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We study very simple sorting algorithms based on a probabilistic comparator model. In this model, errors in
comparing two elements are due to (1) the energy or effort put in the comparison and (2) the difference between
the compared elements. Such algorithms repeatedly compare and swap pairs of randomly chosen elements,
and they correspond to natural Markovian processes. The study of these Markov chains reveals an interesting
phenomenon. Namely, in several cases, the algorithm that repeatedly compares only adjacent elements is better
than the one making arbitrary comparisons: in the long-run, the former algorithm produces sequences that are
“better sorted”. The analysis of the underlying Markov chain poses interesting questions as the latter algorithm
yields a nonreversible chain, and therefore its stationary distribution seems difficult to calculate explicitly. We
nevertheless provide bounds on the stationary distributions and on the mixing time of these processes in several
restrictions.
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I. INTRODUCTION

Statistical mechanics deals with complex systems made of
a large number of simple interacting particles whose behavior
is inherently probabilistic. In such systems, the temperature
governs the probabilistic behavior of the simple interactions,
and ultimately reflects into a global state of the system when
it reaches an equilibrium. Typically, low temperature results
in ordered configurations, and high temperature results in
disordered ones.

In this work, we use a similar approach to model a basic
problem in computation, namely, the problem of sorting
elements using erroneous pairwise comparisons (see below).
Roughly speaking, in our model the “temperature” corresponds
to the “error probability” of a single comparison, and each com-
parison corresponds to an “interaction” between two different
particles—numbers—which swap their position according to
the result of the comparison:

higher temperature ↔ higher error probability,

particle interaction ↔ paiwise comparison.

Suppose one has to sort a number of elements by making
pairwise comparisons, but sometimes the result of a compari-
son is incorrect. Errors are often unavoidable, or even deliber-
ately introduced to save other important resources. For exam-
ple, errors occur in measurements that require high precision
(where a small noise can affect the result) or judgment made by
individuals (who naturally tend to make small mistakes) [2–4].
Also, when constructing integrated circuits with probabilistic
complementary metal-oxide-semiconductors (abbreviated as
PCMOS), it is possible to trade energy for errors, that is, one
can reduce the energy spent for a single operation but this will
increase the probability of incorrect response [5]. One can thus
envision the following situation:

*A technical report version of this work appeared in Ref. [1].

(1) It is “easier” to compare two elements if they differ “a
lot”, while errors are more likely when they are “very close.”

(2) If we are able or willing to spend more energy (effort)
on a single comparison, then we can increase the probability
of getting the correct result.

Given this scenario, one would like to decide what strategies
are good to sort the elements nearly correctly. In particular, we
ask the following question:

How is the performance/result influenced by different strate-
gies (algorithms)?

The problem of sorting has been addressed under various
models of errors (see, e.g., Refs. [6–8]). The purpose of this
work is to study the above question under an error model which
captures the two features described in Items 1 and 2. To this end,
we consider a very simple type of algorithms based on repeated
comparisons and swaps of randomly chosen elements.

A. Our contribution

In this work, we look at extremely simple sorting processes
on what we call a probabilistic comparator model, which is
inspired by classical models in statistical physics (see below
for details on our model). When sorting a set of elements, one
performs several comparisons between pairs of elements for a
certain number of steps. At each step, the compared elements
are swapped or not according to the result of their comparison.
Comparing and swapping identical elements does not change
the sequence. Consider the following two simple algorithms:

(1) Arbitrary swaps. Compare two randomly chosen ele-
ments of the sequence.

(2) Adjacent swaps. Compare a randomly chosen element
with the next one in the sequence.

We experimentally observed the following interesting phe-
nomenon (see Fig. 1):
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FIG. 1. Comparison of two simple algorithms for sorting: on
the long run the algorithm doing only adjacent comparisons gives
a better result compared to the one doing all comparisons. The
weighted number of inversions (y axis) is a measure of the “disorder”
of the current sequence. Both algorithms operate under the same
conditions (same input sequence and identical error probabilities
of comparisons). In particular, the input sequence is (50,49, . . . ,1)
which has the highest weighted number of inversions, while the sorted
sequence is (1,2, . . . 50) with zero weighted number of inversions. The
probability of errors is controlled by a parameter λ (in this experiment
λ = e

1
15 , though the same behavior occurs for essentially any fixed λ

as shown in Sec. VI).

The algorithm performing only adjacent swaps gives better
results than the one with arbitrary swaps after a certain number
of comparisons are made.

Intuitively, the y axis in Fig. 1 measures the “disorder” in the
current sequence in each algorithm. Note that the initial input
sequence is irrelevant as long as we consider sufficiently many
steps of such algorithms. This is perhaps the second important
observation that one can make looking at Fig. 1:

The time for these two processes to reach an equilibrium seems
also significantly different, as the “less accurate” arbitrary
swaps algorithm is faster.

These properties can be formally captured by viewing these
algorithms as Markov chains, and by analyzing their stationary
distribution and their mixing time. As we discuss below, the
analysis of the chain with adjacent swaps leads to an interesting
notion of “disorder” of a sequence which we call weighted
number of inversions. We next describe more in detail our
contributions.

Probabilistic comparator model. We introduce a simple
model in which the probability that a comparison between two
elements (numbers) is correct depends on two factors: (1) how
different the two elements are and (2) the “effort” or “energy”
spent to make the comparison. Intuitively speaking, the more
energy the more accurate is the comparison, meaning that even
very similar elements (small difference) can be distinguished.
More precisely, for an energy parameter λ � 1, a comparison
between two numbers a and b is correct with probability

pab := λb−a

λa−b + λb−a
,

where b is the biggest between a and b. One should think about
a single comparison as a measurement of two quantities, which
sometimes can be erroneous especially when the difference is
small. All comparisons (including those involving the same

two numbers) are independent and performed with the same
parameter λ. That is, we consider independent errors in which
the error probabilities are described by the formula above.

Remark 1 (Our model, statistical physics, and further con-
nections). Our comparison model is inspired by classical
models in statistical physics [9] and in game theory [3], where
λ = e1/noise. In statistical physics, the noise parameter is the
“temperature” of the system, and high temperature corresponds
to highly disordered configurations. In game theory, 1/noise
represents to the “rationality level” of the players, i.e., their
ability to distinguish between strategies with similar payoffs.
To some extent, this model can be seen as an abstraction
of the probabilistic CMOS technology which allows to trade
energy for correctness [5]. As our model attempts to abstract
from hardware-specific construction details, it necessarily
introduces certain simplifying assumptions. Arguably, the
major of these assumptions is that the probability of errors
depends uniquely on the difference between the two numbers
to be compared, and not on their actual values. However, the
parameter λ captures the property that, by increasing the energy
per single operation, the probability of correct comparisons
increases in some way (depending on the hardware). A similar
model in which “close” elements are difficult to distinguish is
the one in Ref. [2], where comparisons are always correct if the
difference between the compared elements is above a certain
threshold (see also Ref. [4]).

Algorithms and Markov chains. The two algorithms above
(and others) can be viewed as Markov chains whose stationary
distribution describes the output if we let them run long enough.
We believe that these processes are interesting by themselves
(for instance, they can be seen as variants of other well-studied
processes—see Sec. I B), and they pose new questions on
how to analyze them. We first show that the adjacent swaps
algorithm corresponds to a reversible Markov chain Madj and
its stationary distribution has a simple closed formula of the
form

π (s) ∝ λ−2w(s), (1)

where w() is what we call the weighted number of inversions
of sequence s,

w(s) :=
∑

i<j :si>sj

si − sj ,

a measure of its “distance” from the correctly sorted sequence.
Intuitively, inversions involving very different elements count
more than inversions of almost identical elements. In contrast,
the algorithm with arbitrary (random) pair comparisons cor-
responds to a nonreversible chain Many, and therefore the
analysis of its stationary distribution is considerably more
complicated.

Figure 1, and all experiments we made on various input
sequences and parameters (see the Appendix), suggest that
Madj yields better sorted sequences than Many, though the
latter chain converges faster to its stationary distribution.
We study both the mixing time and the properties of the
stationary distribution, like the probability of returning the
sorted sequence. Since Many is nonreversible and difficult to
analyze, we focus on special cases of sequences where we
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TABLE I. Overview of our results (from “simpler” to “harder” instances): The table contains rows, each for a different type of input instances:
One outlier sequences contain contain n − 1 a’s and 1 b > a. Binary Input sequences contain na a’s and nb b’s, such that n = na + nb. Three
elements sequences contain three elements, such that not all three of them are equal. In column two and three we compare the two Markovian
processes Madj and Many, respectively, on the different types of inputs: Our results include bounds on the mixing time of the Markov chains
(for One outlier and Binary inputs), the probability to sort correctly (for One outlier and Three elements), and the expected weighted number
of inversions in the stationary distribution (for One outlier). For every result, the corresponding theorem is stated in the third column.

Adjacent swaps (Madj) Arbitrary swaps (Many)

One outlier Mixing time
(containing n − 1 O(n2) O(n) Theorems 12 and 15

a’s and 1 b > a, Probability to sort correctly
error probability Constant (> 1−2p

1−p
) Vanishing (< 1−p

np
) Theorem 16

p = pba) Expected weighted number of inversions
O(1) �(n) Theorem 16

Binary inputs Mixing time
(containing na O(n2) O(n log n′) Theorems 12 and 15

a’s and nb b’s) (n′ = min{na,nb})
Three elements Probability to sort correctly
(not all of them Better than Many Worse than Madj Theorem 20
are equal)

either reduce their size or number of distinct elements (see
Table I for an overview of our results):

(1) Mixing time. In Sec. IV, we consider the case of binary
sequences, where each element in the sequence is either a or b.
We show that the mixing time ofMadj is O(n2), while forMany

it is O(n log n), or even linear if the number of occurrences of
b is constant, for every λ > 1.

(2) Sortedness. In Sec. V, we study the probability that
the chains return the sorted sequence at stationary distribution.
We show that Madj is better than Many when sorting three
arbitrary elements. This result is based on the Markov chain
tree theorem and it is the most involved in this section. Similar
results hold also for sorting arbitrary long sequences with a
single outlier, that is, binary sequences with a single element
b > a and many a’s. Here the analysis shows a quantitative
difference between the two chains (cf. Theorem 16).

We also provide a variant of Many in which comparisons
of nonadjacent pairs are done multiple times: For example, if
numbers a and b are two positions away in the current sequence
(say a = si and b = si+2) then we perform two comparisons
and accept to swap them only if both of them tell to do so.
We show that this third chain M∗

any has the same stationary
distribution as Madj (Theorem 10). This implies that all the
results on sortedness apply also to M∗

any in place of as Madj.
Therefore, one can see this “careful swapping” rule as a way
to fix the algorithm doing naively arbitrary swaps.

Remark 2 (Related processes in statistical physics). The
processes considered in this work, besides being quite natural,
generalize the well-studied asymmetric simple exclusion
process—ASEP—see, e.g., Refs. [10–16]. Specifically, what
we call in this paper the binary case, i.e., sorting sequences
made of only two different types of elements, a and b,
performing only adjacent comparisons, is precisely the ASEP.
This is the simplest of our processes, and generalizations are
obtained when performing nonadjacent comparisons and/or
considering sequences in which all elements are different
from each other.

The ASEP is a special case of models known as driven lattice
gases [17,18], which describe systems of hopping and interact-
ing particles, i.e., particles moving at random to neighboring
positions if that position is unoccupied. The ASEP has many
applications in physical chemistry and statistical mechanics,
including protein synthesis [12], traffic flow problems [19],
growth models [20], and vertex models [21,22].

B. Related work

Stochastic models of the form of Eq. (1) are very common in
statistics and, in particular, Mallows [23] was among the firsts
to consider such models in the context of permutations: Their
weight functionw() is a suitable distance function which comes
from probabilities pab of ranking a before b. In that sense, our
model is a special case of Mallows’, though the procedure
of Ref. [23] is different: all pairwise comparisons are made
at once until a consistent result is obtained. Our probabilistic
comparator is also a special case of Bradley and Terry’s [24],
where the probability pab is of the form wa

wa+wb
(our model

corresponds to wa = λ2a).
Several restrictions on pab have been studied for the natural

Markov chain which makes only adjacent comparisons. The
classical card shuffling problem corresponds to the unbiased
version of this chain in which all probabilities pab equal 1/2,
for which Wilson [25] proved that this chain is rapidly mixing
and gave a very tight bound. A similar problem is the uniform
sampling of partial order extensions, which corresponds to
probabilities pab being 1/2 or 1 and pba = 1 − pab. For the
latter, Bubley and Dyer [26] showed that this chain is also
rapidly mixing. Benjamini et al. [27] proved rapidly mixing
for the constant biased case, that is, when every comparison
is correct with some fixed probability p > 1/2, independently
of the compared elements: pab = p > 1/2 for all a < b. The
mixing time of biased comparisons has been studied by Bhakta
et al. [28] under two comparison models called “choose your
weapon” and “league hierarchies”: In the first model, pab
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depends only on the largest between a and b, while in the
second model all numbers are the leaves of some tree and pab

depends only on the least common ancestor of a and b. Note
that our model does not fall in either class even for the case of
only three distinct elements. A recent work by Haddadan and
Winkler [29] studied the process with adjacent comparisons
on ternary inputs (linear particle systems with three particles
types, in their terminology) and showed that the mixing time
of this Markov chain is at most O(n10). This result is used
to show that the process which distinguishes swaps between
identical elements (called gladiator chain in that work) is also
rapidly mixing, where the upper bound on the mixing time is
O(n18).

The phenomenon observed in our work (Fig. 1), has been
subsequently studied by Gavenčiak et al. [30] for the con-
stant biased case (constant probability p > 1/2 of correct
comparison). They indeed proved that adjacent swaps result
in sequences with fewer inversions than any pairs swaps. The
weighted number of inversions, which arises in our work from
the analysis of the adjacent swaps chain, turns out to be a useful
for Ref. [30] in bounding the mixing time of their process.

Diaconis and Ram [31] studied a different type of chains
called systematic scan algorithms: for the unbiased case, they
proved that n of such scan operations are sufficient to reach the
stationary distribution.

C. Preliminary definitions on Markov chains

In this section, we introduce some of the definitions on
Markov chains used throughout this work (for more details,
see Ref. [32]). A Markov chain over a finite state space S

is specified by a transition matrix P , where P (s,s ′) is the
probability of moving from state s to state s ′ in one step.
The t th power of the transition matrix gives the probability
of moving from one state to another state in t steps. All chains
studied in this work are ergodic meaning that they have a
unique stationary distribution π : for any two states s and s ′,
limt→∞ P t (s,s ′) = π (s ′). The mixing time of a Markov chain
is the time needed for P t (s,·) to get “sufficiently close” to π

for any starting state s:

tmix(ε) := min
t∈N

max
s∈S

{‖ P t (s,·) − π ‖T V � ε},

where ‖ P t (s,·) − π ‖T V = 1
2

∑
s ′∈S |P t (s,s ′) − π (s ′)| is the

total variation distance.
We will use the definition of a reversible Markov chain, also

called detailed balanced condition: If the transition matrix P

admits a vector π such that π (s)P (s,s ′) = π (s ′)P (s ′,s) for all
s and s ′, then π is the stationary distribution of the chain with
transitions P .

An equivalent characterization of reversible chains is given
by looking at cycles over the states. For any subset � ⊆ S × S

of transitions (pairs of states of the chain), define the associated
probability as the product of all these transitions in the chain,

P(�) :=
∏

(x,y)∈�

P (x,y). (2)

Let �−1 denote the reversed edges in �, that is, �−1 :=
{(y,x)| (x,y) ∈ �}. The Kolmogorov reversibility criterion
[33] says that a chain is reversible if and only if for any

cycle C,

P(C) = P(C−1). (3)

For the sake of clarity, we sometimes denote cycles as C =
s1 → s2 → · · · → s� → s1 and the corresponding reversal by
C−1 = s1 ← s2 ← · · · ← s� ← s1.

The stationary distribution of any (even nonreversible)
Markov chain can be computed by looking at the probabilities
of all directed trees rooted at some state. More formally, let
T (s) be the set of all directed trees rooted at state s, that is,
from every other state there is a path towards s in the tree.
The Markov chain tree theorem (see Ref. [34], Chapter 6,
Lemma 3.1) says that, for any ergodic Markov chain with
transition matrix P , its stationary distribution π is given by

π (s) = W (s)∑
ŝ∈S W (ŝ)

, where W (s) :=
∑

T ∈T (s)

P(T ). (4)

II. A MEASURE OF DISORDER
(WEIGHTED NUMBER OF INVERSIONS)

It turns out that the analysis of the stationary distribution
of the algorithm performing only adjacent swaps leads to an
interesting measure of disorder. In this section, we introduce a
formal definition of such a measure, which we call the weighted
number of inversions. The next section will connect this notion
to the stationary distribution of the algorithm mentioned above.

Definition 3. The weighted number of inversions of a se-
quence s is defined as

w(s) :=
∑

i<j :si>sj

si − sj .

Example 4. Consider the sequence s = (5,2,3) and the
sorted sequence (2,3,5). Then the weighted number of inver-
sions of s is equal to w(s) = (5 − 2) + (5 − 3) = 5.

The displacements of the single elements allow an equiva-
lent way to describe the weighted number of inversions (this
equivalent definition turns out to be useful in the next section).

Lemma 5. For a sequence s, let s(sort) be the sequence sorted
in nondecreasing order. Then, w(s) = ∑

i(s
(sort)
i − si)i.

Proof. In the sum
∑

i<j :si>sj
si − sj , every element si is

added ri and subtracted li times, where ri is the number of
smaller elements on its right-hand side and li the number of
larger elements on its left. Thus,

∑
i<j :si>sj

si − sj =
∑

i

(ri − li)si .

The difference di = ri − li corresponds to the displacement of
si to the left compared to the sorted sequence; i.e., s

(sort)
i+di

= si .
Note that with this notation we have that w(s) = ∑

i disi .
Consider now the sum

∑
i(s

(sort)
i − si)i = (

∑
i s

(sort)
i i) −

(
∑

i si i). Each element si = s
(sort)
i+di

appears twice in this quan-
tity: once multiplied by i + di in the first summation and
once multiplied by −i for the second one. The contribution
of each si to the quantity is thus exactly disi , and therefore∑

i(s
(sort)
i − si)i = ∑

i disi = w(s). �
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(a) Chain Madj .
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(b) Chain Many.

abc cba

bac

acb

bca

cab

a − b

b − c

a − c

a − c

b − c

a − b

2(b − a)2(a − b)

2(a − c)

(c) Chain M∗
any.

FIG. 2. The three chains for sorting three elements abc; A transition with label w has probability λw

λw+λ−w ; for clarity, we only show forward
transitions.

III. SORTING ALGORITHMS AS MARKOV CHAINS

In this section we define the algorithms and the resulting
Markov chains. The first chain performs only adjacent com-
parisons, whereas the second and the third chains allow us to
compare and swap any two numbers of the sequence. In Fig. 2,
each chain is illustrated by a three-elements example.

Definition 6. The chain Madj (adjacent swaps) is defined
as follows:

(1) Pick an index i in {1, . . . ,n − 1} uniformly at random;
(2) Swap si = a and si+1 = b with probability λa−b

λa−b+λb−a .
Definition 7. The chain Many (arbitrary swaps) is defined

as follows:
(1) Pick two indexes i and j in {1, . . . ,n} uniformly at

random, with i < j ;
(2) Swap si = a and sj = b with probability λa−b

λa−b+λb−a .
Definition 8. The chain M∗

any (arbitrary swaps reversible)
is defined as Many except that the probability of swapping

si = a and sj = b is ( λa−b

λa−b+λb−a )
j−i

.
The above processes are quite natural, and they can also be

seen in a slightly different way. In particular, the chain Madj

is equivalent to both the following two processes:
(1) Pick a pair of consecutive positions i and i + 1 uni-

formly at random [probability 1/(n − 1)] and compare the
elements in position i and i + 1.

(2) Pick an index i uniformly at random in {2, . . . ,n} and
always compare the element in this position with the previous
one (index i − 1), instead of the next one as in Definition 6.

Another variant would be to allow both next and previous
comparisons, that is, to pick a random element and compare it
with one of its two neighbors chosen at random:

(1) Pick an index i uniformly at random in {1,2, . . . ,n}, and
a random direction r ∈ {−1,+1} (previous or next). Compare
the element in position i with that in position i + r if the latter
is a valid position, i.e., i + r ∈ {1, . . . ,n}; otherwise, whenever
i + r is not a valid position, do nothing.

The above process can be intuitively thought as one “ran-
dom particle” interacting with one of its two “neighbors”
chosen also at random. The “interaction” is the comparison
whose result decides if the two particles swap their relative
positions. This process is simply a lazy version of Madj since
it chooses which comparison to perform as follows:1

1To see that this is indeed the case, note that each of the n − 1 pairs
(i,i + 1) is chosen with probability 1/n, and with probability 1 − 1/n

we do nothing.

(1) With probability 1/n do nothing;
(2) With probability 1 − 1/n pick one of the n − 1 possible

pairs (i,i + 1) with uniform distribution (thus make one step
of chain Madj).

The stationary distribution of Madj automatically gives us
the stationary distribution of the process above as they are
the same. Analogously, for Many and M∗

any one can define
a lazy variant in which, after picking a random index i, we
choose a random direction and distance for the comparison:
pick r ∈ {−n + 1,n − 1} uniformly at random and compare
elements in position i and i + r if the latter is a valid position
(and do nothing otherwise). In this case, each pair (i,j ) with
i < j is chosen with probability 1

n
1

2(n−1) + 1
n

1
2(n−1) = 1

n
1

(n−1) ,

and with probability 1
n

we do nothing. The probabilities of
actually swapping the compared elements are the same as in
definitions of Many and M∗

any, respectively.
In both cases, the lazy version of the chains is just a constant

factor slower than its original counterpart, therefore asymptotic
bounds in the mixing time of the original chains apply also
to the lazy variant. Furthermore, the processes are indeed
equivalent in the sense that the chains converge to the same
stationary distribution (see, e.g., Ref. [32]).

A. (Non-)Reversibility and stationary distribution

We show below that both Madj and M∗
any are reversible and

possess the same stationary distribution. Moreover, we prove
that this stationary distribution assigns higher probabilities to
the sequences that are “nearly sorted” as it corresponds exactly
to the weighted number of inversions (see Sec. II). Finally, we
show that the chain Many is instead nonreversible.

Theorem 9. The chain Madj is reversible with stationary
distribution π (s) ∝ λ−2w(s), where w(s) is the weighted num-
ber of inversions.

Proof. We prove that Madj is reversible. Let s and s ′ be two
sequences that differ in i’s swap [otherwise, P (s,s ′) = 0 =
P (s ′,s) and reversibility is trivial]. Observe that by definition

P (s,s ′)
P (s ′,s)

= λ2(si−si+1) = λ2(a−b) and
π (s ′)
π (s)

= λ2w(s)−2w(s ′).

Since s ′ is obtained from s by swapping a = si and b = si+1,

w(s) − w(s ′) = (
s

(sort)
i − si

)
i − (

s
(sort)
i − s ′

i

)
i

+ (
s

(sort)
i+1 − si+1

)
(i + 1)

− (
s

(sort)
i+1 − s ′

i+1

)
(i + 1)

= a − b,
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a b

b a

b

b

x

y

i∗ j∗ k

a b

b a

a

a

x

y

i∗ j∗ k

FIG. 3. Idea of the coupling (proof of Lemma 14). On the left: arrows show how to obtain sequences xi∗×k and yj∗×k , respectively. On the
right: arrows show how to obtain sequences xj∗×k and yi∗×k , respectively. In either case, the resulting sequences are identical.

where s(sort) is the sorted sequence. Therefore the detailed
balance condition is satisfied. �

Theorem 10. The chainM∗
any is reversible and has the same

stationary distribution as Madj.
Proof. To prove that M∗

any has the same stationary distri-
bution as Madj, consider any transition from s to s ′ which
swaps two elements at distance k � 1. There exists a path P in
Madj that leads from s to s ′ and whose probability equals the
one of the single swap in M∗

any,

P(P) =
∏

(x,y)∈P
P (x,y) = λk(a−b)

D(P)
.

The path is obtained by simulating the swap between a and b

via adjacent swaps:

P := (. . . ax1 . . . xk−1b . . . ) → (. . . x1a . . . xk−1b . . . ) · · ·
→ (. . . x1 . . . xk−1ab . . . ) → (. . . x1 . . . xk−1ba . . . )

→ (. . . x1x2 . . . bxk−1a . . . ) · · ·
→ (. . . bx1x2 . . . xk−1a . . . ),

which yields in the numerator the product

λ(a−x1)+···+(a−xk−1)+(a−b)+(xk−1−b)+···+(x1−b) = λk(a−b) .

Note also that the reverse path P−1 leading from s ′ to s has
probability P(P−1) = λk(b−a)

D(P) , where the denominator D(P) is
the same as above because all transitions in the chains are of
the form P (x,y) = Nxy/Dxy with Dxy = Dyx . Since Madj is
reversible, we get the first of the following equalities:

π (s ′)
π (s)

= P(P)

P(P−1)
= λk(a−b)

λk(b−a)
= P ∗(s,s ′)

P ∗(s ′,s)
,

where P ∗ is the transition matrix of M∗
any. Thus, the detailed

balance condition for P ∗ is satisfied and π is the stationary
distribution of M∗

any. �
In contrast to the other two chains, we show that Many is

not reversible. This suggests that its stationary distribution is
not easy to derive, and therefore also the comparison between
Many and Madj is difficult.

Theorem 11. The chain Many is not reversible.
Proof. Consider three elements a � b � c, not all three

equal. We say that an edge has length w if its transition
probability is of the form λw

λw+λ−w . The length of a path is
the total length of its edges. The cycle C = (abc) → (bac) →
(bca) → (cba) → (abc) in Fig. 3 has a length different from
the reversed cycle, i.e., P(C) �= P(C−1). This violates the
Kolmogorov reversibility criterion Eq. (3). �

In our experiments (see Sec. VI), it turns out that doing
only adjacent comparisons (Madj) is better than doing arbitrary
comparisons (Many), in the sense that the expected weighted

number of inversions in their stationary distribution is lower for
Madj than for Many; the following sections provide analytical
results for special cases. Note that Theorem 10 says that in the
long-run M∗

any is as good as Madj.

IV. BINARY INPUTS

In this section we restrict to the case in which every element
in the sequence is either a or b for some b > a. That is, the
sorted sequence is (a, . . . ,a,b, . . . ,b). We denote the number
of a’s and b’s by na and nb, respectively.

A. Mixing time

For binary inputs, we can uniquely express every sequence
by a vector v = (v1, . . . ,vnb

) with v1 � v2 � · · · � vnb
, where

vi ∈ {0, . . . ,na} denotes the number of inversions of the ith b in
the sequence (for example, babba corresponds to 211, while
babab corresponds to 210). Such a vector is visualized as a
monotonically decreasing “staircase” in a nb × na grid and
Madj corresponds to the biased Markov process in Ref. [35].
The bounds on the mixing time for this process translate
immediately for our chain.

Theorem 12 (by Theorem 2.1 in Ref. [35]). For binary in-
puts, the mixing time of Madj satisfies

tmix(ε) = O(n2 log(ε−1)).

Observe also that the chain Madj corresponds to the well-
known ASEP (see, e.g., Refs. [10–16,27,28] for the analysis
of the corresponding Markov chain).

We next consider Many and prove an upper bound. To
bound the mixing time of Many we use the method of path
coupling [36]. A path coupling for a chain M can be specified
by providing distributions

Px,y[X = x ′, Y = y ′], for all x,y ∈ S such that P (x,y)>0,

(5)

satisfying, for all x,y ∈ S such that P (x,y) > 0,

Px,y[X = x ′] = P (x,x ′) for all x ′ ∈ S, (6)

Px,y[Y = y ′] = P (y,y ′) for all y ′ ∈ S. (7)

We use ρ to denote the shortest-path distance in the Markov
chain, i.e., ρ(x,y) is the minimum number of transitions to go
from x to y.

Lemma 13 (Theorems 2.1 and 2.2 in Ref. [36]). Suppose
there exists β < 1 such that, for all x,y ∈ S with P (x,y) > 0,
it holds that

Ex,y[ρ(X,Y )] � β. (8)
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Then the mixing time tmix(ε) of the Markov chain under
consideration satisfies

tmix(ε) � log(Dε−1)

1 − β
,

where D is the maximum value that ρ achieves on S × S.
Path coupling for Many. Consider two sequences x and y

that differ by swapping elements in position i∗ and j ∗. For
every such pair (x,y) we specify the probabilities in Eq. (5)
to move to a pair (x ′,y ′). We group the (n2) different swaps
between elements in positions i and j as follows:

(i∗,j ∗) ↔ (i∗,j ∗)

(i∗,j ) ↔ (j ∗,j )

(i,j ∗) ↔ (i,i∗)

(i,j ) ↔ (i,j ),

in the sense that if we consider the positions i∗ and j in one
sequence, we consider the positions j ∗ and j in the other
sequence, and vice versa. Clearly, this defines a bijection on the
swaps of the two sequences. Now let xi×j denote the sequence
obtained from x by swapping the two elements at positions i

and j . The path coupling is as follows:

for i∗,j ∗ (x,y) 
→ (y,y)

with P (x,y),

(x,y) 
→ (x,x)

with P (y,x),

for i∗,j (x,y) 
→ (xi∗×j,yj∗×j)

with min{P (x,xi∗×j),P (y,yj∗×j)},
(x,y) 
→ (xi∗×j,y)

with max{0,P (x,xi∗×j) − P (y,yj∗×j)},
(x,y) 
→ (x,yj∗×j)

with max{0,P (y,yj∗×j) − P (x,xi∗×j)},
for i,j ∗ (x,y) 
→ (xi×j∗ ,yi×i∗ )

with min{P (x,xi×j∗ ),P (y,yi×i∗ )},
(x,y) 
→ (xi×j∗ ,y)

with max{0,P (x,xi×j∗ ) − P (y,yi×i∗ )},
(x,y) 
→ (x,yi×i∗ )

with max{0,P (y,yi×i∗ ) − P (x,xi×j∗ )},
for i,j (x,y) 
→ (xi×j,yi×j)

with P (x,xi×j) = P (y,yi×j).

Finally, with all remaining probability,

(x,y) 
→ (x,y).

One can easily check that this is indeed a path coupling, that
is, Eqs. (6) and (7) are satisfied. The difficulty is in proving the
condition necessary to apply Lemma 13.

Lemma 14. Let p = 1 − pab. The path coupling defined
above satisfies condition Eq. (8) with

β � 1 − 2(1 + p(n − 2))

n(n − 1)
� 1 − 2p

n − 1
.

Proof. The second inequality follows from p(n − 2) + 1 �
pn, since p � 1

2 . We next prove the first inequality. Let x,y

be two sequences that differ in swapping positions i∗ and
j ∗, thus ρ(x,y) = 1. Since P (x,y) + P (y,x) = 1, the new
distance ρ(x ′,y ′) after choosing positions i∗ and j ∗ is always
zero. Furthermore, for every position k, such that k �= i∗ and
k �= j ∗, either ρ(xi∗×k,yj∗×k) = 0 or ρ(xk×j∗ ,yk×i∗ ) = 0 (see
Fig. 3), and the probability of accepting such a transition is
at least p. Note also that, in our coupling, each of these two
transitions correspond to exactly one choice of the pair (i,j )
of positions: in the first case (i,j ) = (i∗,k), and (i,j ) = (j ∗,k)
in the second case. Therefore, in either case, there are n − 2
such pairs, one for each possible k �∈ {i∗,j ∗}. Finally, it is
easy to see that after every other transition ρ(x ′,y ′) = 1. Since
there are (n2) pairs of positions in a sequence, we conclude that

E[ρ(x ′,y ′)] � (1 − 1+p(n−2)

(
n

2)
). �

Theorem 15. Let n′ = min{na,nb} � n
2 and p = 1 − pab.

The mixing time of Many is

tmix(ε) � n(log(n′) − log(ε))

2p
.

Proof. The maximum number of transitions required to go
from any sequence to any other sequence isD = min{na,nb} �
n
2 : with D swaps we can either move all a or all b to their
desired positions. By Lemmas 13 and 14, the claim follows
immediately. �

V. ONLY ADJACENT SWAPS IS BETTER

In this section, we prove for two special cases that in the
long run the chain Madj comparing only adjacent elements is
better than the chain Many performing comparisons between
two arbitrary elements, where better means that the expected
weighted number of inversion is smaller inMadj than inMany.

The first special case is when all elements are equal except
for one. As a special case of binary sequences, the mixing time
is implied. Additionally, we derive the stationary distribution
for both Madj and Many and prove some relations between
those two. In the second special case we leave binary sequences
and consider sorting of three arbitrary elements (not all of them
equal) and show that the probability of sorting correctly is
higher in Madj than Many. We will also see that already for
three elements, the analysis and derivation of the stationary
distribution is difficult.

A. One outlier

We call one outlier the case in which we have n − 1 small
identical elements, and only one bigger element (the outlier) to
be sorted. That is, the sorted sequence is (a,a, . . . ,a,b), with
b > a. Since swapping two identical elements does not change
the sequence, i.e., the state of the chain, we have n states which
correspond to the possible positions of b. We denote the state
in which b is in position i by s(i), so that s(n) = (a, . . . ,a,b) is
the sorted sequence and s(1) := (b,a, . . . ,a) is the “reversely
sorted” sequence. Note that the weighted number of inversions
of s(i) is (n − i)(b − a), thus the expected weighted number of
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inversions is

Ew :=
n∑

i=1

(n − i)(b − a)π (s(i)). (9)

It is useful for the analysis to consider the probability that
elementb > a is erroneously declared smaller thana in a single
comparison,

p := 1 − pab = λa−b

λa−b + λb−a
.

Observation 1. In the one outlier case, the chain Madj

becomes a so-called birth-and-death chain meaning that from
each state s(i) we can only move to s(i+1) or to s(i−1),
and the transition probabilities are P (s(i+1),s(i)) = p

n−1 and

P (s(i),s(i+1)) = 1−p

n−1 , for all i ∈ {1, . . . ,n − 1}. In the chain
Many every state is connected to all other states and the

transition probabilities are P (s(i),s(j )) = p/(n2) if i > j and

(1 − p)/(n2) if i < j .

The next theorem says that the chain Madj has a better
probability of returning the sorted sequence and a better
expected weighted number of inversions than Many.

Theorem 16. For the case of one outlier, the following
holds. The probability of obtaining the sorted sequence, at
stationary distribution, is constant for theMadj, while forMany

it converges to zero as n grows:

πadj(s
(sorted)) >

1 − 2p

1 − p
, πany(s(sorted)) <

1 − p

np
.

The expected weighted number of inversions is constant for
Madj and linear in n for Many:

Ew
adj <

p

1 − 2p
(b − a), Ew

any > np(b − a).

The theorem above follows immediately from the next two
lemmas, which we will state here and prove in Appendix A.
Recall that s(sorted)) = s(n).

Lemma 17. The stationary distributions of Madj and Many are

πadj(s
(i)) = pn−i(1 − p)i−1(1 − 2p)

(1 − p)n − pn
,

πany(s(i)) = np(1 − p)

[(n − i + 1)(1 − p) + (i − 1)p][(n − i)(1 − p) + ip]
.

Lemma 18. The expected weighted number of inversions for Madj and Many are

Ew
adj = n(b − a)p

[
1

n(1 − 2p)
− pn−1

(1 − p)n − pn

]
< (b − a)

p

1 − 2p
,

Ew
any = n(b − a)p

n−1∑
i=0

i(1 − p)

[(i + 1)(1 − p) + (n − i − 1)p][i(1 − p) + (n − i)p]
> n(b − a)p.

Finally, we conclude a corollary that compares the station-
ary distributions of two states in Madj and Many.

Corollary 19. For any two states s and s ′ that differ in ex-
actly one adjacent swap, if the weighted number of inversions
satisfies w(s ′) > w(s), then it holds that πadj(s ′)

πadj(s) <
πany(s ′)
πany(s) .

We will see in the next section, that this equation not only
holds for one outlier sequences of arbitrary length, but also for
sequences containing three arbitrary elements (Lemma 21).

B. Three arbitrary elements

Our second special case is to consider sorting three arbitrary
elements and to show that Madj has more chances to return the
sorted sequence than Many.

Theorem 20. For any three elements, not all of them iden-
tical, the chain Madj returns the sorted sequence with a
probability (at stationary distribution) strictly larger than that
of Many (at stationary distribution),

πadj(abc) > πany(abc) (10)

where abc is the sorted sequence (a � b � c), for all λ > 0.
To prove this theorem we show that the ratios between the

distribution of adjacent states in Madj gets “worse” in Many:

Lemma 21. For any two states s and s ′ that differ in exactly
one adjacent swap, if the weighted number of inversions
satisfies w(s ′) > w(s), then it holds that

πadj(s ′)
πadj(s)

<
πany(s ′)
πany(s)

. (11)

Proof Idea. We use the Markov Chain Tree Theorem
Eq. (4). Our goal is thus to show that
∑

T ∈T (s) P(T )∑
T ′∈T (s ′) P(T )

<
πadj(s)

πadj(s ′)
= λ2(w(s ′)−w(s)) for w(s) < w(s ′).

(12)

Ideally, one would like to find a bijection from trees T ∈ T (s)
to trees T ′ ∈ T (s ′) such that P(T )

P(T ′) <
πadj(s)
πadj(s ′) holds for each tree

T ∈ T (s). Unfortunately, this is in general not possible, so the
following slightly more involved argument is used:

(1) The simple mapping we use consists in reversing the
path from s ′ to s in T to obtain the new tree T ′. This mapping
is a bijection between T (s) and T (s ′).

(2) Because this mapping does not guarantee the desired
inequality for all trees T , we classify the trees in T (s) into
good and bad trees: a tree T is bad if P(T )

P(T ′) > λ2(w(s ′)−w(s)) and
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good otherwise. We then show that∑
T ∈bad P(T ) + ∑

T ∈good P(T )∑
T ∈bad P(T ′) + ∑

T ∈good P(T ′)
< λ2[w(s ′)−w(s)],

where T ′ is the tree obtained from T via the mapping in the
previous item. This proves Eq. (12) since good and bad define
a partition of T (s) and also a partition of T (s ′).

The details of this proof are given in Appendix B.
From this lemma it is easy to obtain Eq. (10) in Theorem 20.
Proof of Theorem 20. By transitivity, Lemma 21 implies

that, for all nonsorted sequences s �= (abc), πadj(s)
πadj(abc) <

πany(s)
πany(abc) ,

and therefore

πadj(abc) = 1

1 + ∑
s �=(abc)

πadj(s)
πadj(abc)

>
1

1 + ∑
s �=(abc)

πany(s)
πany(abc)

= πany(abc).

�

VI. EXPERIMENTAL EVALUATION

We conducted a set of experiments on several input se-
quences to compare the three sorting algorithms (chains Madj,
Many, and M∗

any). In our experiments, we consider the follow-
ing aspects:

(1) Low energy (high noise) regime. We evaluate how much
the first two algorithms are robust to an increase of the error
probability by takingλ = e1/noise for increasing values of noise.

We estimate the expected weighted numbers of inversions
of Madj and Many by computing the average value of a
set of samples after both chains have converged to a stable
distribution. The results in Fig. 4 show that Many degrades
much earlier than Madj.

(2) Evolution to stationary distribution. We compare all
three algorithms Madj, Many, and M∗

any in Fig. 5. These
experiments suggest that, for some intermediate range of noise
values, M∗

any possesses good features from both the other
algorithms: the weighted number of inversions decreases faster
than Madj, while its stationary distribution is of course better
than Many.

(3) Probability of getting sorted sequence. We evaluate
how the probability of hitting the sorted sequence changes
when the noise increases.

For this, we count the numbers of hits in a set of samples after
both chains have converged to a stable distribution. Figure 6
deals with the sequence of ten different elements {1,2, . . . ,10},
while Fig. 7 is about the one outlier {1,1,1,1,1,1,1,1,1,2}. In
both cases and for all values of noise, Madj has a higher hitting
rate of the sorted sequence than Many.

We will discuss these three types of experiments in the three
subsections below. To sample from the stationary distribution
we need two things: (i) the chain needs to be mixed, i.e.,
converged to its stationary distribution, and (ii) the samples
need to be independent.

(i) Convergence time.We consider a chain as converged as
soon as the averaged weighted number of inversions over inter-
vals of samples does not change (decrease further, when started
with the reverse order). Technically, this is not equivalent to
waiting until the chains are mixed, but is exactly what we need
if we are interested in the quality of the solutions.

noise
0 20 40 60 80 100w

ei
gh

te
d 

nu
m

be
r 

of
 in

ve
rs

io
ns

×10 4

0

2

4

6

8

10

adjacent swaps
max
min
arbitrary swaps
max
min

noise
100 200 300 400 500 600 700 800 900 1000w

ei
gh

te
d 

nu
m

be
r 

of
 in

ve
rs

io
ns

×10 4

0

2

4

6

8

10

12

adjacent swaps
max
min
arbitrary swaps
max
min

noise
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000w

ei
gh

te
d 

nu
m

be
r 

of
 in

ve
rs

io
ns

×10 4

0

2

4

6

8

10

12

adjacent swaps
max
min
arbitrary swaps
max
min

FIG. 4. A comparison of Madj (adjacent swaps) and Many (arbi-
trary swaps) on the long run.We measure the average, maximum, and
minimum weighted number of inversions for a certain number of steps
after both algorithms have approached their stationary distribution.
The elements to be sorted are (100,199, . . . ,1). From top to bottom:
The first graph shows the evolution of the weighted number of
inversions for increasing noise, where λ = e1/noise, from 0 to 100.
Similarly, in the second graph the noise is increased from 100 to
1000 and in the third graph from 1000 to 10 000. The graphs indicate
that by increasing the value of noise, the stationary behavior of Many

degrades much earlier than that of Madj.

(ii) Sampling from stationary distribution. Ideally, one
would start the chain anew for each sample and wait until
it is mixed. However, for the stationary distribution it does
not matter from which sequence the chain starts, thus we can
instead continue the chain for a sufficient number of steps
before sampling the next sequence.

A. Low-energy (high-noise) regime

For increasing values of error probabilities, we measure
the average, maximum, and minimum weighted number of
inversions for a certain number of steps after both algorithms
Madj and Many have approached their stationary distribution.

We start with a reversed sequence and let the chains evolve
until their average weighted number of inversions does not
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FIG. 5. A comparison of the three algorithms Madj (adjacent
swaps), Many (arbitrary swaps), and M∗

any (arbitrary swaps re-
versible). For three different values of noise, we plot for each
algorithm the evolution of the weighted number of inversions starting
from the sequence (100,99, . . . ,1). After every 20 steps of the
algorithm, the weighted number of inversions is plotted. From top
to bottom: The plots are for the noise values 0.5, 50, and 65, where
λ = e1/noise. The three graphs indicate that for some values of noise,
M∗

any possesses good features from the other two algorithms: the
weighted number of inversions decreases faster than Madj, while its
stationary distribution is of course better than Many, which is evident
in the second plot. Note that the number of steps matches the number
of comparisons made in Madj and Many, but not in M∗

any.

change anymore: we sample every R = 
(n2)th sequence
and compute the average weighted number of inversions avg
of T = 
(n) such consecutive samples. Then we compute the
average avg_new of the next T samples and compare it with
avg. If | avg_new

avg − 1| � c, where 0 < c < 1 is a small constant,
we say the chain is converged; otherwise, we repeat. After con-
vergence, we sample again every R′ = 
(n2)th sequence and
consider T ′ = 
(n) samples. Out of these, we compute
the average, maximum, and minimum weighted number of
inversions.

We repeat this experiment for different values of noise,
where λ = e1/noise is the energy parameter. The experiments
suggest that by increasing the value of noise, the stationary
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FIG. 6. A comparison of the two algorithms Madj (adjacent
swaps) and Many (arbitrary swaps). For each algorithm and for
increasing values of noise, we measure the probability of hitting
the sorted sequence among a certain number of samples after both
algorithms have converged. The noise increases from 0.2 to 2.8, where
λ = e1/noise, the initial sequence is (10,9, . . . ,1). The plot indicates
that, for increasing values of noise, the stationary probability of the
sorted sequence decreases faster in Many than in Madj.

behavior (average weighted number of inversions) of Many

degrades much earlier than that of Madj.
In Fig. 4, we plot the graphs for the initial sequence

(100,99, . . . ,1). We use parameters R = 100, T = 10 000,
c = 0.05, R′ = 1000, and T ′ = 20 000. In the three subfigures,
we consider three different ranges of noise values: from 0 to
100, from 100 to 1000, and from 1000 to 10 000.
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FIG. 7. A comparison of the two algorithms Madj (adjacent
swaps) and Many (arbitrary swaps) on binary sequences. For each al-
gorithm and for increasing values of noise, we measure the percentage
of hits of the sorted sequence after both algorithms have reached their
stationary distribution. The set of elements is {1,1,1,1,1,1,1,1,1,2}.
From top to bottom: In the first plot, the values of the noise lie between
0 and 3, where λ = e1/noise. In the second plot, the values of the
noise lie between 3 and 50. The plots show that, for increasing values
of noise, the stationary probability of the sorted sequence decreases
much faster and is always lower in Many than in Madj.
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B. Evolution to stationary distribution

In this experiment, we observe the evolution of the weighted
number of inversions for all three chains Madj, Many, and
M∗

any. In particular, we start from the reversed order and wait
until all chains have converged their stationary distributions.
This experiment is repeated for different values of noise, where
λ = e1/noise is the energy parameter.

We observe that for very small values of noise, the expected
weighted numbers of inversions are almost the same for Many

and Madj or M∗
any. Moreover, also the time to converge is

the same for the three chains. For an intermediate range of
noise values, the experiments suggest that, M∗

any is a good
compromise between the other two algorithms: the weighted
number of inversions decreases faster than Madj, while its
stationary distribution is of course better than Many. However,
for high values of noise, M∗

any converges even slower than
Madj. This can be explained with the observation that the
probability of performing a swap (at all) in M∗

any becomes
very small if the energy parameter tends to 1. For almost every
pair of elements in a sequence of n elements, its distance is in
O(n). Hence, a comparison of this pair is repeated O(n) times
and the probability that all outcomes are the same tends to 1

2n .
Remember also, that the time for one step of M∗

any can be
much higher than for Madj or Many, since it requires several
comparisons, i.e., the number of comparisons can be linear in
the length of the sequence.

In Fig. 5, we plot for each algorithm the evolution of
the weighted number of inversions starting from the sequence
(100,99, . . . ,1). After every 20 steps of the algorithm, the
weighted number of inversions is plotted. We illustrate the
experiment for three different values of noise, namely 0.5, 50,
and 65.

C. Probability of getting sorted sequence

In this experiment, we compare the stationary probability of
the sorted sequence ofMadj andMany. We let the chains evolve
until their average number of weighted inversions does not
change anymore (see Sec. VI A for the details). After conver-
gence, we sample every 
(n2)th sequence and consider 
(n2)
samples. Among those, we count the number of hits of the
sorted sequence. We repeat this experiment for different values
of noise, where λ = e1/noise. The experiment indicates that, for
increasing values of noise, the stationary probability of the
sorted sequence decreases much faster in Many than in Madj.

In Fig. 6, we show the plot for the sequence of ten different
elements {1,2, . . . ,10}. The chains are converged after 10 000
steps. The number of samples is 10 000 and we wait 1000
steps before the next sample. We let the noise increase from
0.2 to 2.8.

In Fig. 7 we illustrate the experiment for the one outlier
sequence {1,1,1,1,1,1,1,1,1,2}. Again, the chains are
converged after 10 000 steps. The number of samples is
10 000 and we wait 1000 steps before the next sample. We let
the noise increase from 0.2 to 2.8 in the first plot and from 3
to 50 in the second plot.

We chose a small number of elements, since otherwise the
probability of hitting is already very small and the differences
are hardly distinguishable by eyes.

VII. CONCLUSION AND OPEN QUESTIONS

In this work we initiated the compared analysis of simple
sorting processes (algorithms) based on repeated “compare and
swap” operations between pairs of elements. In particular, we
observed experimentally that adjacent swaps perform better
than arbitrary swaps in terms of sortedness of the sequence,
once the two processes have reached their respective equilib-
rium. In all of our experiments, the same behavior occurs at
different values of λ > 1 and for different input sequences (see
Sec. VI for details).

Our main technical contribution is to provide a rigorous
analysis of these processes in some restricted cases (see
Table I). In particular, we have studied their stationary distribu-
tions and mixing times: The former gives us the “sortedness”
of the sequence after “sufficiently many” comparisons, and
the latter gives us the number of such comparisons. For the
reversible process Madj with adjacent swaps, we are able to
characterize its stationary distribution in the general case.

The main obstacle in the analysis seems the lack of general
results on nonreversible Markov chains. For instance, nonre-
versible chains lead to the lifting technique to provide faster
versions of reversible chains [37,38]. The technique consists
of constructing a nonreversible chain which has the same
stationary distribution as a reversible. In our problem, instead,
we want to show that two given chains have significantly
different distributions. Also, other comparison techniques to
bound the mixing time in Markov chains are based on the
assumption that the chains are reversible [39].

The main question left open is to determine the stationary
distribution for the chain Many performing arbitrary swaps,
or at least an estimate of such probabilities for arbitrary input
sequences. Here we tackled the case of (1) binary inputs with
arbitrarily many elements and (2) three arbitrary elements.
These results support the intuition that what we see in Fig. 1
is not accidental. Perhaps more importantly, they give an
indication on the tools and on the difficulties towards the
general case. Already for binary inputs with more than one
outlier, results on sortedness are not straightforward, since the
chain is closely related to multidimensional birth-and-death
chains whose analysis is highly nontrivial, even in the two-
dimensional case [40]; the latter would relate to the two outliers
in our problem.

We also find it intriguing to compare the mixing time of
the three chains Madj, Many, and M∗

any. Recall that we proved
that M∗

any has the same stationary distribution of Madj. Our
experiments suggest that, for some values of λ > 1, M∗

any
might be a good compromise between Madj and Many, as it
is faster than Madj but slower than Many in terms of number
of steps. However, this picture of the processes is not entirely
fair since one step of M∗

any involves multiple comparisons,
while only one comparison per step is made in the other
two processes. These multiple comparisons also explain the
observation that, for small values of λ (high noise, low energy),
M∗

any converges even slower to its stationary distribution than
Madj, since swapping two elements is only possible if all
comparisons yield the same result.

An extension to adjacent and any pairs swaps would be to
parametrize the maximum distance of swaps, i.e., allow only
swaps between elements whose positions differ by at most a
threshold k where 1 � k � n. For constant biased comparisons
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(every comparison is correct with probability p > 1/2), it has
been shown that in such a case the expected weighted number
of inversions lies between the two extremal cases (adjacent and
arbitrary swaps) [30].
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APPENDIX A: PROOFS LEMMAS 17 AND 18
(ONE OUTLIER)

In this Appendix, we will prove Lemmas 17 and 18 from
Sec. V A.

Proof of Lemma 17. We get the stationary distribution for Madj using the global balance condition of stationary distribution,2

which implies that πadj(s(i)) = πadj(s(i+1))( 1−p

p
). By the structure of our Markov chain, it holds for any state s(j ) that

πadj(s
(j )) = πadj(s

(i))

(
1 − p

p

)i−j

.

Since the sum of all πadj is one, we can express πadj(s(i)) as

πadj(s
(i)) = 1 − πadj(s

(i))

⎡
⎣ i−1∑

j=1

(
p

1 − p

)j

+
n−i∑
j=1

(
1 − p

p

)j

⎤
⎦

= 1

1 + ∑i−1
j=1

(
p

1−p

)j + ∑n−i
j=1

( 1−p

p

)j
.

By applying the formula for geometric series, we rewrite the above equation and then expand all terms to the same deominator:

1

πadj(s(i))
= 1 +

1 − (
p

1−p

)i

1 − (
p

1−p

) − 1 +
1 − ( 1−p

p

)n−i+1

1 − ( 1−p

p

) − 1

= −(1 − 2p)(1 − p)i−1pn−i + (1 − p)ipn−i − pn − (1 − p)i−1pn−i+1 + (1 − p)n

(1 − 2p)(1 − p)i−1pn−i
.

Finally, we use that (1 − 2p) = (1 − p) − p and observe that the fraction simplifies to what we claimed.
The formula for the stationary distribution of Many is also derived using the global balance condition of stationary distribution.

For any state s(i) it holds that

πany(s(i))[(i − 1)p + (n − i)(1 − p)] = (1 − p)
i−1∑
j=1

πany(s(j )) + p

n∑
j=i+1

πany(s(j ))

= (1 − p)
i−1∑
j=1

πany(s(j )) + p

⎧⎨
⎩1 −

i∑
j=1

πany(s(j ))

⎫⎬
⎭

πany(s(i))[ip + (n − i)(1 − p)] = (1 − 2p)
i−1∑
j=1

πany(s(j )) + p.

By induction on i we show that this recurrence resolves to what we claimed. For i = 1 we immediately get
πany(s(1))[p + (n − 1)(1 − p)] = p. By multiplying both sides by n(1 − p), the claim follows trivially. For i > 1 we assume
that the recursive formula holds for i − 1 and we get

πany(s(i)) = (1 − 2p)
∑i−1

j=1 πany(s(j )) + p

[ip + (n − i)(1 − p)]
= (1 − 2p)

∑i−2
j=1 πany(s(j )) + p + πany(s(i−1))(1 − 2p)

[ip + (n − i)(1 − p)]

= πany(s(i−1))[(i − 1)p + (n − i + 1)(1 − p)] + πany(s(i−1))(1 − 2p)

[ip + (n − i)(1 − p)]

= np(1 − p)

[(n − i + 1)(1 − p) + (i − 1)p][ip + (n − i)(1 − p)]
.

�

2The stationary distribution π of a Markov chain with transition matrix P must satisfy
∑

s′ �=s π (s)P (s,s ′) = ∑
s′ �=s π (s ′)P (s ′,s), for any two

states s,s ′.
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Proof of Lemma 18. We apply the generic formula Eq. (9) to derive the expected weighted number of inversions of Madj and
Many. Since πadj(s(i)) = πadj(s(n))( p

1−p
)n−i we get

Ew
adj =

n∑
i=1

(n − i)(x − 1)πadj(s
(i))

= (x − 1)πadj(s
(n))

n−1∑
i=0

i

(
p

1 − p

)i

= (x − 1)
(1 − p)n−1(1 − 2p)

(1 − p)n − pn

(n − 1)
(

p

1−p

)n−1 − n
(

p

1−p

)n + (
p

1−p

)
(

p

1−p
− 1

)2

= n(x − 1)p

[
1

n(1 − 2p)
− pn−1

(1 − p)n − pn

]
.

Since 0 < p < 1
2 , the first inequality is immediate from pn

(1−p)n−pn > 0. For Many we have

Ew
any =

n∑
i=1

(n − i)(x − 1)πany(s(i)) = (x − 1)
n−1∑
i=0

iπany(s(n−i))

= n(x − 1)p
n−1∑
i=0

i(1 − p)

[(i + 1)(1 − p) + (n − i − 1)p][i(1 − p) + (n − i)p]
.

Observe that we can lower bound the sum in the formula by the following integral, which is larger than 1 if 0 < p < 1
2 :∫ n

0

i(1 − p)

[(i + 1)(1 − p) + (n − i − 1)p][i(1 − p) + (n − i)p]
di.

�

APPENDIX B: PROOF OF LEMMA 21
(THREE ARBITRARY ELEMENTS)

In this Appendix, we prove Lemma 21 from Sec. V B.
We shall use the Markov Chain Tree Theorem Eq. (4). Our

goal is thus to show that

∑
T ∈T (s) P(T )∑
T ′∈T (s ′) P(T )

<
πadj(s)

πadj(s ′)
= λ2(w(s ′)−w(s)) for w(s) < w(s ′). (B1)

The strategy to prove this inequality is to find a suitable
mapping from trees T ∈ T (s) to trees T ′ ∈ T (s ′) such that
P(T )
P(T ′) <

πadj(s)
πadj(s ′) . The basic mapping consists of reversing the

path from s ′ to s in T to obtain the tree T ′:
Definition 22. For any s and s ′, and for any tree T ∈ T (s)

its s ′-reversed is the tree T ′ equal to T but with the edges on
the path from s ′ to s reversed.

Hereafter, we call such a tree T ′ simply a reversed tree of T

if s and s ′ are clear from the context. We say that an edge has
length w if its transition probability is of the form λw

λw+λ−w . The
length of a path is the total length of its edges. The multiset of
a tree T is the set of absolute edge lengths appearing in T ,

ms(T ) = {w | some edge in T has length w or −w}.

Based on this multiset, we denote by ms(T ,w) the number of
edges in T whose length is either w or −w.

Fact 1. Let T be a tree containing a path from s ′ to s of
length �, and let T ′ be its reversed tree. Then the probabilities

of these two trees are of the form

P(T ) =λ�λL(T )

M(T )
and P(T ′) = λ−�λL(T )

M(T )
, (B2)

where L(T ) denotes the total length of the edges which are in
the tree but not in the path between s and s ′, and M(T ) depends
on the multiset ms(T ), i.e.,

M(T ) =
∏

w∈ms(T )

(λw + λ−w)ms(T ,w).

From Eq. (B2) we get P(T )
P(T ′) � λ2�. This motivates the

following definition.
Definition 23. For any s and s ′, we call a tree T ∈ T (s)

good if the length � of its path from s ′ to s satisfies λ2� � πadj(s)
πadj(s ′) .

Otherwise, we call T a bad tree.
By this definition the basic mapping of a bad tree does not

give the desired bound Eq. (B1). In such cases, we will map
groups of bad trees into groups of good ones, depending on s

and s ′.
The (bac) versus (bca) case. Observe that πadj(bac)

πadj(bca) = λ2(c−a).
In this case there is no bad tree, since all paths from (bca) to
(bac) have length at most c − a (see Fig. 8).

The (abc) versus (bac) case. Note that πadj(bac)
πadj(bca) = λ2(b−a).

Figure 9 shows all paths from s ′ = (bac) to s = (abc). Trees
using the path in Fig. 9(d) are bad, since this path has length
� = c − a > b − a. Trees using the path in Fig. 9(c) are bad if
c − b > b − a. We combine the bad trees with the good trees
[Figs. 9(b), 9(f), 9(h), and 9(i)].

Lemma 24. LetBAD(s) ⊂ T (s) be the set of bad trees with
s ′s-path Figs. 9(c) or 9(d), and let GOOD(s) ⊂ T (s) be the set
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FIG. 8. All paths from (bca) to (bac). There are no bad trees for these two states.
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FIG. 9. All paths from (bac) to (abc). Bad trees include path (c) or (d).
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FIG. 10. All paths from (cba) to (bca). Bad trees include path (d) or (e).
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FIG. 11. All paths from (acb) to (abc). Bad trees include path (d) or (e).
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FIG. 12. All paths from (cab) to (acb). There are no bad trees for these two states.
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FIG. 13. All paths from (cba) to (cab). Bad trees include path (c) or (d).
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of good trees with Figs. 9(b), 9(f), 9(h), and 9(i). Then,∑
T ∈BAD(s) P(T ) + ∑

T ∈GOOD(s) P(T )∑
T ∈BAD(s) P(T ′) + ∑

T ∈GOOD(s) P(T ′)
� λ2(b−a). (B3)

Proof. Let us use x := b − a, y := c − b, and x + y :=
c − a. The trees and their probabilities are shown in
Figs. 14–18. We will show⎡

⎣ ∑
T ∈BAD(s)

P(T ) +
∑

T ∈GOOD(s)

P(T )

⎤
⎦

� λ2x

⎡
⎣ ∑

T ∈BAD(s)

P(T ′) +
∑

T ∈GOOD(s)

P(T ′)

⎤
⎦,

which obviously implies Eq. (B3). To get rid of the fractions
in the probabilities we multiply them by the least common
multiple of their denominators, i.e.,

LCM := (λx+y + λ−x−y)3(λy + λ−y)3(λx + λ−x)2.

We get for the left-hand side of the inequality

LCM

⎡
⎣ ∑

T ∈BAD(s)

P(T ) +
∑

T ∈GOOD(s)

P(T )

⎤
⎦

= 6λ5x+4y + 16λ3x+4y + 10λx+4y + 6λ5x+2y + 26λ3x+2y

+ 42λx+2y + 18λ−x+2y + 8λx−2y + 24λ−x−2y

+ 12λ−3x−2y + 4λ−x−4y + 4λ−3x−4y + 10λ3x + 36λx

+ 42λ−x + 8λ−3x.

And we get for the right-hand side

λ2xLCM

⎡
⎣ ∑

T ∈BAD(s)

P(T ′) +
∑

T ∈GOOD(s)

P(T ′)

⎤
⎦

= 10λ5x+4y + 16λ3x+4y + 6λx+4y + 18λ5x+2y + 42λ3x+2y

+ 26λx+2y + 6λ−x+2y + 8λ5x + 42λ3x + 36λx + 10λ−x

+ 12λ3x−2y + 24λx−2y + 8λ−x−2y + 4λx−4y + 4λ−x−4y .

The difference between the left- and the right-hand side is

4λ5x+4y − 4λx+4y + 12λ5x+2y − 12λ−x+2y + 16λ3x+2y

− 16λx+2y + 8λ5x − 8λ−3x + 32λ3x − 32λ−x

+ 12λ3x−2y − 12λ−3x−2y + 16λx−2y − 16λ−x−2y+4λx−4y

− 4λ−3x−4y,

and we can pair up the terms to conclude that this difference
is positive. �

The (bca) versus (cba) case. Note that πadj(bca)
πadj(cba) = λ2(c−b).

Figure 10 shows all paths from s ′ = (cba) to s = (bca). We
can combine the bad trees with s ′s-path Figs. 10(d) or 10(e),
and the good trees with paths Figs. 10(c), 10(f), 10(h) and 10(i)
to show that the ratio between all trees and their reversals is
smaller than λ2(c−b):

Lemma 25. For the bad treesBAD(s) ⊂ T (a) with s ′s-path
Figs. 10(d) or 10(e), and the good treesGOOD(s) ⊂ T (a) with
paths Figs. 10(c), 10(f), 10(h), and 10(i) it holds that∑

T ∈BAD(s) P(T ) + ∑
T ∈GOOD(s) P(T )∑

T ∈BAD(s) P(T ′) + ∑
T ∈GOOD(s) P(T ′)

� λ2(c−b).

Proof. We proceed as in the proof for Lemma 24 and finally
get the difference between the left and the right-hand side:

4λ4x+5y − 4λ4x+y + 12λ2x+5y − 12λ2x−y + 16λ2x+3y

− 16λ2x+y + 8λ5y − 8λ−3y + 32λ3y − 32λ−y+12λ−2x+3y

− 12λ−2x−3y + 16λ−2x+y − 16λ−2x+−y + 4λ−4x+y

− 4λ−4x−3y . �
The other cases. There are three other pairs of states for

which we need to prove Lemma 21, namely the (acb) versus
(abc) case, the (cab) versus (acb) case, and the (cba) versus
(cab) case. However, the procedure is always the same: We
identify the bad and good trees and combine them to conclude
Eq. (11). For the missing paths consider Figs. 11–13. Moreover,
it turns out that these missing cases are somehow symmetric
to the previous cases. Indeed, the paths from (acb) to (abc) in
Fig. 11 include an equivalent set of weights of edges as those
from (cba) to (bca) in Fig. 10. The same is true for the cases
(bca) versus (bac) and (cab) versus (acb) (see Figs. 8 and 12),
and the cases (bac) versus (abc) and (cba) versus (cab) (see
Figs. 9 and 13).
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FIG. 14. Bad tree with path 9(c): (bac) → (cab) → (cba) → (bca) → (acb) → (abc), and good tree with path 9(i): (bac) → (bca) →
(acb) → (cab) → (cba) → (abc).
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FIG. 15. Bad trees with path 9(d): (bac) → (cab) → (acb) → (abc).
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FIG. 16. Good trees with path 9(b): (bac) → (bca) → (acb) → (abc).
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FIG. 17. Good trees with path 9(f): (bac) → (bca) → (cba) → (abc).
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FIG. 18. Good trees with path 9(h): (bac) → (cab) → (cba) → (abc).

052108-21



BARBARA GEISSMANN AND PAOLO PENNA PHYSICAL REVIEW E 97, 052108 (2018)

[1] B. Geissmann and P. Penna, Sort well with energy-constrained
comparisons, CoRR, abs/1610.09223 (2016).

[2] M. Ajtai, V. Feldman, A. Hassidim, and J. Nelson, Sorting and
selection with imprecise comparisons, ACM Trans. Algor. 12,
19 (2016).

[3] L. E. Blume, The statistical mechanics of strategic interaction,
Games Econ. Behav. 5, 387 (1993).

[4] L. L. Thurstone, A law of comparative judgment, Psychol. Rev.
34, 273 (1927).

[5] K. Palem and A. Lingamneni, Ten years of building broken chips:
The physics and engineering of inexact computing, ACM Trans.
Embedded Comput. Syst. 12, 87 (2013).

[6] L. Alonso, P. Chassaing, F. Gillet, S. Janson, E. M. Reingold,
and R. Schott, Quicksort with unreliable comparisons: A proba-
bilistic analysis, Combinator. Probabil. Comput. 13, 419 (2004).

[7] M. Braverman and E. Mossel, Noisy sorting without resampling,
in Proceedings of the 19th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA) (SIAM, Philadelphia, PA, USA,
2008), pp. 268–276.

[8] P. Hadjicostas and K. B. Lakshmanan, Recursive merge sort
with erroneous comparisons, Discrete Appl. Math. 159, 1398
(2011).

[9] M. Mezard and A. Montanari, Information, Physics, and Com-
putation (Oxford University Press, Oxford, 2009).

[10] T. M. Liggett, Interacting Particle Systems, Vol. 276 (Springer
Science & Business Media, Berlin, 2012).

[11] H. Spohn, Large Scale Dynamics of Interacting Particles
(Springer Science & Business Media, Berlin, 2012).

[12] C. T. MacDonald, J. H. Gibbs, and A. C. Pipkin, Kinetics of
biopolymerization on nucleic acid templates, Biopolymers 6, 1
(1968).

[13] C. A. Tracy and H. Widom, Asymptotics in ASEP with step
initial condition, Commun. Math. Phys. 290, 129 (2009).

[14] B. Derrida, An exactly soluble non-equilibrium system: The
asymmetric simple exclusion process, Phys. Rep. 301, 65 (1998).

[15] S. A. Janowsky and J. L. Lebowitz, Finite-size effects and
shock fluctuations in the asymmetric simple-exclusion process,
Phys. Rev. A 45, 618 (1992).

[16] F. Spitzer, Interaction of Markov Processes (Birkhäuser, Boston,
MA, 1991), pp. 66–110.

[17] G. de With, Appendix C: The Lattice Gas Model (Wiley-
VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2013),
pp. 487–494.

[18] C. N. Yang and T. D. Lee, Statistical theory of equations of state
and phase transitions. I. Theory of condensation, Phys. Rev. 87,
404 (1952).

[19] K. Nagel and M. Schreckenberg, A cellular automaton model
for freeway traffic, J. Phys. I France 2, 2221 (1992).

[20] C. Godrèche, Solids Far from Equilibrium (Cambridge Univer-
sity Press, Cambridge, UK, 1992).

[21] D. Kandel and E. Domany, Rigorous derivation of domain
growth kinetics without conservation laws, J. Stat. Phys. 58, 685
(1990).

[22] D. Kandel, E. Domany, and B. Nienhuis, A six-vertex model as
a diffusion problem: Derivation of correlation functions, J. Phys.
A 23, L755 (1990).

[23] C. L. Mallows, Non-null ranking models. I, Biometrika 44, 114
(1957).

[24] R. A. Bradley and M. E. Terry, Rank analysis of incomplete block
designs: I. The method of paired comparisons, Biometrika 39,
324 (1952).

[25] D. B. Wilson, Mixing times of lozenge tiling and card shuffling
Markov chains, Ann. Appl. Probabil. 14, 274 (2004).

[26] R. Bubley and M. Dyer, Faster random generation of linear
extensions, Discrete Math. 201, 81 (1999).

[27] I. Benjamini, N. Berger, C. Hoffman, and E. Mossel, Mix-
ing times of the biased card shuffling and the asymmet-
ric exclusion process, Trans. Amer. Math. Soc. 357, 3013
(2005).

[28] P. Bhakta, S. Miracle, D. Randall, and A. P. Streib, Mixing times
of Markov chains for self-organizing lists and biased permuta-
tions, in Proceedings of the 24th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA) (SIAM, Philadelphia, PA, USA,
2013), pp. 1–15.

[29] S. Haddadan and P. Winkler, Mixing of permutations by biased
transposition, in Proceedings of the 34th Symposium on Theo-
retical Aspects of Computer Science (STACS), Vol. 66 of LIPIcs
(Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl,
Germany, 2017), pp. 41:1–41:13.

[30] T. Gavenčiak, B. Geissmann, and J. Lengler, Sorting by swaps
with noisy comparisons, in Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO) (ACM, New
York, NY, USA, 2017), pp. 1375–1382.

[31] P. Diaconis and A. Ram, Analysis of systematic scan Metropolis
algorithms using Iwahori-Hecke algebra techniques, Michigan
Math. J. 48, 157 (2000).

[32] D. A. Levin, Y. Peres, and E. L. Wilmer, Markov Chains and
Mixing Times (American Mathematical Society, Providence, RI,
2009).

[33] F. P. Kelly, Reversibility and Stochastic Networks (Cambridge
University Press, Cambridge, 2011).

[34] M. Freidlin and A. D. Wentzell, Random Perturbations of
Dynamical Systems (Springer Verlag, New York, 1984).

[35] S. Greenberg, A. Pascoe, and D. Randall, Sampling biased lattice
configurations using exponential metrics, in Proceedings of the
20th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA) (SIAM, Philadelphia, PA, USA, 2009), pp. 76–85.

[36] M. E. Dyer and C. S. Greenhill, A more rapidly mixing Markov
chain for graph colorings, Random Struct. Algorithms 13, 285
(1998).

[37] P. Diaconis, S. Holmes, and R. M. Neal, Analysis of a nonre-
versible Markov chain sampler, Ann. Appl. Probabil. 10, 726
(2000).

[38] F. Chen, L. Lovász, and I. Pak, Lifting Markov chains to speed
up mixing, in Proceedings of the 31st annual ACM Symposium
on Theory of Computing (STOC) (ACM, New York, NY, USA,
1999), pp. 275–281.

[39] R. Montenegro and P. Tetali, Mathematical aspects of mixing
times in Markov chains, Found. Trends Theoret. Comput. Sci.
1, 237 (2006).

[40] S. N. Evans, B. Sturmfels, and C. Uhler, Commuting birth-and-
death processes, Ann. Appl. Probabil. 20, 238 (2010).

052108-22

https://doi.org/10.1145/2701427
https://doi.org/10.1145/2701427
https://doi.org/10.1145/2701427
https://doi.org/10.1145/2701427
https://doi.org/10.1006/game.1993.1023
https://doi.org/10.1006/game.1993.1023
https://doi.org/10.1006/game.1993.1023
https://doi.org/10.1006/game.1993.1023
https://doi.org/10.1037/h0070288
https://doi.org/10.1037/h0070288
https://doi.org/10.1037/h0070288
https://doi.org/10.1037/h0070288
https://doi.org/10.1145/2465787.2465789
https://doi.org/10.1145/2465787.2465789
https://doi.org/10.1145/2465787.2465789
https://doi.org/10.1145/2465787.2465789
https://doi.org/10.1017/S0963548304006297
https://doi.org/10.1017/S0963548304006297
https://doi.org/10.1017/S0963548304006297
https://doi.org/10.1017/S0963548304006297
https://doi.org/10.1016/j.dam.2011.05.010
https://doi.org/10.1016/j.dam.2011.05.010
https://doi.org/10.1016/j.dam.2011.05.010
https://doi.org/10.1016/j.dam.2011.05.010
https://doi.org/10.1002/bip.1968.360060102
https://doi.org/10.1002/bip.1968.360060102
https://doi.org/10.1002/bip.1968.360060102
https://doi.org/10.1002/bip.1968.360060102
https://doi.org/10.1007/s00220-009-0761-0
https://doi.org/10.1007/s00220-009-0761-0
https://doi.org/10.1007/s00220-009-0761-0
https://doi.org/10.1007/s00220-009-0761-0
https://doi.org/10.1016/S0370-1573(98)00006-4
https://doi.org/10.1016/S0370-1573(98)00006-4
https://doi.org/10.1016/S0370-1573(98)00006-4
https://doi.org/10.1016/S0370-1573(98)00006-4
https://doi.org/10.1103/PhysRevA.45.618
https://doi.org/10.1103/PhysRevA.45.618
https://doi.org/10.1103/PhysRevA.45.618
https://doi.org/10.1103/PhysRevA.45.618
https://doi.org/10.1103/PhysRev.87.404
https://doi.org/10.1103/PhysRev.87.404
https://doi.org/10.1103/PhysRev.87.404
https://doi.org/10.1103/PhysRev.87.404
https://doi.org/10.1051/jp1:1992277
https://doi.org/10.1051/jp1:1992277
https://doi.org/10.1051/jp1:1992277
https://doi.org/10.1051/jp1:1992277
https://doi.org/10.1007/BF01112771
https://doi.org/10.1007/BF01112771
https://doi.org/10.1007/BF01112771
https://doi.org/10.1007/BF01112771
https://doi.org/10.1088/0305-4470/23/15/011
https://doi.org/10.1088/0305-4470/23/15/011
https://doi.org/10.1088/0305-4470/23/15/011
https://doi.org/10.1088/0305-4470/23/15/011
https://doi.org/10.1093/biomet/44.1-2.114
https://doi.org/10.1093/biomet/44.1-2.114
https://doi.org/10.1093/biomet/44.1-2.114
https://doi.org/10.1093/biomet/44.1-2.114
https://doi.org/10.1093/biomet/39.3-4.324
https://doi.org/10.1093/biomet/39.3-4.324
https://doi.org/10.1093/biomet/39.3-4.324
https://doi.org/10.1093/biomet/39.3-4.324
https://doi.org/10.1214/aoap/1075828054
https://doi.org/10.1214/aoap/1075828054
https://doi.org/10.1214/aoap/1075828054
https://doi.org/10.1214/aoap/1075828054
https://doi.org/10.1016/S0012-365X(98)00333-1
https://doi.org/10.1016/S0012-365X(98)00333-1
https://doi.org/10.1016/S0012-365X(98)00333-1
https://doi.org/10.1016/S0012-365X(98)00333-1
https://doi.org/10.1090/S0002-9947-05-03610-X
https://doi.org/10.1090/S0002-9947-05-03610-X
https://doi.org/10.1090/S0002-9947-05-03610-X
https://doi.org/10.1090/S0002-9947-05-03610-X
https://doi.org/10.1307/mmj/1030132713
https://doi.org/10.1307/mmj/1030132713
https://doi.org/10.1307/mmj/1030132713
https://doi.org/10.1307/mmj/1030132713
https://doi.org/10.1002/(SICI)1098-2418(199810/12)13:3/4<285::AID-RSA6>3.0.CO;2-R
https://doi.org/10.1002/(SICI)1098-2418(199810/12)13:3/4<285::AID-RSA6>3.0.CO;2-R
https://doi.org/10.1002/(SICI)1098-2418(199810/12)13:3/4<285::AID-RSA6>3.0.CO;2-R
https://doi.org/10.1002/(SICI)1098-2418(199810/12)13:3/4<285::AID-RSA6>3.0.CO;2-R
https://doi.org/10.1214/aoap/1019487508
https://doi.org/10.1214/aoap/1019487508
https://doi.org/10.1214/aoap/1019487508
https://doi.org/10.1214/aoap/1019487508
https://doi.org/10.1561/0400000003
https://doi.org/10.1561/0400000003
https://doi.org/10.1561/0400000003
https://doi.org/10.1561/0400000003
https://doi.org/10.1214/09-AAP615
https://doi.org/10.1214/09-AAP615
https://doi.org/10.1214/09-AAP615
https://doi.org/10.1214/09-AAP615



