 (06) −0.000000 (01)
0.60 0.994978944... 0.98997043... −0.00001267... 0.9849752 (05) −0.000000 (01)
0.65 0.988641951... 0.97734765... −0.00006525... 0.9661182 (15) −0.000000 (02)
0.70 0.979651759... 0.95950611... −0.00021145... 0.9395689 (15) −0.000000 (02)
0.75 0.967877124... 0.93625221... −0.00053391... 0.9051441 (10) −0.000000 (01)
0.80 0.953127105... 0.90729455... −0.00115672... 0.8625625 (30) −0.000000 (03)
0.85 0.935125123... 0.87219166... −0.00226733... 0.8113642 (30) −0.000004 (03)
0.90 0.913458430... 0.83024494... −0.00416136... 0.7507733 (10) −0.000018 (01)

data. The virial pressure series is defined as

βpl = 1 + B ′
2(R̂)(βp) + B ′

3(R̂)(βp)2 + B ′
4(R̂)(βp)3 + · · · . (36)

The virial pressure series coefficients B ′
n has been tabulated [29] in terms of the virial density series coefficients Bn:

B ′
2 = B2, (37)

B ′
3 = B3 − B2

2 , (38)

B ′
4 = B4 − 3B2B3 + 2B3

2 . (39)

See Ref. [29]. Note that B ′
2(R̂) is given by B2(R̂).

Using our analytic results for B2,B3 [Eqs. (22) and (23)], analytic predictions for B ′
3 are

B ′
3

(
R̂

) = −1

8
R̂4 − 1

6
R̂6 − 163

576
R̂8 − 359

640
R̂10 − 2535

2048
R̂12 − 47653

16128
R̂14

− 429 469

57 344
R̂16 − 1 467 523

73 728
R̂18 − 486 331 999

8 847 360
R̂20 − 533 012 339 566 313

3 401 605 447 680
R̂22 − 2 080 614 548 599 833

4 535 473 930 240
R̂24

− 5 891 402 846 511 563

4 288 084 443 136
R̂26 − 60 459 844 952 626 018 709

14 407 963 728 936 960
R̂28 − 602 079 763 789 143 851

46 179 370 926 080
R̂30

− 78 132 278 795 739 354 607

1 899 951 260 958 720
R̂32 − 471 758 329 329 931 494 447

3 588 796 826 255 360
R̂34 − 592 546 736 554 605 787

525 702 660 096
R̂36

− 1 278 656 698 262 280 803 109 947

385 056 788 887 633 920
R̂38 · · · . (40)

As noted before, more terms can be easily generated as
needed. Values forB ′

3,B
′
4 have been added to Table I. For values

of B ′
4 that are small and within their uncertainties, we have

listed them as −0.000000(01) with uncertainty of the last two
digits indicated in (· · · ).

IV. TRUNCATED VIRIAL SERIES EQUATION OF STATE

We now have [B2(Rp),B3(Rp),B4(Rp)] and
[B ′

2(R′
p),B ′

3(Rp),B ′
4(Rp)], to be used in truncated density

virial series and pressure virial series, respectively. They can
be employed to study the equation of state and probe the
question of which truncated series is more accurate with the
same number of coefficients. To provide benchmarks for this
comparison, we have used extensive constant-pressure Monte
Carlo simulations to provide accurate data. The constant

pressure Monte Carlo method used is standard and well
documented [30]. We have taken great care to account for the
finite number of particles used by using a range of number of
particles and very long runs to ensure convergence. For each
pressure, we used up to 3000 hard spheres and extrapolate
the finite-size dependences to the large N limit. The number
of configurations sampled can be as long as 1011 Monte
Carlo steps per particle. Typically 24 separate runs are used
to estimate statistical errors. Our results are consistent with
previous published data of limited accuracy [9].

In Figs. 2–4 we compare pressure virial and density virial
series expansions to Monte Carlo data, denoted by a ×. The
statistical errors are less than the size of the symbols. Results
for three different values of pore radii Rp are shown. They
range from Rp = 0.52 very close to the one-dimensional limit
of 0.5 to Rp = 0.90 far from the one-dimensional limit. For
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 (Rp = 0.02)

10-3 10-2 10-1 1 10

N/L 

10-3

10-2

10-1

1

10

102

103

βp
 

FIG. 2. Comparisons of linear pressure versus linear density plot
for pore radius of Rp = 0.52 with Monte Carlo data. Monte Carlo
data are denoted by a ×, and the statistical errors are less than the
size of the symbols. The truncated virial density series are denoted
by three dashed lines. The lowest line has nmax = 2, then nmax =
3 and nmax = 4. nmax is the maximum order of virial coefficients
used in the truncated series. The truncated virial pressure series are
denoted similarly by dotted, dashed, and solid lines. The lines for the
three different pressure series are very close to each other and not
distinguishable in the plots. A more quantitative comparison is given
in Table II.

each pore radius, two sets of truncated series expansion predic-
tions are plotted. The maximum order of the truncated series
used is denoted by nmax . The density series are shown as three
dashed lines. The lowest line has nmax = 2, then nmax = 3 and

 (Rp = 0.70)

10-3 10-2 10-1 1 10

N/L 

10-3

10-2

10-1

1

10

102

103

βp
 

FIG. 3. Comparisons of linear pressure versus linear density plot
for pore radius of Rp = 0.70 with Monte Carlo data. Monte Carlo
data are denoted by a ×, and the statistical errors are less than the
size of the symbols. The truncated virial density series are denoted
by three dashed lines. The lowest line has nmax = 2, then nmax =
3 and nmax = 4. nmax is the maximum order of virial coefficients
used in the truncated series. The truncated virial pressure series are
denoted similarly by dotted, dashed, and solid lines. The lines for the
three different pressure series are very close to each other and not
distinguishable in the plots. A more quantitative comparison is given
in Table II.

 (Rp = 0.90)

10-3 10-2 10-1 1 10

N/L 

10-3

10-2

10-1

1

10

102

103

βp
 

FIG. 4. Comparisons of linear pressure versus linear density plot
for pore radius of Rp = 0.90 with Monte Carlo data. Monte Carlo
data are denoted by a ×, and the statistical errors are less than the
size of the symbols. The truncated virial density series are denoted by
three dashed lines. The lowest line has nmax = 2, then nmax = 3 and
nmax = 4. nmax is the maximum order of virial coefficients used in
the truncated series. The truncated virial pressure series are denoted
similarly by dotted, dashed, and solid lines.

nmax = 4. The truncated pressure series are denoted similarly
by dotted, dashed, and solid lines. It appears that the truncated
pressure virial series describes the Monte Carlo data better
than the truncated density virial series with the same number
coefficients; see Figs. 2–4. This should not be surprising,
because the exact solution of the one-dimensional hard rod
fluid has B ′

n = 0, for n � 3 versus Bn = 1 for all n. One
would then expect, hard spheres in very narrow pores would be
similar. A truncated pressure series with all higher order set to
zero would be better than similar truncated density series. As
the pressure increases, the truncated pressure series must also
fail, consistent with the comparisons shown. Since the higher
order B ′

n increases with R̂ = Rp − 1/2, failure of the truncated
pressure series is more serious with Rp = 0.90 at higher
pressures; see Fig. 4. On the whole, the truncated pressure virial
series provides a very good description of the crossovers from
the one-dimensional to narrow cylindrical pores at low and
moderate pressures and densities. Observe that the truncation
at nmax = 3 is already accurate over a wide range of pressure,
density and pore sizes. This has the advantage that both B ′

2,B
′
3

are given analytically. For a more quantitative comparison,
the nearest-neighbor longitudinal separation predictions and
Monte Carlo data are presented in Table II.

V. REMARKS

In this paper, virial coefficients B2 and B3 were calculated
analytically, and numerical quadrature was used for B4. They
were also used to obtain the virial pressure series coefficients,
B ′

2,B
′
3, and B ′

4. This allows us to compare the truncated virial
density and pressure series expansions to accurate Monte Carlo
data. Our comparisons shows that the truncated pressure virial
series is accurate over a range of narrow pore widths, pressures,
and densities. The truncated pressure series is much better than
the corresponding truncated density virial series. This dramatic
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TABLE II. Comparisons of linear pressure (βp) versus nearest-neighbor longitudinal separations l(nmax) of the truncated pressure virial
series expansion predictions with Monte Carlo data. For three different pore radii of 0.52,0.70, and 0.90, the maximum order virial coefficients
used are denoted by nmax . The uncertainty of the MC data is in the last digit with magnitude indicated by (· · · ).

Rp βp l(2) l(3) l(4) l(MC)

0.52 120.000 1.00813085 1.00813085 1.00813330 1.0081293 (5)
0.52 12.000 1.08313306 1.08313306 1.08313330 1.083132 (3)
0.52 1.200 1.83313328 1.83313328 1.83313330 1.833135 (8)
0.52 0.120 9.33313330 9.33313330 9.33313330 9.33310 (2)
0.52 0.012 84.33313330 84.33313330 84.33313330 84.33 (1)

0.70 120.000 0.96261062 0.96261062 0.98798509 0.938224 (2)
0.70 12.000 1.06044765 1.06044765 1.06298509 1.05804 (1)
0.70 1.200 1.81273135 1.81273135 1.81298509 1.8126 (1)
0.70 0.120 9.31295972 9.31295972 9.31298509 9.31295 (3)
0.70 0.012 84.31298256 84.31298256 84.31298509 84.313 (1)

0.90 120.000 0.16322831 0.42242831 0.92179176 0.62097 (2)
0.90 12.000 0.94426342 0.94685542 0.99679176 0.84457 (2)
0.90 1.200 1.74177221 1.74179813 1.74679176 1.7376 (2)
0.90 0.120 9.24629214 9.24629240 9.24679176 9.2462 (2)
0.90 0.012 84.24674182 84.24674183 84.24679176 84.24 (1)

difference is traced to the nature of the one-dimensional hard
sphere fluid’s exact solution. These results represent significant
contributions to the long-standing problem of fluids in narrow
pores.
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