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Emergence of a fluctuation relation for heat in nonequilibrium Landauer processes
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In a generalized framework for the Landauer erasure protocol, we study bounds on the heat dissipated in
typical nonequilibrium quantum processes. In contrast to thermodynamic processes, quantum fluctuations are not
suppressed in the nonequilibrium regime and cannot be ignored, making such processes difficult to understand
and treat. Here we derive an emergent fluctuation relation that virtually guarantees the average heat produced to
be dissipated into the reservoir either when the system or reservoir is large (or both) or when the temperature is
high. The implication of our result is that for nonequilibrium processes, heat fluctuations away from its average
value are suppressed independently of the underlying dynamics exponentially quickly in the dimension of the
larger subsystem and linearly in the inverse temperature. We achieve these results by generalizing a concentration
of measure relation for subsystem states to the case where the global state is mixed.
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I. INTRODUCTION

Landauer’s principle (LP) provides the clearest evidence
that “information is physical” by relating logically irreversible
computations to a necessary energy expenditure [1]. The
principle lies at the interface between information theory and
thermodynamics: simultaneously offering deep consequences
for the foundations of physics while positing the daunting
technical challenge of managing heat dissipation in computers,
whether they operate on classical or quantum logic. Indeed,
although LP was initially postulated from classical thermo-
dynamic considerations [1,2], early research efforts aimed
to either develop a microscopic nonequilibrium version of
the principle [3–6] or extend it into the quantum domain
[7–13]. However, the microscopic versions often relied on
specific models, and many quantum extensions assumed the
principle to hold a priori, before investigating its implications.
Perhaps surprisingly, recent experiments demonstrate that LP
applies to irreversible nonequilibrium processes involving
individual quantum systems [14–17]. This evidence sparked
a revival of interest in developing a rigorous formulation
of LP in this regime, culminating in an equality form of
LP derived by Reeb and Wolf (RW) within a minimal
framework [18].

Despite the substantial body of work surrounding LP, little
is known about the tightness of the bound at microscopic
scales or about how Landauer heat can be tamed, i.e., how
to minimize the heat required to process quantum information
[19]. In the nonequilibrium setting of logical processes, where
highly entangling operations are often utilized, the typical
behavior of the heat generated is not immediate, even on
average; thermodynamic intuition breaks down due to the
strong interactions. On a technical level, minimizing this
heat is crucial for our ability to manipulate quantum systems
to outperform their classical counterparts, as the quantum
advantage often relies on coherent control that suffers from heat
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fluctuations. An approach to resolving these outstanding issues
makes use of tools from nonequilibrium statistical physics
[20–26]. In particular, RW [18] and Goold, Paternostro, and
Modi (GPM) [23] independently derived tighter bounds on heat
(in the quantum setting) than that of Landauer. Although RW’s
correction only depends on the dimension of the reservoir and
there is no strict hierarchy between the two bounds, GPM’s
bound tends to outperform the former in various regimes
of interest; however, its calculation depends explicitly on
details of the process and is therefore difficult to estimate
in general [23].

On a more fundamental level, LP is often cited as an
equivalent formulation of the second law of thermodynamics;
indeed it is when considering processes taking place near
equilibrium. Investigations into statistical formulations of the
second law which hold in the nonequilibrium regime have
led to the much lauded fluctuation relations [27–30], which
bound process-dependent quantities (such as work) to ther-
modynamic ones (such as free energy). It is natural to ask
whether one can develop similar process-independent bounds
on heat by studying LP in the nonequilibrium regime. Such
a formulation is indeed pertinent to the field of quantum
thermodynamics, where processes inherently take place far
from equilibrium due to the mesoscopic nature of the relevant
subsystems [31,32].

The aim of this article is therefore to understand what
universal properties typically emerge with respect to the
heat generated in open quantum processes. We prove the
emergence of a fluctuation relation for the heat dissipated in
a Landauer process, stating that, on average, heat is almost
always dissipated into the environment. We analytically prove
that this fluctuation relation arises exponentially quickly as
the dimensions of either subsystem grows and linearly in the
inverse temperature. Our result extends the minimal frame-
work for describing Landauer processes [18] and is derived
by examining fluctuations of the heat distribution [23]. We
begin the article by introducing the former and constructing
the latter.
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II. BACKGROUND

Surprisingly, until recently there was no consensus on how
LP should be quantitatively expressed. This changed when
RW formally derived a bound for the dissipated heat under
a minimal set of assumptions [18]: (i) The irreversible process
involves a system s and a reservoir r; (ii) the initial joint state
is uncorrelated, ρsr = ρs ⊗ ρr ; (iii) the reservoir is initially
in a thermal (Gibbs) state ρr := e−βHr /Z, where β is the
inverse temperature, Hr is the reservoir Hamiltonian, and
Z := tr[e−βHr ] is the partition function; and (iv) the joint
state evolves unitarily, ρ ′

sr = UρsrU
†. We call such processes

Landauer processes.
Reeb and Wolf show that relaxing any one of the assump-

tions above can lead to violation of the bound

β〈Q〉 � �S + R(�S,dr ) := ω, (1)

where the inequality without R(�S,dr ) is Landauer’s
bound. Here the average heat dissipated into the
reservoir is 〈Q〉 := tr[Hr (ρ ′

r − ρr )]; the change in von
Neumann entropy of the system is �S := S(ρs) − S(ρ ′

s),
with S(ρ) := −tr[ρ log2(ρ)]; and R(�S,dr ) � 0 is a
correction term that tightens the Landauer bound for
finite-size reservoirs.1

Crucially, the above framework accounts for processes
that will be employed by realistic quantum technologies,
namely, nonequilibrium processes that lie outside the realm of
traditional thermodynamics and are difficult to treat because
of heat fluctuations that are not suppressed. In other words,
the heat generated in a single run of the process can vary
drastically from its average behavior. The modern approach to
describing such nonequilibrium processes employs fluctuation
relations [27–43]. These relate thermodynamic quantities (e.g.,
free energy difference) to nonequilibrium quantities (e.g.,
work or heat), offering a promising route to understanding
the thermodynamics of small systems whose relevant dy-
namics may occur on shorter timescales than equilibration.
Recent work demonstrates that this formalism is applicable
for the experimental exploration of quantum thermodynamics
[44–47], importantly including measuring the heat distribution
of a quantum Landauer process [17].

Applying such tools to the Landauer protocol, GPM devel-
oped a bound for the average heat [23]. By taking projective
measurements of the reservoir energy, the complete distri-
bution of the heat exchanged can be constructed, P (Q) :=∑

mn P (Em|En)P (En)δ(Q − (En − Em)), where P (En) =
〈En|ρr |En〉 and P (Em|En) = ∑

l |〈En|Al|Em〉|2 are the initial
and (conditional) final measurement probabilities, respec-
tively. The Al=jk = √

λj 〈k|U |j〉 are Kraus operators describ-
ing the local action of the evolution on the reservoir, with
{λj ,|j 〉} the eigenvalues and eigenstates of ρs , respectively.
From this distribution, GPM show that the average exponenti-
ated heat can be written as

� := 〈e−βQ〉 = tr[U †1s ⊗ ρrUρs ⊗ 1r ], (2)

1This article considers only finite-dimensional systems.

where 〈e−βQ〉 = ∫
dQP (Q)e−βQ. Invoking Jensen’s inequal-

ity,2 GPM’s bound is immediately derived

β〈Q〉 � − ln(�) =: γ. (3)

Although the derivation above is reminiscent of the Jarzynski
equality [27,28], Eq. (2) is not a true fluctuation relation since
� depends explicitly on the details of the process, i.e., � =
�(U,ρs). However, we now show that a fluctuation relation
emerges quickly for typical Landauer processes, meaning
deviations of � from its average value become suppressed
independently of process details.

III. MAIN RESULTS

A. Emergence of fluctuation relation

Our main result shows that, for Haar randomly sampled
joint-space unitary interactions, a fluctuation relation for heat
arises in the limit where the dimension of the system, reservoir,
or both becomes large or when the temperature is high, i.e.,
� → 1. In fact, as the dimensions of either s or r grow,
the deviations of � from unity are at least exponentially
suppressed; in the high-temperature limit this suppression is
at least linear. First, we demonstrate the exponential scaling
with dimension through the following theorem.

Theorem 1. When either the system or the reservoir dimen-
sions are much larger than the other, i.e., ds � dr or ds � dr ,
the deviations of � from unity are at least exponentially
suppressed in the dimension of the larger subsystem.

Note first that we can write Eq. (2) as � = ds tr[Msρs] =
dr tr[Mrρr ], where

Ms := trr

[
U † 1s

ds

⊗ ρrU

]
, Mr := trs

[
Uρs ⊗ 1r

dr

U †
]
. (4)

The following lemma is a generalization of standard concentra-
tion of measure results for quantum states (see, e.g., Ref. [48])
to the case where the reduced density operators are generated
from unitary orbits of mixed states.

Lemma 1. For any σsr = UτsrU
†, where τsr is a fixed

system-reservoir density operator and U is a Haar randomly
sampled unitary operator,

Prob

[∥∥∥∥σs − 1s

ds

∥∥∥∥
1

�
√

ds

dr

+ ε

]
� 2 exp

(
−dsdrε

2

16

)
. (5)

The same holds with system and reservoir labels swapped.
Here σs := trr [σsr ] and the trace norm is defined for

an operator A as ‖A‖1 := tr[
√

A†A]. Importantly, Lemma 1
bounds the trace distance of a reduced state from the maximally
mixed state for Haar randomly sampled joint interactions.
While the bound in Eq. (5) is the same as in the usual case of
pure joint states, which follows from Levy’s lemma [49], the
extension to mixed joint states is nontrivial, as the geometry
of the corresponding space differs considerably. In fact, the
following results do not hold for a naive application of the pure
state result because the trace distance from the identity of σs ,

2Jensen’s inequality holds for any convex function f of a random
variable X: 〈f (X)〉 � f (〈X〉).
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generated from a convex mixture σsr , cannot be directly upper
bounded by an arbitrary component of the mixture. For a proof
of this physically motivated application of Levy’s lemma, see
Appendix A.

Proof of Theorem 1. Consider the case where dr � ds . For
a Haar randomly chosen unitary U , the state Ms , defined in
Eq. (4), is distributed exactly as σs in Lemma 1 with τsr =
(1s/ds) ⊗ ρr . Writing μs := ‖Ms − 1s/ds‖1, it follows imme-
diately that Prob[μs � √

ds/dr + ε] � 2 exp (−dsdrε
2/16).

Choosing ε = 4
√

[xdr + ln(2ds)]/dsdr for some small x >

1/dr gives

Prob

[
μs �

√
ds

dr

+ 4

√
xdr + ln(2ds)

dsdr

]
� exp (−drx)

ds

. (6)

As the reservoir dimension increases, independently of the
inverse temperature β and for a fixed ds � 2, the probability
that μs is greater than some vanishingly small quantity is
exponentially diminishing in dr . Now consider that μs =
maxP tr[P (Ms − 1s/ds)], where the maximization is taken
over all projection operators P . Using the fact that ρs is a
convex mixture of projectors and multiplying μs by ds , we
have dsμs � ds tr[ρs(Ms − 1s

ds
)] = � − 1. By symmetry of the

trace distance, we also have −dsμs � � − 1; thus we have
upper bounded the fluctuations of � about 1 by

dsμs � |� − 1| =: μ. (7)

In summary, the magnitude of these fluctuations are upper
bounded by a number that has high probability of being
extremely small, as shown in Eq. (6). It follows that � → 1 at
least exponentially in the limit dr � ds . The theorem can be
proved for ds � dr using a similar argument with the state Mr ,
defined in Eq. (4). �

The probabilistic statement we make in Theorem 1 is based
on the trace distance of the reduced postdynamics state from
the maximally mixed state. Lemma 1 states that as either
dimension increases, typically, this distance is exponentially
diminishing. This quantity upper bounds the absolute differ-
ence between � and its mean value of 1, the implication being
that the distribution of � is sharply peaked. This further implies
that the distribution of γ = − ln (�), which lower bounds the
average heat, is sharply peaked around 0 in these asymptotic
regimes.

Consider now the case where we have a large nonequi-
librium system interacting with a large equilibrium reservoir,
i.e., dr ≈ ds � 2. From the above concentration of measure
argument, it is not clear how � behaves when ds and dr

are comparable. With the following theorem, we show that
a fluctuation relation also emerges when the overall dimension
becomes large.

Theorem 2. When the system and reservoir dimensions are
similar, we expect � → 1 for large dsr = dsdr .

Proof. We can rewrite � in terms of the eigen-
bases of ρs = ∑

k λ
(s)
k |sk〉〈sk| and ρr = ∑

k λ
(r)
k |rk〉〈rk|: � =∑

nmpq λ(r)
m λ(s)

p |〈snrm|U |sprq〉|2, where
∑

k λ
(s)
k = ∑

k λ
(r)
k =

1. As the joint sr dimension becomes large, any two bases
related by a Haar random unitary will tend to be mutually
unbiased [50], that is, the matrix elements 〈snrm|U |sprq〉 →
1/

√
dsdr . In this limit, we have � → ∑

nmpq λ(r)
m λ(s)

p /dsdr =
1. �

In the following theorem, we show that a fluctuation relation
also emerges in the high-temperature limit.

Theorem 3. As temperature increases, � → 1 at least
linearly with inverse temperature β.

Proof. Consider the completely positive trace-
preserving (CPTP) map Esr : L(Hr ) → L(Hs), Esr (σr ) :=
trr [U †1s/ds ⊗ σrU ]. By the contractivity of the trace distance
under CPTP operations, we have μ̃ := ‖ρr − 1r/dr‖1 �
‖Esr (ρr − 1r/dr )‖1. Expanding the action of Esr gives

μ̃ �
∥∥∥∥trr

[
U † 1s

ds

⊗ ρrU

]
− trr

[
U † 1s

ds

⊗ 1r

dr

U

]∥∥∥∥
1

= μs,

(8)

where μs = ‖Ms − 1s/ds‖1. Combining this with Eq. (7), we
have dsμ̃ � dsμs � μ.

Next, taking the limit β → 0, we have limβ→0 μ̃ =
limβ→0 | ∑k(e−βEk/Z − 1/dr )|. As β → 0, Z → dr and we
can expand the exponential. The zeroth-order term cancels with
the 1/dr inside the sum. Since μ̃ behaves linearly with β in this
limit, it follows that � → 1 at least linearly. �

B. Speed of convergence

A particularly nice feature of our results derived above
is that they bound the rate at which the fluctuation relations
arise in various regimes. In order to test how fast � exhibits
the results of Theorems 1–3, we now explore the statistics
of simulated dynamics within the parameter space (ds,dr ,β).
We construct processes by Haar randomly sampling unitaries
from the joint space and subsequently define the system and
reservoir Hamiltonians

Hs = i trr [log2(U )]/t, Hr = i trs[log2(U )]/t, (9)

where we choose t = 1 to fix the units of energy. The notions of
high and low temperature depend on the energy level structure
of Hr , so we must be careful in comparing processes. At high
temperature, we expect significant occupation of all reservoir
states, implying β−1 � |EN − E0|, where EN and E0 are the
highest and lowest reservoir eigenenergies, respectively. On the
other hand, at low temperature, even the first excited state (with
energy E1) has little population, requiring β−1 � |E1 − E0|.
Between these two regimes, the temperature is of the same
order as the energy splittings in Hr . These considerations
motivate the definition of the scaled temperature parameters

T̃low := (β|E1 − E0|)−1,

T̃high := (β|EN − E0|)−1,

T̃mid := N − 1

β
∑N

n=1 |En − En−1|
, (10)

which are used in the low-, high-, and intermediate-temperature
regimes, respectively.

Theorems 1–3 manifest themselves in Fig. 1. Plotted in
each panel (temperature regime) is a fit of μ to data from a
large number of Haar randomly sampled interactions for a
variety of system and reservoir dimensions. The validity of
Theorems 1 and 2 can be seen in any temperature regime:
In the low-dimensional case (red dot-dashed line), μ tends
to be the largest, with μ smaller on average for all other
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FIG. 1. Fit of μ = |� − 1| to the function a(1 − exp[−b/T ]), which we expect to approximate the size of deviations in the large-T limit,
for a variety of system and reservoir sizes in the (a) low-, (b) intermediate-, and (c) high-temperature regimes. The central lines are the fitted
values of μ and the shaded regions indicate the ∼95% confidence region for the fit. To calculate the fit, we sampled 1000 Haar random unitary
transformations applied to randomly chosen nonequilibrium system states for each panel in each of the following cases: (i) ds = dr = 2 (red
dot-dashed line), (ii) ds = 16 � dr = 2 (blue dashed line), (iii) ds = 2 � dr = 32 (green dotted line), and (iv) ds = dr = 16 (orange solid
line). Panels (a) and (b) show that even at low or medium temperatures, when either subsystem dimension (or both) is large, μ → 0. Panel
(c) shows that independently of the system and reservoir dimensions, μ → 0 in the high-temperature limit. The only remaining case of interest
is when the system and reservoir dimensions are both small and the temperature is low [see case (i) in (a)].

cases, where either dimension is large. Reading across the
panels of Fig. 1 shows that as temperature increases, μ → 0
independently of ds and dr (note the scale), demonstrating
Theorem 3. Furthermore, in Appendix B we show that in the
cases where the fluctuation relation arises, γ almost always
provides a tighter bound for the heat than previously known
bounds. We now discuss implications and the broader relevance
of our findings.

IV. DISCUSSION

Our ability to coherently control nonequilibrium quan-
tum systems is crucial to developing quantum technologies.
Functional quantum technologies must implement irreversible
operations, necessarily generating heat which leads to deco-
herence that negatively impacts performance. In this article
we have demonstrated the emergence of a fluctuation relation
for the heat generated in typical nonequilibrium Landauer
processes. The implication is that the heat dissipated into the
reservoir in a typical open process is almost always positive.
This significantly enhances our understanding of Landauer
heat and open evolution of systems in contact with thermal
states, as previous studies have been unable to make process-
independent statements on the average heat exchanged during
nonequilibrium interactions.

Intuition based on the second law of thermodynamics sug-
gests that having the heat typically flow towards the reservoir
is a peculiar feature: One might expect that when the reservoir
begins at a higher temperature than the system, the reservoir
should cool on average. However, due to Theorems 1–3, when
the dimension of either subsystem is large or the temperature
of the reservoir is high, the heat almost always flows towards
the reservoir. Thermodynamic intuition breaks down because
it assumes the interaction takes place near equilibrium, where
the open evolution cannot perturb a thermal reservoir; in
the nonequilibrium setting we consider, this assumption is
broken. Randomly sampled unitary processes will generally
correspond to Hamiltonians with significant interaction terms
that are highly entangling [48]; the local state of the reservoir

is therefore almost always more mixed after the interaction
than before. The connection between nonequilibrium versions
of LP and the second law remains unclear and requires further
investigation.

Admittedly, real experiments do not have access to random
unitary operations, which are often dismissed as “unphysical.”
However, performing a number of interesting tasks efficiently,
such as securely erasing quantum information, the decoupling
protocol [51,52], device verification [53,54], and thermal-
ization [48,55,56], require operations that mimic sampling
from the full space of operations. Indeed, complex physical
phenomena are well approximated by unitary t designs, which
agree with the first t moments of the Haar distribution [57,58],
especially when there are few particles involved. Here the con-
centration of physically relevant random unitary interactions
is unlikely to be particularly small. However, our results show
that even in these cases, a fluctuation relation arises expo-
nentially quickly. This is somewhat surprising and warrants
further study of LP in this microscopic regime, e.g., by relaxing
our speed-of-convergence results through a concentration of
measure argument over a t design rather than the entire Haar
distribution. Moreover, our work will become increasingly
important as quantum devices become larger and hotter, since
the regimes in which the fluctuation relation arises quickly are
exactly those for which GPM’s bound typically provides the
tightest bound on the heat generated (see Appendix B).

On the other hand, our work naturally creates an opportunity
for developing tighter bounds on the heat dissipated in a
process by including physically motivated constraints within
our framework; this might, e.g., restrict the operation space to
thermal operations or those generated from Hamiltonians with
local interactions [23,24]. The fact that a randomly applied
operation will generate heat calls further attention to our need
to manage it when building quantum technologies of the future:
How do we best approximate random operations to erase
information with minimum heat expenditure? How similar
does the series of operations in a highly entangling quantum
circuit look to a random Landauer process? Such questions
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cannot go unanswered if we are to leap into a world run on
quantum technologies.

Note added. Recently, we became aware that a result similar
to the physically motivated application of Levy’s lemma is used
in relation to the decoupling protocol in Refs. [51,55] based
on Corollary 4.4.28 of [59].

ACKNOWLEDGMENTS

We thank L. Céleri, J. Goold, and A. Lakshminarayan for
valuable discussions and an anonymous referee for insightful
feedback. P.T. was supported by the Australian Government
RTP and J. L. William Scholarships.

APPENDIX A: PROOF OF LEMMA 1

The typical application of Levy’s lemma to reduced quan-
tum states is as follows [48].

Lemma 2. For any pure state φsr = UψsrU
†, where ψsr is

a fixed system-reservoir pure state and U is a Haar randomly
sampled unitary, and for arbitrary ε > 0, the distribution of
distances between the reduced density matrix of the system
φs = trr [φsr ] and the maximally mixed state 1/ds satisfies

Prob

[∥∥∥∥φs − 1s

ds

∥∥∥∥
1

�
√

ds

dr

+ ε

]
� 2 exp

(
−dsdrε

2

16

)
.

(A1)

If our statesMs andMr were being generated from pure joint
states, we could directly apply Lemma 2 to achieve the desired
result in proving Theorem 1. However, they are instead being
generated from mixed joint states, i.e., Ms is distributed as
trr [UτsrU

†] where τ = (1s/ds) ⊗ ρr (and similarly for Mr ).
The following argument shows why the standard version of
Levy’s lemma does not necessarily hold for the mixed case
and motivates our proof of Lemma 1.

The initial sr state can always be decomposed as a mixture
of pure states τsr = ∑

kl λkl|kl〉〈kl|. We can therefore write

μs =
∥∥∥∥∥trr

[∑
kl

λklU |kl〉〈kl|U †

]
− 1/ds

∥∥∥∥∥
1

. (A2)

Defining

μkl :=‖trr [U |kl〉〈kl|U †] − 1/ds‖1, (A3)

we have that μs � ∑
kl λklμkl (� maxkl μkl), since the partial

trace and the trace norm are both convex functions. While
Eq. (A1) would apply to each of the μkl with U sampled
independently, the upper bound on μs depends on the full
set {μkl} for each given U . Lemma 2 makes no statistical
statements about the latter.

Furthermore, since the space of density matrices with
fixed spectrum is a geometrically different space from that
of pure states (it is a flag manifold rather than a complex
projective space), the usual proof of Lemma 2 cannot be
trivially modified. We now proceed to prove our Lemma 1.

Proof. The proof hinges on a version of the following well
known lemma by Levy [49].

Lemma 3. Consider a manifold M endowed with a metric
g and measure μ, and a Lipschitz continuous function f :
M → R with Lipschitz constant η, i.e., f satisfies |f (x) −
f (y)| � η‖x − y‖g ∀x,y ∈ M . The value of the function is
concentrated around its expectation value Exf according to
the distribution

Prob[f (x) � ε + Exf ] � 2αM (ε/η), (A4)

where αM (x) is a concentration function for M , defined as (an
upper bound on) the measure of the set of points in the space
more than a distance x from the minimal-boundary volume
enclosing half the space.

Consider the function f (U ) = ‖σs(U ) − 1/ds‖1, the trace
distance of the reduced state σs(U ) = trr [UτsrU

†] from the
maximally mixed state. Using a reverse triangle inequality and
the contractivity of the trace norm under partial trace, we have,
for any U,V ∈ SU(dsr ),

|f (U ) − f (V )| =
∣∣∣∣
∥∥∥∥σs(U ) − 1

ds

∥∥∥∥
1

−
∥∥∥∥σs(V ) − 1

ds

∥∥∥∥
1

∣∣∣∣
� ‖σs(U ) − σs(V )‖1

� ‖UσsrU
† − V σsrV

†‖1

�2‖U − V ‖2, (A5)

where, for the final inequality, we have used Lemma 1 from
Ref. [60], which relates the penultimate quantity to the Hilbert-
Schmidt distance (‖X‖2 =

√
tr[XX†]) between the two uni-

taries. Importantly, this distance induces the Haar measure on
the group manifold. Equation (A5) demonstrates that f (U ) is
a Lipschitz continuous function on the unitaries with Lipschitz
constant η = 2.

Calculating the expectation value of f (U ) follows a stan-
dard argument [61,62] and is the same as for the case of
pure system-reservoir states. The expected trace distance is
related to the expected Hilbert-Schmidt distance squared using
Jensen’s inequality

EU

∥∥∥∥σs(U ) − 1

ds

∥∥∥∥
1

�
√

dsEU

∥∥∥∥σs(U ) − 1

ds

∥∥∥∥
2

�
√

ds

√
EU

∥∥∥∥σs(U ) − 1

ds

∥∥∥∥
2

2

. (A6)

The Hilbert-Schmidt distance can then be expanded in terms
of the purity of σs as

EU

∥∥∥∥σs(U ) − 1

ds

∥∥∥∥
2

2

= EU tr
[
σ 2

s

] − 1

ds

. (A7)

Finally, the expectation value of the purity can be calculated for
the Haar measure by utilizing properties of the SWAP operator
(though the calculation usually involves an average over pure
states, it is the same for the unitary orbit of any state); it is

EU tr
[
σ 2

s

] = ds + dr

dsdr + 1
, (A8)
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FIG. 2. We sample 5000 Haar random interactions and compute β〈Q〉, ω, and γ for dimensions (a) and (b) ds = dr = 2, (c) and (d) ds = 16
and dr = 2, (e) and (f) ds = 2 and dr = 32, and (g) and (h) ds = 16 and dr = 16 and both (a), (c), (e), and (g) low-temperature and (b), (d),
(f), and (h) high-temperature regimes. Confidence polytopes containing ∼70%, 80%, and 90% of the data (solid, dashed, and dotted lines,
respectively) are calculated to highlight general behavior by peeling off convex hull layers centered on the bivariate median. The only region
where ω significantly outperforms γ in tightness to β〈Q〉 is the low-dimension, low-temperature regime [see (a), where ∼35% of interactions
generate heat that is closer to ω than to γ ]. In all remaining cases, where a fluctuation relation quickly emerges, γ almost always provides a
tighter bound to the average heat. Furthermore, we see that for any interaction at high temperature, γ is a tight bound on β〈Q〉. For interactions
occurring at low temperatures, γ is not a particularly tight bound on the average heat regardless of the dimension (although neither is any
previously known bound).

which, using Eqs. (A6) and (A7), leads to

EUf �
√

ds

√
ds + dr

dsdr + 1
− 1

ds

�
√

ds

√
ds + dr

dsdr

− 1

ds

=
√

ds

dr

. (A9)

Using Lemma 3, we have that

Prob

(
f (U ) � ε +

√
ds

dr

)
� 2αU (ε/2), (A10)

where αU (x) is the concentration function on the group mani-
fold of SU(dsr ) equipped with the Haar measure. We can relate
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this to the concentration function for the sphere, using the
following theorem by Gromov [63,64].

Theorem 4. Let Sn+1(R) be the n + 1 sphere of radius R and
let M be a closed (n + 1)-dimensional Riemannian manifold
with Ric(M) � n/R2 = Ric[Sn+1(R)], where Ric(X) is the
infimum of diagonal elements of the Ricci curvature tensor
on X. Choose M0 ⊂ M to be a domain with smooth boundary
and let B be a round ball in Sn+1(R) such that

Vol(M0)

Vol(M)
= Vol(B)

Vol[Sn+1(R)]
. (A11)

It then follows that
Vol(∂M0)

Vol(M)
� Vol(∂B)

Vol[Sn+1(R)]
. (A12)

That is, if the Ricci curvature is everywhere greater than that
of some sphere, then the rate at which volume is enclosed as one
moves away from the boundary of a region is at least as great
as the corresponding rate for a similar region on the sphere.
Thus, if the inequality in Eq. (A12) holds, the corresponding
concentration functions are related as αM (x) � αSn+1(R)(x).

Since the group manifold of SU(dsr ) is compact and simply
connected, it has constant, positive Ricci curvature (with
respect to the Hilbert-Schmidt distance) [65]. This can be
calculated to be Ric(U ) = dsr/2 (see, e.g., Ref. [66]). The
manifold dimension is d2

sr − 1, so we must compare it with
Sd2

sr−1(R), finding that the radius must be at least R0 =√
2(d2

sr − 2)/dsr in order for Theorem 4 to apply. Choosing
the minimal case, we use Theorem 4 to upper bound αU (x)
by α

Sd2
sr −1(R0)(x) = exp[−dsrx

2/4)] [49]. Combining this with
Eq. (A10) leads to the desired result in Eq. (5).

The same argument follows for a function g(U ) =
‖σr (U ) − 1/dr‖1; therefore the inequality holds under ex-
change of system and reservoir labels. �

APPENDIX B: BOUND COMPARISON

Although no discernible hierarchy between ω and γ exists,
here we compare the tightness of these bounds to β〈Q〉.
In Fig. 2 we sample 5000 Haar random interactions and
initial states to analyze general behaviors in regions of the
parameter space. The average heat dissipated in these cases is
non-negative, so γ − ω > 0 implies that γ is a tighter bound.

The only distribution of γ − ω that has a significant propor-
tion of negative data points occurs for small-scale interactions
where the process occurs at low temperature [see Fig. 2(a)].
This shows that ω can provide a tighter bound to the average
heat than γ in this regime (ω outperforms γ for ∼35% of such
interactions). However, regardless of the temperature, when
either dimension is much larger than the other (or both are
large), γ almost always provides a tighter bound to the average
heat [see Figs. 2(b)–2(h)]. It is interesting to note that as the
dimension of the system increases, γ − ω tends to peak around
a specific value [see Figs. 2(c), 2(d), 2(g), and 2(h)].

The tightness of γ with respect to the average heat itself can
be understood from the distribution of β〈Q〉 − γ . Independent
of subsystem dimensions, γ provides a tight bound when the
process occurs at high temperatures [see Figs. 2(b), 2(d), 2(f),
and 2(g)], but a rather poor bound for interactions at low
temperatures (where all other known bounds also perform
poorly). Note that as the dimension of the reservoir increases,
β〈Q〉 − γ tends to 0 and so GPM’s bound is tight.
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