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Multiple scales and phases in discrete chains with application to folded proteins
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Chiral heteropolymers such as large globular proteins can simultaneously support multiple length scales. The
interplay between the different scales brings about conformational diversity, determines the phase properties
of the polymer chain, and governs the structure of the energy landscape. Most importantly, multiple scales
produce complex dynamics that enable proteins to sustain live matter. However, at the moment there is incomplete
understanding of how to identify and distinguish the various scales that determine the structure and dynamics of
a complex protein. Here we address this impending problem. We develop a methodology with the potential to
systematically identify different length scales, in the general case of a linear polymer chain. For this we introduce
and analyze the properties of an order parameter that can both reveal the presence of different length scales
and can also probe the phase structure. We first develop our concepts in the case of chiral homopolymers. We
introduce a variant of Kadanoff’s block-spin transformation to coarse grain piecewise linear chains, such as the
Cα backbone of a protein. We derive analytically, and then verify numerically, a number of properties that the
order parameter can display, in the case of a chiral polymer chain. In particular, we propose that in the case of
a chiral heteropolymer the order parameter can reveal traits of several different phases, contingent on the length
scale at which it is scrutinized. We confirm that this is the case with crystallographic protein structures in the
Protein Data Bank. Thus our results suggest relations between the scales, the phases, and the complexity of folding
pathways.

DOI: 10.1103/PhysRevE.97.052107

I. INTRODUCTION

A linearly conjugated polymer is conventionally viewed as
a piecewise linear polygonal chain, connecting a sequence of
vertices that coincide with the locations of its skeletal atoms
[1–10]. For example, in the case of a protein the vertices
coincide with the positions of the Cα atoms, and the connecting
line segments concur with the diagonals of the peptide planes.
Conventionally, a phase is then assigned to the polymer by
inspecting the fractal geometry of the chain. For this let
(x0, . . . ,xN ) denote the N + 1 vertices of a given discrete chain
�. When N becomes large the radius of gyration

Rgyr =
√√√√ 1

2(N + 1)2

N∑
i,j=0

(xi − xj )2 (1)

admits an asymptotic expansion of the form [9,12–14]

R2
gyr ≈ L2

0N
2ν(1 + R1N

−�1 + · · · )
N large−→ L2

0N
2ν . (2)

The prefactor L0 is an effective segment length (Kuhn length).
In the case of a polymer its value depends on the atomic level
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details of the chain and the environment; it is not a universal
quantity. The scaling exponent ν coincides with the inverse
Hausdorff dimension of �. It is a universal quantity [9–14]
with a numerical value that does not depend on the atomic
level details of the chain. It acts as an order parameter that can
detect the phase of the chain. The exponents �1,�2, . . . that
characterize the finite-size corrections are similarly universal
[13].

In the case of a discrete chain with a homogeneous structure,
the scaling exponent ν is commonly presumed to have only four
possible values, corresponding to the four different phases of
a homopolymer. At the level of classical mean field theory
[1–3,9–14]

ν =

⎧⎪⎨
⎪⎩

1/3, collapsed,

1/2, random walk (RW),
3/5, self-avoiding random walk (SARW),
1, straight rod.

(3)

The value of ν is determined using (2), by successively
increasing the number of vertices xi and by observing how
the radius of gyration scales when N becomes large. This
procedure can work in the case of a homopolymer, when
the number of vertices can be increased in an unambiguous
manner. Unfortunately, it does not work in the case of a
heteropolymer such as a given protein structure, where the
amino acid assignment is fixed: There is no unambiguous way
to extend the length of a protein, to determine the scaling
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of its radius of gyration when N grows, as the number of
vertices cannot be systematically increased in a unique manner
as required by (2). Instead one can try to deduce the value
of ν statistically, by comparing the radius of gyration of a
given protein to a statistical pool of different lengths but
similar kinds of protein structures such as those classified as
α-helical or β-stranded in the Protein Data Bank (PDB) [15].
This procedure has some merits, but it lacks rigor. Moreover,
it brings about intriguing but difficult-to-verify proposals,
including a suggestion that since, e.g., α-helical and β-stranded
proteins have different ν values, the ensuing chains reside in
different phases [16–19]. To clarify issues like these, there is
need to introduce alternative order parameters, that can directly
and unambiguously probe the phase of a given heteropolymer
with no need to artificially extend its length.

Here we propose such an order parameter. It builds on
the properties of an observable that we introduce, a variant
of Kadanoff’s block-spin transformation [20–23] that we
design to coarse grain a fixed chain in an effective manner.
We show how the observable detects different scales, as the
coarse graining proceeds. For a homopolymer, we confirm
the universal phase structure in line with (3). However, in
the case of a heterogeneous chain such as the Cα backbone
of a folded protein we find that our observable is variable.
Its value depends on the scale and it oscillates, apparently
between different phases, as the coarse graining proceeds. We
interpret this variable character of the observable in terms of a
multiphase structure: Depending on the distance scale at which
a heteropolymer chain is inspected, it can display different
phase properties. For this we recall the following: In the case
of N pointlike, chemically independent components there are
a priori N different dimensionful parameters. The Gibbs phase
rule states that in the presence of F intensive thermodynamical
variables the number P of coexisting phases is limited by

P � N − F + 2. (4)

When the elemental constituents are not pointlike but chain-
like, this rule can change. If a relation between the number of
dimensionful parameters and the number of thermodynamical
phases persists, even a single chain might exhibit different
phase characteristics when we inspect it at different length
scales. For example, consider a crystallographic globular
protein in a collapsed phase. At the same time, at distance
scales that are short in comparison to the radius of gyration,
its structure can be dominated, e.g., by α helices or β strands
which are both in the phase of a straight rod. Thus there is an
intermediate length scale, at which the character of the protein
structure transits from the straight rod phase to the collapsed
phase. The scaling exponent (3) is unsuitable for detecting
how such a transition from a regime dominated by a straight
rod phase to a collapsed phase regime takes place. But our
observable can detect the presence of a scale that produces a
transition.

We start by describing the generic theoretical properties of
our observable. We then proceed to investigate these properties
numerically. Our goal is to develop the observable into a tool
that can detect the phase of the chain. For this we devise a
variant of the Kadanoff block-spin transformation, specially
tailored to inspect chainlike objects. We analyze the ensuing
transformation properties of the observable in terms of Monte

Carlo simulations using a homopolymer model. We show that
the phase structure is in line with the classification (3).

We then continue to apply the observable to inspect crystal-
lographic folded protein structures. We find that for a globular
protein with an apparently complex structure, the scaling
properties of the observable become highly nontrivial and
much more elaborate than in the case of a homopolymer. We
propose that the scaling properties of the observable reflect the
presence of different phase structures in a complex protein,
when inspected at different length scales. Such a presence
of a multiple, scale-dependent phase structure should have
profound effects on the folding and unfolding transitions, and
on other dynamical and structural properties of a protein. In
particular, we propose that a protein that displays an elaborated,
scale-dependent structure in terms of our observable cannot
be a simple two-state folder, but should display a much more
complex folding pattern.

II. OBSERVABLES AND PHASE DIAGRAMS

A. Our observable

Let ti denote the segment from the vertex xi−1 to the
subsequent vertex xi along a discrete linear chain �, with a
total of N + 1 vertices (x0, . . . ,xN ):

ti = xi − xi−1. (5)

We introduce the following observable:

P�(N ) =
∑

1�i<j�N

ti · tj
|ti ||tj | ≡

∑
1�i<j�N

cos κij , (6)

where in line with (2) we expect the following asymptotic
expansion:

≈P�Nσ (1 + Q1N
−δ1 + · · · ). (7)

Here both the N -independent factor P� and the scaling expo-
nent σ are the quantities that are of interest to us in the sequel.
We shall also consider the finite-size corrections specified by
Q1,δ1, etc. The quantity (6), (7) bears resemblance to the radius
of gyration (1), except that (6), (7) is dimensionless. We also
note that (6), (7) relates to, but is quite different from, the
concept of folding angle introduced in [24].

In the sequel we shall introduce a chain-specific coarse
graining transformation of (6), (7) akin to the Kadanoff
block-spin transformation [20–22] of renormalization group
equations [11,14]. We follow how bothP� and σ evolve during
the ensuing flow, and deduce the phase properties of �. Even
though the numerical value ofP� apparently lacks universality,
the sign of P� and the numerical value of σ are both specific
to the phase where the chain resides.

As an example, consider the straight rod phase where ν = 1.
Take a chain that has a linear structure, such that all the vertices
lie in the vicinity of a given straight line. Then, in the limit of
a large number of vertices,

P�(N )
N�1−→ C

N (N − 1)

2
= C

2
(N2 − N ). (8)

Here C characterizes the average value of the cosine of the
angle between two vectors ti and tj . When the chain becomes
straight so that the vectors tk are close to parallel, we have
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C → 1. This example makes it clear that (6), (7) can never
grow faster than N2. We also note the finite-size correction
which is proportional to N in (8); it coincides with the number
of nearest neighbor segments along the chain. Finally, in the
case of regular protein structures the bond angle κi,i+1 between
two neighboring Cα atoms along a β strand has the value
κi,i+1 ≈ 1 (rad) while along α helices the value is κi,i+1 ≈ π/2
(rad) [25]. Thus, in the case of β-stranded proteins we expect
a positive-valued finite-size correction O(N ) due to nearest
neighbor vertices, while in the case of α-helical proteins the
finite-size correction due to nearest neighbors should be tiny.

B. Statistical ensembles

We proceed to develop (6), (7) into an order parameter that
can probe the phase structure of chains. For this we analyze
the statistical ensemble average

〈P�(N )〉 = Tr{P�(N )ρ(�)} (9)

of the observable (7) in the different phases (3). Here ρ(�) is a
density matrix that determines the thermodynamical ensemble.
In our numerical simulations we assume that the system is in
a thermodynamical equilibrium state, with ρ(�) admitting the
Gibbsian form

ρ(�) ∝ e−βH (10)

with β the temperature factor and H the Hamiltonian of the
chain. In general, the Hamiltonian can depend on multiple
length scales H = H (L1,...,LN ). Accordingly, the canonical
partition function can engage various effective thermal de
Broglie distances β/L2

i ,

Tr{ρ(�)} = Z
(
βL2

i ,Lj/Lk

)
, (11)

in addition of the dimensionless rations of the various length
scales. As a consequence the ensuing phase structure can
be quite involved, with various putative critical temperatures
1/βi ∝ L2

i ,

1

βcrit
i

= kT crit
i ∝ L2

i . (12)

1. The random walk

In a random walk the vertices along the chain are mutually
independent. The density matrix has the form [9,11]

ρ0(�) = δ(x0)
N−1∏
i=1

g(xi−1 − xi), (13)

where g(x − x′) is a probability distribution with Gaussian
pairwise probabilities,

g(x − x′) =
(

1

2πa2

)3/2

exp

[
− 1

2a2
(x − x′)2

]
. (14)

We fix the initial point x0 to the origin, in order to eliminate
the space volume as an (infinite) overall normalization factor.
We find

〈ti · tj 〉 = Tr{(ti · tj )ρ0(�)}

=
∫

dN+1x (ti · tj )δ(x0)
N−1∏
k=1

g(xk−xk−1) = 0 (i 
= j ).

(15)

Thus the ensemble average of the observable (6), (7) vanishes
in the random walk phase.

2. The hard-sphere repulsion and SARW

In the self-avoiding random walk (SARW) phase there are
repulsive interactions between the vertices. These interactions
can have a varying range in terms of the spatial separation,
from the short-distance Pauli (steric) repulsion to the extensive
reach of Coulomb interaction. But the effect is always that
of a long-range interaction, when we measure distance along
the chain. In a weak-coupling limit we can try to handle these
interactions perturbatively, using a virial expansion in the range
of the expansion. For this we assume a homogeneous chain
with N vertices, with a short-range interaction potential of the
form

E =
∑

1�i<j�N−1

U (xi − xj ) (16)

between the vertices; the summation extends over all vertex
pairs. The density matrix has the Gibbsian form (10)

ρ(�) =
∏

1�i<j�N−1

e−βU (xi−xj )
N−1∏
i=1

g(xi−1 − xi). (17)

We proceed to an explicit calculation of (6), (7) in the limit
where the interaction is entirely due to excluded volume; i.e.,
we assume there is only a hard-sphere steric repulsion between
the vertices:

U (xi − xj ) =
{∞, if |xi − xj | � �,

0, if |xi − xj | > �.
(18)

Note that in this hard-sphere limit the temperature dependence
becomes absent. Thus there are no (temperature-dependent)
phase transitions. A single phase prevails and, in the absence
of any other interaction, the chain resides in the SARW phase
by construction.

We follow [11] and introduce the Mayer function

f (xi − xj ) = e−βU (xi−xj ) − 1 =
{−1, if |xi − xj | � �,

0, if |xi − xj | > �,

(19)

and we consider the limit where the hard-sphere radius � at
the vertex is very small so that

f (xi − xj ) = − 4
3π�3δ(xi − xj ) ≡ −Bδ(xi − xj ). (20)

Here B specifies the excluded volume around a vertex. The
virial expansion is

e−βE =
∏

1�i<j�N−1

[1 + f (xi − xj )]

= 1 +
∑

1�i<j�N−1

f (xi − xj )

+
∑
i,j,k,l

f (xi − xj )f (xk − xl) + · · · . (21)

The term which is linear in the Mayer function describes
collisions between a pair of vertices; note that the linear term
engages interactions that have a long range along the chain
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despite being short range in space. The bilinear term describes
triple collisions, and so on. In the limit of a dilute chain only
pair collisions can be relevant. Thus, in this limit we obtain for
our observable the second-order virial approximation

〈P�(N )〉

≈
∫ ⎧⎨

⎩dx0 · · · dxN−1

N−1∏
i=1

g(xi − xi−1)

×
⎛
⎝1−B

∑
1�i<j�N−1

δ(xi−xj )

⎞
⎠P�(x0, . . . ,xN−1)δ(x0)

⎫⎬
⎭.

(22)

We substitute (7) in (22). The integrals are elemental and in
the limit where the vertex size is very small in comparison to
the segment length B � a3, the result is

〈P�(N )〉 =
(

3

2π

) 3
2 B

2a3

∑
1�i<j�N−1

1√
j − i

+ O

(
B

a3

)2

.

(23)

3. The large-N limit in SARW

For large N we can estimate the sum in (23) using an integral
approximation

∑
1�i<j�N−1

(j − i)−
1
2

N�1−→
∫ N

0
dx

∫ x

0
dy

1√
x − y

∼ N3/2.

(24)

We then get for the large-N limit

〈P�(N )〉 N�1−→ D
B

a3
N3/2 ≡ P� N3/2 > 0 (SARW) (25)

with some chain-specific positive constant D. We note that the
observable (25) is proportional to N3/2 while the number of
terms that contribute in (6), (7) increase like N2, according to
(8). Thus, there must be cancellations of orderN2: We conclude
that in the leading order there is an equal contribution from
terms with positive and negative values of cos κij , and the result
(25) follows due to subleading predominance of positively
valued cos κij . Moreover, since the x → y singularity in (24) is
integrable, in the large-N limit the contribution from small sep-
aration values of |i − j | becomes insignificant in comparison
to the contribution from large separation values |i − j |. Thus
the fine details of the interaction potential become increasingly
irrelevant. Accordingly, we argue that the dominant scaling
exponent σ = 3/2 in (25) is universal, for discrete chains in
the SARW phase when N is very large.

We note that the positive sign of (25) can be understood as
follows: In the SARW phase both the radius of gyration and
the end-to-end distance increase faster in N than in the RW
phase. This implies that there is a tendency in SARW phase
for the different vectors ti , tj to be more parallel to each other
than in the RW phase. In the RW phase the ensemble average
of the angle κij between any two vectors ti and tj is π/2. Thus,
in the SARW phase there is an inclination towards κij < π/2
implying that (25) is positive.

Finally, the derivation presented here presumes the limit
where any interaction between vertices has a very short range in
relation to the segment length. Certainly, there are corrections
due to higher order terms in the virial expansion, in cases where
the interaction has a longer range but the corrections vanish in
the limit where the number of vertices becomes very large.
The present virial expansion based derivation is appropriate
to identify the leading large-N asymptotic of the observable
which is a universal characteristic of the SARW phase; the
higher order terms in the virial expansion amount to finite-size
corrections.

4. Corrections to large-N limit in SARW phase

Since the result (25) reflects a O(N2) balance between
positive and negative values of cos κij , we can expect that when
N is not very large the higher order correction terms in (7) are
notable. To analyze these, we observe that oftentimes there is
a steric repulsion that enforces a minimum distance between
any two vertices. For example, in PDB protein structures the
minimal distance between any two Cα atoms that do not share
a peptide plane is (practically) always larger than the diagonal
size ∼3.8 Å of a peptide plane. Thus the angle κi,i+1 between
any two neighboring vectors ti and ti+1 is always less than
2π/3. In fact, for most proteins we can confirm that [25]

κi,i+1 � κmax ≈ π/2(for PDB proteins).

In the general case, the value of κmax < π is determined by
the ratio between the effective hard-sphere radius (18) and
the segment length. Accordingly, there must be a finite-N
correction to (25) which reflects the local details of steric
repulsion. We estimate the correction in the hard-sphere limit,
by separating out the effect of very short distance interactions,
i.e., contribution from small values of k = |i − j |. For this
we simply subtract the effect of the ensuing interactions by
replacing (24) with

∑
1�i<j�N−1

(j − i)−
1
2

k
N

�1−→
N∑

i=0
j=i+k

(j−i)−
1
2

−→
∫ N

k

dx

∫ x−k

0
dy

1√
x − y

∼ 2

3
N3/2 −

√
kN. (26)

In lieu of (25) we then have an estimate that excludes the short-
distance effects of steric repulsion:

P�(N ) ∼ P�

(
N3/2 − 3

2

√
kN

) (
k

N
� 1

)
. (27)

Note that this result is derived using the limit in which the
radius of the hard-sphere repulsion becomes small. In the
case of most proteins we have noted that mostly κi,i+1 �
π/2 (rad); thus we expect that the O(N ) contribution from
nearest neighbor vertices is often non-negative. Accordingly,
in practical scenarios the estimate (27) should apply when k is
not very small.

5. The collapsed phase

In the collapsed phase we cannot estimate (7) using a
perturbation (virial) expansion around an ideal RW chain. In
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t21

t11

t12

t13

t1

t2

t7

FIG. 1. A scaling akin to Kadanoff’s block-spin transformation
that successively combines two preceding segments into one follow-
ing segment and eliminates the middle vertex. The segments in the
initial chain are bold black (vectors t1, . . . ,t7), those in the first level
of iteration are blue (light gray) (vectors t1

1, . . . ,t
1
3), and the thinnest

red (dark gray) segment (vector t2
1) is obtained at the second level of

iteration.

the collapsed phase both repulsive and attractive long-distance
interactions along a chain are present; the chain properties are
ruled by nonperturbative effects.

According to (3) when N increases, for a chain in the
collapsed phase the radius of gyration grows slower in N than
in the RW phase. Thus, in a statistical ensemble the angle κi,j

between any two vectors ti and tj should have a statistical
inclination towards values that are larger than π/2. Otherwise,
a collapsed chain does not curl upon itself at a rate which
fills the space faster than in the RW phase. Since the primary
contribution to (7) derives from large values of k = |i − j |, in
accordance with (27) we expect that in the collapsed phase and
with small values of k

P�(N )
N�1−→ Pcoll

� (Nσ + f (k)N ) < 0, (28)

where the prefactor Pcoll
� < 0. In particular, the exponent

σ > 1. This is because the chain collapse is due to interactions
that have a long distance along the chain, and the number of
possible vertex pairs increases faster in N than the number of
nearest neighbor vertex pairs. Note the small-k near-neighbor
correction term that we have included in (28): As in (27) there
should be such a term; it includes short-distance repulsion
between those vertices that are very close to each other along
the chain, e.g., nearest neighbors. The f (k) is some function of
the short-distance cutoff value k; in general it is model specific.

C. Renormalization group flow

When the number of vertices N is very large we may
coarse grain the chain by repeating a Kadanoff block-spin
transformation of the vectors that determine the segments,
as shown in Fig. 1. This gives rise to a renormalization
group (RG) evolution of P�(N ). Figure 2 shows the phase
diagram that we expect to find in the case of a homopolymer,
for very large values of N ; we deduce the phase diagram
from our preceding analysis of (7); see also [9,11]. For the
moment we overlook the straight rod phase. As shown in the
figure, we have found that in the SARW phase the strength
of repulsive interaction between vertex pairs (second virial
coefficient) evolves towards a nontrivial positive fixed point
value [9,11]. Consequently, by repeated action of the block-
spin transformation shown in Fig. 1 we expect the observable
(9) to flow towards a fixed positive value, in the SARW phase.

FIG. 2. Expected RG flow of the coefficient P� in (7) in different
phases, with P� = 0 the Gaussian fixed point and P�

� the fixed point
of SARW.

We expect this value to be universal, quite independently of the
underlying energy function (16). On the other hand, since (9)
vanishes in the RW phase the ensuing RG evolution defines a
vertical basin of attraction towards the Gaussian fixed point, as
shown in Fig. 2. This flow separates the SARW phase from the
collapsed phase, where the flow is towards a negative value of
P� . The collapsed phase is commonly assumed to correspond
to the space filling fixed point value (3) of the scaling exponent
ν, in the case of a homopolymer.

However, we note that there are numerous examples of
discrete space chains with geometrically nontrivial attractors.
A generic, deterministic, and chaotic 3D flow approaches an
attractor that can have a priori an arbitrary fractal Hausdorff
dimension. This opens the possibility for a more complex phase
structure also in the case of discrete chains that deserves to
be addressed. We conclude that at this point we expect the
correspondences between the phase of a chain, the sign of (9),
and the numerical value of σ shown in Table I.

III. COARSE GRAINING CHAINS

The scaling transformation shown in Fig. 1 is a direct adap-
tation of Kadanoff’s block-spin transformation. It decreases
the number of segments at an exponential rate. Thus a chain
becomes very rapidly coarse grained. For example, a typical
protein backbone with a couple of hundred Cα atoms can
support only a handful of block-spin transformations. This is
hardly sufficient to define a smooth RG flow, not to mention
the identification of distinct length scales that govern the chain
properties at intermediate distance scales.

Our scaling procedure for chains

We proceed to develop a chain-specific variant of the block-
spin transformation, one that can be iterated a large number of
times, comparable to the number of vertices in the chain. With
the help of our coarse graining transformation we then hope to

TABLE I. Phases in terms of our observable.

Phase 〈P�〉 σ

Rod >0 2
SARW >0 ≈3/2
RW =0
Collapsed <0 >1
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t7
t1 t21

t23

t13

t22

FIG. 3. Coarse graining procedure for scaling parameter s = 4/3.
The initial chain is bold black (vectors t1, . . . ,t7), the first step of the
coarse graining procedure is thin blue (light gray) arrows (vectors
t1
1, . . . ,t

1
5), and the second step is the thinnest red (dark gray) lines

(vectors t2
1, . . . ,t

2
3).

detect and identify the different length scales that characterize
a given chain, even when there are only a relatively few vertices
such as in the case of a generic protein backbone.

We start by introducing a scaling parameter s. We define it
to be the number of old segments which are connected by the
new one, during a coarse graining process. In the case of the
conventional (Kadanoff) block-spin transformation s is always
an integer. For example, in Fig. 1 we have s = 2. For s = 3 we
connect every third vertex, while for s = 1 we simply repeat
the original chain.

Canonically, in the case of a spin system the parameter s

can only have integer values. But in the case of a chain, it turns
out that we can promote s into an a priori arbitrary number and
here we are particularly interested in values s ∈ (1,2]. For this
we introduce a new coarse graining procedure, and in Fig. 3
we show how it proceeds when s = 4/3: We initiate the coarse
graining with the vectors ti that determine the segments of
the chain, at the current iteration level. We then define the
vector tnew

1 which determines the first segment of the following
iteration step by

tnew
1 = t1 + 1

3 t2.

To construct the second segment tnew
2 in the chain of the

following iteration step, we add the remaining two thirds of
t2 together with two thirds of t3,

tnew
2 = 2

3 t2 + 2
3 t3.

Finally, for tnew
3 we add one third of t3 and t4, so that

tnew
3 = 1

3 t3 + t4.

The third vertex of the following iteration step then coincides
with the fourth vertex of the preceding iteration step. The
process is repeated with t5 and so forth, until the entire chain
becomes covered. Note that as shown in Fig. 3, the last vertex
of the preceding chain is not necessarily reached by the last
vector of the following chain. The figure shows this in the
case when the preceding chain has seven vertices and we have
chosen s = 4/3. By repeating the coarse graining, at the end
of the second iteration (red line in the figure) we again miss
part of the end in the preceding chain. This loss of structure
at the end of the chain can be avoided by choosing the scaling
parameter sp at iteration step p so that

Np = spq, (29)
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FIG. 4. Dependence of the optimal scaling parameter sopt
p value

on the number of iteration steps p, for a chain with 300 initial vertices.

where Np is the number of vertices at the iteration level p and
q is some integer. Thus, the smallest value we can choose for
sp is

sopt
p = Np

Np − 1
= 1 + 1

Np − 1
. (30)

Now the end points of the chain do not move, but the scaling
parameter varies with the iteration step. However, this variation
is quite small. As an example, for a chain with 300 vertices
which is quite typical in the case of a protein backbone, we
estimate that after ∼200 iteration steps the optimal value s

opt
p

becomes changed by less than 0.7% as shown in Fig. 4.
Figure 5 shows the effect of coarse graining on the chain ge-

ometry. The effect is to suppress any abrupt short-wavelength
oscillation in the geometry; those sections of the chain with
many twists and turns become more regular as shown in the
figure: A chain becomes visibly smoother while preserving its
overall shape, as the coarse graining advances.

FIG. 5. Illustration of the effect of the coarse graining procedure
for a helical chain; the example is from the Cα backbone of PDB
structure 5DN7. On the left is the PDB structure, in the middle the
structure after 10 coarse graining steps, and on the right after 80 coarse
graining steps.
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IV. HOMOPOLYMER MODEL

We shall employ (23) in combination with our coarse grain-
ing procedure to investigate the homopolymer phase structure
numerically, using the universal energy function introduced
in [26,27]. This energy function has been found to model the
folding trajectories of several globular proteins in a realistic
manner [28] with very few computational resources. In the se-
quel we shall present results from several thousand full folding
and unfolding simulations, for homopolymer chains with up to
1000 residues and over extended temperature ranges. Using the
present model, a full folding and unfolding simulation, even
with very long chains, takes only a few minutes in a single
processor in our approach. At the same time such simulations
would not be even possible with more conventional coarse
grained force fields designed for describing protein folding,
using presently available (super)computers.

A. Frenet frames

To fully describe chain geometry, we need to introduce a
framing. For this we consider four generic consecutive vertices
xi−1,xi ,xi+1,xi+2 along a piecewise linear stringlike chain.
Let ti ,ti+1,ti+2 be the three segments that connect these four
vertices. For each vertex we evaluate the ensuing bond (κ)
and torsion (τ ) angle as follows: The bond angle is obtained
directly in terms of the segments,

κi ≡ κi+1,i = arccos

(
ti+1 · ti
|ti+1||ti |

)
. (31)

For the torsion angles we first introduce the normal vector

bi = ti−1 × ti (32)

of the (xi−2,xi−1,xi) plane. The torsion angle τi is then

τi ≡ τi+1,i = sgn[(bi−1 × bi) · ti] × arccos(bi+1 · bi). (33)

Note that a torsion angle can be introduced whenever ti−1 and
ti are linearly independent. We also note that (κi,τi) yield
spherical coordinates around xi , and that the three vectors
(ti , bi , ni = bi × ti) constitute an orthogonal frame at this
vertex.

Inversely, once the bond and torsion angles and in addition
the segment lengths are known, we recover the chain as
follows: From the angles we first compute the frames (ti ,bi ,ni)
using the discrete Frenet equation, as described in [25]. The
entire chain is then given by the solution of the discrete Frenet
equation

xi =
i∑

k=1

tk.

B. Landau free energy

We deduce the Landau free energy of a chain using a sym-
metry principle [26,27]: The energy function of a structureless,
piecewise linear discrete chain should not depend on the way
the chain is framed. Thus the energy function must remain
intact under frame rotations around the segment vectors ti .
Let (e1

i ,e
2
i ) denote two orthogonal unit vectors that relate to

(bi ,ni) by a generic SO(2) rotation around ti . The orthogonal
basis (ti ,e1

i ,e
2
i ) could then be used instead of the Frenet basis

(ti ,bi ,ni), to construct the energy function. Mathematically,
this determines a local SO(2) gauge structure.

The Cα backbone of a protein is akin our piecewise linear
discrete chain, with an average ∼3.8 Å distance between
vertices; from this perspective, the only influence of side
chains is to introduce a heterogeneous interaction between
the Cα atoms. Therefore, the Cα backbone must employ
an SO(2)-invariant energy function of the (virtual) backbone
bond and torsion angles. The bond angles κi transform like
a two-component SO(2) scalar field and the torsion angles τi

transform like an SO(2) gauge field under a local frame rotation
[26,27]. Universality then implies that the leading order Cα

energy function for a protein backbone with N residues
(vertices) must relate to the lattice Abelian Higgs model
(AHM) Hamiltonian. This follows directly because the AHM
Hamiltonian is the most general SO(2) gauge invariant Hamil-
tonian there is. In the unitary gauge the AHM Hamiltonian
coincides with the following discrete nonlinear Schrödinger
(DNLS) Hamiltonian with a spontaneously broken symmetry
[25–27,29–32] (see [33] for a review with applications to
proteins):

E(κ,τ ) =
N−1∑
i=1

(κi+1 − κi)
2 +

N∑
i=1

{
λ

(
κ2

i − m2
)2 + d

2
κ2

i τ 2
i

− bκ2
i τi − aτi + c

2
τ 2
i

}
+

∑
i 
=j

U (xi − xj ). (34)

Here (λ,m,a,b,c,d) are parameters; they are specific to a given
amino acid sequence in the case of a protein. The terms in the
first line coincide with a naive discretization of the continuum
nonlinear Schrödinger equation. In the second line, the first
term (b) is the conserved momentum in the DNLS model,
the second (a) is the Chern-Simons term, and the third (c)
is the Proca mass term; see [29–33] for detailed analysis and
interpretation of the various terms in the context of proteins. We
note that both momentum and Chern-Simons terms are chiral;
with positive parameters a,b these two terms ensure that the
backbone is right-handed chiral in line with protein structures.

Besides the terms that we have displayed explicitly in (34)
there are also two-body interactions (16) that have a long range
along the chain, and are governed by the last term in (34). These
interactions include Pauli exclusion, electromagnetic, and van
der Waals interactions between the various atoms. Here we
consider a simple homogeneous variant of U (xi − xj ) that in
addition of the hard sphere (Pauli) repulsion (18) has a spatially
short range attractive component,

U (r) =
{+∞, 0 < r < R0,

U0{tanh(r − R0) − 1}, R0 < r < +∞.
(35)

For r < R0 there is a hard-core repulsion but for r > R0 there
is a spatially short range attractive interaction with strength
determined by the parameter U0. In the case of proteins we
choose R0 ∼ � = 3.8 Å, which is the distance between two
neighboring Cα atoms. We refer to [34] for a detailed analysis
of the effects of long-range (along chain) interactions in (34).
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1. Cooperativity and first-order phase transition

The free energy (34) can be validated by verifying its
compatibility with Privalov’s criterion [35–37]. It states that
protein folding is a cooperative process which in the case of
a short two-stage folding protein resembles a first-order phase
transition.

For (34) cooperativity is due to solitons that are supported by
the DNLS equation [38]; solitons are the paradigm cooperative
organizers in numerous physical scenarios. Here a soliton
emerges when we first eliminate the torsion angles using their
equation of motion,

τi[κ] = a + bκ2
i

c + dκ2
i

. (36)

For bond angles we then obtain

κi+1 = 2κi − κi−1 + dV [κ]

dκ2
i

, (37)

where

V [κ] = −
(

bc − ad

d

)
1

c + dκ2
−

(
b2 + 8λm2

2b

)
κ2 + λκ4.

The difference equation (37) can be solved iteratively using
the algorithm developed in [39]. A soliton solution models a
super-secondary protein structure such as a helix-loop-helix
motif, with the loop corresponding to the soliton proper.

To identify the putative first-order transition character we
observe that in the case of a protein, the bond angles are rigid
and slowly varying while the torsion angles are highly flexible.
Thus, over sufficiently large distance scales we may try to pro-
ceed self-consistently in a Born-Oppenheimer approximation,
using a mean field κi ∼ κ and then solving for κ in terms of
torsion angles τi ∼ τ . From (34)

δE

δκ
= 0 ⇒ κ2 = m2 + b

2λ
τ − d

4λ
τ 2. (38)

In those cases that are of interest to us, this equation always has
a solution: Both κ and τ are multivalued angular variables, and
for proteins the parameters b and d are small in comparison
with m2 and λ. We substitute the solution into (34) which gives
for the energy

− d2

16λ
τ 4 + bd

4λ
τ 3 −

(
b2

λ
− 2dm2 − 2c

)
τ 2 + (a + bm2)τ.

(39)

We identify here the canonical form of the Landau–de Gennes
free energy of a first-order phase transition [40], originally
introduced in the context of liquid crystals. This completes our
qualitative validation of (34) in line with Privalov’s criterion
[35–37], at the level of mean field theory.

We conclude with the following comment: Despite the sug-
gestive analogy between (39) and the de Gennes free energy of
a first-order transition, a chain collapse from the SARW phase
to a space-filling phase proceeds through an intermediate that
includes the random walk phase; see Fig. 2. The intermediate
can be either a tricritical θ point [1–4,9] in which case we
encounter the characteristics of a first-order phase transition in
line with Privalov’s criterion, or it can be an extended θ regime
possibly with its own internal structure, possibly including

molten globule folding intermediates [41,42]: An analysis at
the level of a Landau-Ginsburg theory is suggestive, but not
sufficient, in determining the character of a phase transition.
Entropic corrections are important for chain collapse, and
accounted for in the usual manner of Landau-Ginsburg-Wilson
theory [23].

2. Algorithm details

In our numerical simulations we employ the heat bath
algorithm that has been introduced in [34]. This algorithm has
a very fast rate of convergence towards a thermal equilibrium
state, in the case of a single chain. It updates the bond
and torsion angles according to the following probability
distribution (obeying the detailed balance condition):

P (κnew,τnew) exp{−βE(κold,τold)}
= P (κold,τold) exp{−βE(κnew,τnew)},

where E is the DNLS Hamiltonian (34) and the update is a
“walk” through the entire chain with a provisional revision
of each value (κi,τi). New values (κnew

i ,τ new
i ) are generated

randomly, according to probability distributions

P
(
κnew

i

) = 1

Zi,κ

exp
{−βEi,κ

(
κnew

i

)}
(40)

and

P
(
τ new
i

) = 1

Zi,τ

exp
{−βEi,τ

(
τ new
i

)}
, (41)

where Ei,κ and Ei,τ are the sum of all those terms in the
Hamiltonian that contain κi and τi , respectively, with the given
index i and the Zi,κ and Zi,τ are normalization factors. Note
that the updated values of κnew

i and τ new
i do not depend on the

previous values of κi and τi .
Explicitly, the probability density for κnew

i has the form

P (κi) ∼ exp
{−c1κ

4
i − c2κ

2
i − c3κi

}
, (42)

where

c1 = βλ,

c2 = β

(
2 − 2λm2 + d

4
τ 2
i − bτi

)
,

c3 = β(−2(κi+1 + κi−1)). (43)

Thus (42) is non-Gaussian. On the other hand, the probability
density P (τ new

i ) has the Gaussian profile

P (τi) ∼ exp
{−β

(
1
2

[
dκ2

i + c
]
τ 2
i − aτi

)}
. (44)

Note that the Monte Carlo temperature T = β−1 is not equal to
the physical temperature factor kBθ where kB is the Boltzmann
constant and the temperature θ is measured in kelvins. In
the low-temperature collapsed regime general renormalization
group arguments [33] imply that the Monte Carlo temperature
T is related to the real physical temperature in the following
way:

ln T = kBθ + · · · . (45)

Finally, the algorithm approaches the canonical Gibbs equilib-
rium distribution

exp{−βE(κ,τ )} (46)
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TABLE II. The parameter values in (34) during our simulations.

λ m a b c d U0

3.5 1.5 10−4 0 10−4 10−4 0.5

at exponential rate in the updates; see [34] for a detailed
description.

3. Radius of gyration vs temperature and two stages of collapse

To scrutinize the details of chain collapse in the homopoly-
mer model, we investigate the temperature dependence of the
radius of gyration using numerical simulations. Our parameter
values for (34) are shown in Table II where the numerical value
of m corresponds to α-helical protein structures; for β-stranded
chains we choose m = 1. The parameters that relate to torsion
angles are relatively small, in comparison to those that relate
to bond angles only. This is in line with proteins where bond
angles are known to be quite rigid while torsion angles are often
found to be highly flexible; see the analysis in connection with
Eqs. (38) and (39).

Figure 6 shows how the value of radius of gyration (1)
increases with increasing temperature factor, in the case of
a homopolymer chain with N = 300 vertices. We find that at
low Monte Carlo temperatures log10 T < 0 the chain is in the
collapsed phase, where the radius of gyration is temperature
independent. When temperature is (roughly) in the range
0 < log10 T < 0.5 the chain is in the transient θ region where
the radius of gyration rapidly increases as a function of the
temperature; the RW phase is located in this θ region. For
log10 T > 0.5 the chain enters the SARW phase where the ra-
dius of gyration value eventually stabilizes into a temperature-
independent value. The apparent two-state character with lack
of structure in the θ regime is in line with the two-stage folding
nature (Privalov’s criterion) of the Landau free energy function,
in the case of a homopolymer chain. We refer to [34] for
additional details of the chiral homopolymer phase structure.
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FIG. 6. The evolution of the radius of gyration as a function
of temperature factor T = 1/β, in the homopolymer model with
N = 300 vertices.
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FIG. 7. The evolution of the observable (9) for k = |i − j | � 1
and k = |i − j | � 10 in (47). The figure shows the ensemble average
of 128 simulations together with the one σ deviation distance from the
average value, in each case; we note that as k increases the observable
converges rapidly to vanishing value.

V. RANDOM CHAIN SIMULATIONS

From Fig. 6 we confirm that the RW phase appears in the
phase diagram of the homopolymer model (34) in the θ regime,
between the high-temperature SARW phase and the low-
temperature collapsed phase [34]. The width of the θ regime
relates to finite-size effects; in this regime the radius of gyration
is very sensitive to temperature variations. Accordingly we find
it delicate to try to describe a statistical ensemble of RW phase
homopolymer chains with energy function (34), for the exact
ideal value ν = 1/2 of the scaling exponent in (2). Instead
we proceed to simulate the RW phase directly. For this we
promote κi ∈ [0,2π ) and τi ∈ [0,2π ) into independent random
variables. We fix the segment length to a constant value, e.g.,
3.8 (Å). In particular, we ignore all the effects of the energy
function (34) in the Gibbsian, including the short-distance
Pauli repulsion.

Figure 7 shows the evolution of the observable (9) in the
RW model, as a function of coarse graining steps and in the
case of a chain with N = 300 initial vertices. The lateral axis
depicts the progress of the iterative coarse graining procedure.
In our simulations we use the value s = sopt that we determine
from (30) for the scaling parameter. This enables us to iterate
the coarse graining n = 300 times.

In the sequel we investigate the sensitivity of the observable
to short-distance corrections (see discussion below and in
Sec. II B 4) by modifying (6) using a short-distance cutoff k

as follows:

P�(N ) → Pk
�(N ) =

N∑
i=1

N∑
j=i+k

〈cos κij 〉. (47)

Figure 7 shows the evolution of (9) both when we account
for all values of the segment separation, i.e., when we have k =
|i − j | � 1 in (47), and when we eliminate the short segment
distance effects; i.e., we only account for pairs with k =
|i − j | � 10 in (47).

In the case when we include all values k � 1 in Fig. 7,
the observable initially vanishes in line with (15). When we
proceed to coarse grain, the value of the observable starts
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rapidly increasing. It then decreases, approaching a vanishing
value towards the end of the coarse graining process. The
intermediate increase in the value of the observable can be
understood as follows: Consider the blue segments (arrows)
in Fig. 3 that show the outcome of the first coarse graining
step. The first blue segment connects the first vertex of the
initial chain to the second (black) segment of the initial chain.
The second blue segment then connects the second segment
of the initial (black) chain to the second vertex of the coarse
grained chain, located on the third segment of the initial
chain. The fact that both coarse grained segments engage
the same (second) segment of the initial chain introduces a
correlation between the (blue) coarse grained segments; the
nearest neighbor segments along the coarse grained chain are
not mutually fully independent. This interdependence, caused
by the coarse graining process, implies that the observable
(6) does not vanish during the flow. Instead, after initially
increasing, the observable decreases towards a vanishing value
when the number of coarse graining steps becomes very
large. At the end of the flow, when there are only three
vertices and two connecting segments left, the observable van-
ishes: The angle between the two final segments is randomly
distributed.

Figure 7 shows also the evolution of the observable, once we
remove the contribution of the first 10 nearest neighbor pairs,
those with k = |i − j | � 10. This removal of short-distance
correlations, caused by the coarse graining procedure, yields
an observable that is in line with the RW phase behavior,
one that vanishes with one standard deviation precision. Thus
the result shown in Fig. 7 with k = |i − j | � 10 suggests
that the correlations introduced by the coarse graining pro-
cedure have a short range, in terms of segments along the
chain.

In Fig. 8(a) we show how the correlation length of the
cosines in (6)

G(k) = 〈cos κij 〉 (48)

depends on the segment distance k = |i − j | and on the num-
ber n of coarse graining steps. We find that quite independently
of the number of coarse graining steps, the quantity (48) decays
at an (apparently) exponential rate in k, so that after around
k ∼ 10 these correlations are vanishingly small; in Fig. 8(a)
we display the correlation length of (48) after n = 100, 150,
and 250 coarse graining steps.

We conclude that in the RW phase there are finite-size
effects due to short-distance correlations between the coarse
grained segments. But these correlations have a short range
and become vanishingly small beyond k = |i − j | ∼ 10, in
the RW phase. The results shown in Fig. 8(b) confirm this: In
this figure we display the distribution of cos κij for k = 10 and
after n = 150 coarse graining steps.

We note that the histogram in Fig. 8 is in line with what we
can expect in the RW phase: In RW phase, since the value of
the observable vanishes, we expect the distribution of cos κij

to be symmetrical with respect to cos κ = 0. Our simulations
confirm that the histogram tends to a uniform flat distribution
for k = |i − j | � 1, as expected.
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FIG. 8. The RW phase. (a) The dependence of the RW phase
correlator (48) on the coordination radius k = |i − j | for different
numbers of coarse graining steps. (b) RW phase histogram for the
values of cos κij after n = 150 iteration steps, k = 10 nearest neighbor
subtraction.

VI. HOMOPOLYMER SIMULATIONS

We proceed to investigate (9) in combination with our
coarse graining, in the SARW and collapsed phases of the
homopolymer model (34). We use the parameter values shown
in Table II. In our simulations we employ the heat bath
algorithm that has been detailed in (40)–(44); see [34] for
more details. We study chains with N = 300, N = 700, and
N = 1000 initial segments. We control the thermodynamical
phase by adjusting the ambient temperature in the heat bath
algorithm [34]. We coarse grain the chains using the optimal
scaling parameter (30). The number of vertices then decreases
slowly, and the number of coarse grain iterations supported
by the chains becomes comparable to the number of initial
vertices.

A. Scaling effects on radius of gyration

We first analyze how the radius of gyration (1) evolves under
coarse graining, in the SARW and collapsed phases. Figure 9
shows the result for a chain with N = 700 initial segments.
The stability of the radius of gyration during coarse graining
proposes that the chain preserves its overall geometry as the
coarse graining proceeds. Note that for a renormalization group
flow which builds on our coarse graining procedure, the radius
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FIG. 9. Variation of radius of gyration vs number of coarse
graining steps, for two different phases. The initial chain has 700
vertices; the error bars are for one standard deviation.

of gyration would appear to be akin to a renormalization group
invariant quantity.

Figure 10 shows how the effective segment (Kuhn) length
varies during the coarse graining process for a chain in the
SARW phase, with an initial segment length of 3.8 (Å) and
N = 700 initial segments. We observe that, with the parameter
values in Table II, initially the effective segment decreases
and reaches a a minimum value ∼1.9 (Å) after around 200
coarse graining iterations. Subsequently the effective segment
length increases, and eventually it becomes comparable to the
radius of gyration of the initial chain when the coarse graining
terminates. This can be understood so that initially, the effect
of coarse graining is to suppress any abrupt short-wavelength
oscillation in the geometry; those sections of the chain with
many twists and turns become more regular, in line with
Fig. 5. This leads to an initial decrease in the segment length.
Eventually, when the coarse graining progresses, since s > 1,
the effective chain length then starts increasing.

B. The observable

We proceed to investigate how the statistical ensemble
average (9) evolves during repeated coarse graining, in the
SARW and collapsed phase of the homopolymer model.
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FIG. 10. Dependence of the average segment length on scaling
step n for N = 700 initial segments in the SARW phase.
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1. Homopolymer in the SARW phase

We evaluate the statistical average of the observable (9)
using the homopolymer in the SARW phase, with chains that
have N = 300 and N = 1000 initial vertices.

We recall that for a RW chain the correlations between
neighboring vertices vanish; see for example (15) and Fig. 8(a).
But we have pointed out that in RW phase, coarse grain-
ing introduces correlations between neighboring vertices. In
Fig. 8(a) we estimate that these correlations have a finite extent
in the RW phase; they appear to be effectively vanishing when
vertices are a distance of k ∼ 10 segments apart.

In the SARW phase the correlation length can be expected
to be longer; there are native correlations between vertices
along the entire chain such as Pauli repulsion that ensure self-
avoidance and act between any pair of vertices. We estimate to
what extent the additional correlations that are introduced by
the coarse graining process interfere with the correlations that
are native to the SARW phase.

Figure 11 shows our simulations results for the correlation
length (48) in the SARW phase homopolymer model, using
various levels of coarse graining. We observe that in line with
the RW, in the SARW phase the coarse graining introduces
short-range correlations between vertices. But these corre-
lations, together with the effect of Pauli repulsion, seem to
be observable only up to distances that are k = |i − j | ∼ 20
segments apart from each other along the chain, in our model.
Moreover, already after k ∼ 10 the influence becomes quite
small.

In Fig. 12 we show simulation results for the flow of
observable (47) under the coarse graining, in the SARW phase.
In this figure we can compare the case k = 1 where we sum
over all pairs in the observable (47), with the case k = 10 where
we only consider the contribution from those pairs where the
vertices are a minimum segment distance k = |i − j | � 10
apart from each other along the chain. We observe that overall,
the profiles in the figure display self-similarity in their shape.
The same conclusion persists for larger values of k: For a
homopolymer in the SARW phase, the only visible finite-size
effect on the observable seems to be that the height of the
curve becomes lower as k increases. In particular, each of the
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FIG. 12. Dependence of the observable (47) in the SARW phase
on the number of scaling steps n for chains with various number of
initial vertices, and with different values of subtraction k. The average
value is shown, together with the one standard deviation fluctuation
regime. (a) N = 300 initial vertices. (b) N = 1000 initial vertices.

curves in Fig. 12 has initially a positive value; they display
convergence towards vanishing values as the coarse graining
proceeds, in a self-similar manner.

The qualitative behavior shown in Fig. 12 is a characteristic
of the SARW phase. In particular, the value of the observable
is positive throughout, in line with Table I.

In Fig. 13 we show the histograms for our statistical
ensemble of the cos κij of (6) for N = 300 initial vertices,
in the SARW phase. Figure 13(a) shows the initial SARW
distribution of the cosines in (6) with no subtraction for the
nearest neighbors, and Fig. 13(b) shows the SARW distribution
we obtain after we repeat the coarse graining 150 times and
in addition introduce the nearest neighbor subtraction (27)
with k = 10 segments along the chain. The figure confirms
the self-similarity that we already observed in Fig. 12: In the
SARW phase, the histogram profile is stable under the coarse
graining flow.

Finally, we inquire whether a relation akin to (27) can
be introduced, to model how our observable depends on the
number of vertices. Instead of considering an ensemble of
chains with an increasing number of vertices, which can be
very CPU-time consuming, we proceed as follows. We have
found that in the SARW phase the observable (47) displays
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FIG. 13. Histograms for the values of cos κij in the SARW phase
for N = 300 initial vertices. (a) The initial distribution. (b) The
distribution obtained after 150 coarse graining steps and with k = 10
subtraction.

self-similarity, under coarse graining. Thus, we consider a
statistical pool of chains with N = 300 vertices and inquire
how a relation such as (27) can describe the flow of the
observable during coarse graining: A large number of coarse
graining iterations yields a chain with a small number of
vertices. The relevant question to address is then how a relation
like (27) models the coarse grained observable (47) when the
number of coarse graining iterations increases. For this, let
r denote the number of vertices in the coarse grained chain.
A small value of r corresponds to a large number of coarse
graining iterations, and when r becomes large the number of
coarse graining iterations becomes small. The relation (27)
instructs us to inquire how the ensuing observable P�(r)
depends on r as its value increases. For this we use an ansatz
of the form

P�(r) ≈ arb + cr. (49)

We use the pool of 1000 chains used in Fig. 12(b) to get the
result shown in Fig. 14. We find that

a = 0.24 ± 0.03,

b = 1.61 ± 0.02,

c = −1.45 ± 0.12. (50)

Here we use the Levenberg-Marquardt nonlinear least-squares
algorithm for fitting, with one-sigma (standard deviation)
errors. Note the difference between Figs. 12 and 14. The former
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FIG. 14. A fit of the form (49) to the observable in the SARW
phase with k = 10 subtraction.

displays the observable when the number of coarse graining
steps increases. In the latter the observable is displayed in terms
of increasing number of vertices during the coarse graining
flow.

We make the following comment: We have arrived at the
value σ = 3/2 in Table I by assuming a chain with a very large
number of vertices N , and the valueσ = 3/2 is very close to the
value of b we deduce in (49), (50). The relation (27) is derived
using the perturbation theory in the vicinity of the RW phase,
and our coarse grained chain reproduced this regime, with a
large number of iterations. This is because when the number of
iterations increases the ensuing segment length also increases.
Thus the influence of the self-avoiding condition gradually
disappears, with the observable approaching a vanishing value
of the RW phase: When the number of iterations grows the
perturbation theory works increasingly well. We conclude that
our coarse graining method is an efficient way to describe
properties of chains with varying lengths, in terms of a pool of
fixed length chains.

2. The collapsed phase

In the case of RW we have investigated a statistical pool of
chains that do not depend on the details of the homopolymer
model. In the SARW phase we have used the homopolymer en-
ergy function (34). However, as in the case of the RW phase we
expect the results to be universal: The SARW phase describes
the high-temperature limit of the homopolymer model. In this
limit the details of the energy function become irrelevant, as
in this limit the temperature factor β in the Gibbsian (10)
vanishes; only the hard-core r < R0 Pauli repulsion of (35)
survives, and the details of the repulsive interaction become
increasingly irrelevant.

The situation is very different in the collapsed phase that
occurs at low temperatures in the homopolymer model. Now
the temperature factor β becomes large, and the thermodynam-
ics becomes increasingly ruled by the energy function: Unlike
in the case of RW and SARW phases where universality is
due to the apparent insensitivity of the phase on the details
of the ensuing chain Hamiltonian, in the collapsed phase
the model-specific details matter most. Indeed, despite the
asserted universality of (3) we are not aware of any compelling
argument why the low temperature phase properties should be
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FIG. 15. The dependence of the correlator (48) on the coordina-
tion radius k = |i − j | for different numbers of coarse graining steps
in the collapsed phase of a homopolymer.

insensitive to dynamical details. Quite to the contrary: Discrete
flows towards fractal attractors of all kinds are abundant in three
dimensions. Accordingly, we scrutinize the collapsed phase of
the homopolymer model (34), with the parameter values in
Table II and using the heat bath method described in [34].
Figure 15 shows the correlation length (48) in the collapsed
phase, for different values of the coarse graining steps.

As in the SARW phase, there is a hard-core repulsion
between all vertex pairs. There are also interactions that are
due to the dynamical details of (34), including solitons that
are absent in the high-temperature SARW phase. Finally, we
have the correlation between vertices due to the coarse graining
process. But in line with the RW and SARW phases, we find
that the effect of coarse graining extends only over a relatively
short range in the segment distance k = |i − j |: From Fig. 15
we deduce that the effects of coarse graining are largely
unobservable when k is greater than k ∼ 35, a somewhat longer
segment distance than what we found in the RW and SARW
phases.

In Fig. 16 we show the evolution of the observable (47)
during the coarse graining, when we increase the number
k = |i − j | of finite-size subtractions (28); the initial chain has
N = 700 vertices.

When there is no subtraction, i.e., k = 1, we find that
the observable is initially negative, in line with our general
arguments in Table I. Then, after around 200 coarse graining
steps the observable vanishes; the chain appears to reside in the
RW phase. However, this is an apparent short-range effect, due
to correlations between nearest neighbor vertices with k = 1:
When we subtract the nearest neighbor contribution, i.e., we set
k = 2 in (28), the value of the observable is negative throughout
the coarse scaling process, in line with the general arguments
of Table I.

In Fig. 16 we show the result also with k = 10 and with
k = 30. Comparison of the profiles proposes self-similarity,
in line with what we observed previously in the SARW phase
in Fig. 12. Note that for a chain with N = 700 vertices, there
can be additional finite length effects when k becomes much
larger. In Fig. 17 we show three representative histograms of
cos κij in (6), in the collapsed phase. Figure 17(a) is for the
initial chain. Here, we observe a clear accumulation of values
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FIG. 16. Dependence of the observable (47) on the number of
scaling steps n for chains with N = 700 initial vertices, and with
different values of subtraction k = |i − j | in the collapsed phase.
The average value is shown, together with the one standard deviation
fluctuation regime.

between 0 < cos κij < 0.2. This reflects the effect of local
minima for the κ angle in the Hamiltonian (34). Since these
minima are located at κ = m = 1.5 ≈ π/2, the peaks appear
due to values of cos κij for |i − j | = 1.

In Fig. 17(b) we remove all nearest neighbor contributions
with segment distances k = |i − j | < 10. Now, there is a
clear excess of negative values. Finally, in Fig. 17(c) we
introduce n = 150 coarse graining steps in the histograms of
Fig. 17(b). Now we obtain a monotonic, decreasing distribution
of the cos κij values. Note that the monotonic character of the
distribution is quite in line with that in Fig. 13, except for the
sign.

Finally, in analogy with Fig. 14 of the SARW phase, in
Fig. 18 we introduce a fitting of the form (49) to the evolution
of the collapsed state observable, during the coarse graining
process.

We find

a = 6.22 ± 2.05,

b = 1.16 ± 0.03,

c = −10.5 ± 2.4.
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FIG. 18. A fit of the form (49) to the observable in the collapsed
phase with k = 10 subtraction.

C. Summary of homopolymer simulations

Our results show that in the case of a homopolymer, the
observable (47) flows in a self-similar manner during repeated
coarse graining.

(1) In the SARW phase the observable is positive during
the entire coarse graining process, with a self-similar profile
akin the one shown in Fig. 12. The histogram profiles shown in
Fig. 13 are also qualitatively universal, for chains in this phase.

(2) In the RW phase the observable initially vanishes, in
line with (15). The coarse graining introduces correlations be-
tween neighboring segments causing the observable to have a
small positive value. The observable then flows asymptotically
towards a vanishing value, as we proceed and iterate the coarse
graining. The qualitative features of the flow are universal with
a self-similar (for k > 1) profile akin the one shown in Fig. 7,
together with an evenly and uniformly distributed histogram
as shown in Fig. 8(b).

(3) We have simulated the observable in the collapsed phase
of the homopolymer model (34). Unlike in the case of universal
RW and SARW phases, we expect that the results are in general
model dependent. The observable is negative and—in the case
of a homopolymer—its value first decreases but then starts
to increase towards a vanishing value as the coarse graining
proceeds. Once we remove the effect of very short distance
repulsion between neighboring segments, the profile of the
flow becomes self-similar as shown in Fig. 16; the histogram
in Fig. 17(c) is also self-similar over a wide range of chains.
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FIG. 17. Histograms for the values of cos κij for a chain with N = 300 initial vertices in the collapsed phase. (a) The full initial chain.
(b) With k = 10 nearest neighbor subtractions. (c) After n = 150 coarse graining steps and with k = 10 nearest neighbor subtractions.
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We note that in all cases, the observable converges towards a
vanishing value when the number of coarse graining iterations
becomes large. This can be understood as follows: When the
coarse graining terminates, we are left with only three vertices
and two segments. In a statistical ensemble of long chains,
the angle between these two remaining segments is randomly
distributed with a vanishing average value.

VII. APPLICATIONS TO COLLAPSED PROTEINS

We proceed to investigate the coarse graining flow of the
observable (47) with different values of the cutoff distance k,
in the case of heteropolymers. For this we analyze the discrete
chains that model the Cα backbones of crystallographic PDB
proteins [15]. Our analysis is not comprehensive but indicative:
We limit to a presentation of certain major features that
we commonly observe among PDB proteins, using three
representative examples.

In particular, we inquire how the structural heterogeneity of
a protein becomes reflected in the flow when we successively
increase the value of k: Over a short distance scale, which is
sensitive to a small value of k in (47), the makeup of a protein is
typically dominated by rodlike segments such as α helices and
β strands. Nevertheless, the global protein structure commonly
resides in a space filling, collapsed phase. Thus we explore
how a transition from the short-distance regime of straight and
regular rodlike segments to the large-scale regime of space
filling collapsed structures can be detected and described by
the observable (47) and its coarse graining flow. As order
parameters to expose a transition, we employ the following
characteristics of the observable:

(1) The initial value of the observable (47), in particular the
way in which the initial value of the observable varies as a
function of the cutoff distance k.

(2) The initial stages of the coarse graining flow, in particular
the way in which the value of the observable starts to evolve
when we initiate the coarse graining process.

(3) The self-similarity of the entire flow pattern of the
observable during the entire coarse graining process.

Additional quantitative order parameters could be intro-
duced in a more refined search of universal patterns in the
observable during its coarse graining evolution. For example,
the exponent b in a fit akin to (49) can be estimated during
various stages of the flow. Such additional universal aspects of
protein structure will be analyzed in a future publication.

Specifically, we have learned the following from the ho-
mopolymer analysis:

(1) In the SARW phase the observable (47) is initially
positive. Moreover, its numerical value increases during the
initial steps of the coarse graining flow. In addition, in a
stable SARW phase the overall profile of the flow should be
self-similar and resemble the profiles in Fig. 12, at least for the
initial coarse graining steps, as the value of k is increased.

Note that it is conceivable that the value of the observable
starts decreasing during the initial stages of the flow. This is
an indication that some kind of phase change is in progress.

(2) The θ regime is tricritical and as such it is sensitive
to perturbations. Thus we expect that in the RW phase the
observable initially either vanishes or becomes vanishingly
small. As the flow progresses and the value of k increases, the

FIG. 19. Cα backbone of PDB structure 1ABS prepared with
WebGL [15].

observable should then either continue to vanish or fluctuate
between small positive and negative values in a self-similar
fashion.

(3) In a collapsed phase the observable (47) starts with a
negative value. As shown in Fig. 16, in the case of a collapsed
homopolymer the value then initially decreases during the
flow (when k > 1, i.e., as the short-distance steric repulsion
becomes negligible). Again, we expect the profile of the flow
to display self-similarity throughout a given phase, when the
value of k is increased.

It is conceivable that the value of the observable initially
starts and then continues increasing. In that case the chain
might reside in a collapsed phase which can be different from
the collapsed phase of a homopolymer.

When a transition between two phases takes place as the
short-distance cutoff scale k increases, we expect to detect the
presence of the transition as a qualitative change in one or
several of these order parameters: There could be a qualitative
alteration such as a change in sign in the initial value of (47).
There could be a reversal in the initial coarse graining flow
pattern; e.g., an initially decreasing flow of (47) turns into an
increasing one. There could also be a major modification in
the overall self-similarity pattern of the global coarse grained
flow profile.

We now proceed to consider three representative examples
of protein structures, to exemplify how phase transitions can
be observed in terms of our order parameters.

A. α-helical myoglobin

The first example that we consider is myoglobin. It is
a relatively short and widely studied example of α-helical
proteins. We use the crystallographic structure with PDB code
1ABS shown in Fig. 19. There are 154 amino acids and there are
eight α-helical structures that have an average length of around
14 amino acids. A total of 74% of amino acids reside in the
helical structures, according to DSSP classification [15,43].

We monitor both the initial value of the observable (47) and
the way in which its value starts evolving during the initial
stages of the coarse graining flow, when we increase the value
of the cutoff k. Figure 20 shows six representative examples
of the coarse graining flow profiles that we encounter; the

052107-15



SINELNIKOVA, NIEMI, NILSSON, AND ULYBYSHEV PHYSICAL REVIEW E 97, 052107 (2018)

FIG. 20. Coarse graining flow of the observable (47), for myoglobin 1ABS. In panel (a) for the entire chain k = 1. In panel (b) with k = 4
subtraction, together with the collapsed phase distribution in our homopolymer model. In panel (c) with k = 14, in (d) with k = 37, in panel
(e) with k = 65, and in panel (f) with k = 95 subtractions, together with both collapsed phase and SARW phase homopolymer distributions.
The panels for all values of k are available as Supplemental Material [44].

entire flow can be found in the Supplemental Material [44].
In Figs. 20(a) and 20(b) we compare the myoglobin flow
profile with the flow of collapsed phase homopolymers. The
statistical homopolymer distribution is evaluated using a pool
of 40 chains that we have constructed using our homopolymer
model with 154 vertices. The statistical distributions show
both the average value and the one standard deviation distance
from the average, in the pool of homopolymer chains. In
the inset of Fig. 20(a) and in the remaining panels we show
both the collapsed phase and the SARW phase statistical
distributions. We conclude that there are five major phases
during the flow, exemplified by our choices of representative

profiles in Fig. 20. We proceed to analyze the different phases in
detail.

1. Collapsed phase with k below 32

Figures 20(a)–20(c) with k = 1,4, and 14 show how initially
and when the number of iterations remains small the coarse
graining flow retains the negative value of the observable.
There is a qualitative resemblance to the profile that we find in
the collapsed phase of the homopolymer model. Moreover,
both in the case of myoglobin and in the case of the ho-
mopolymer background, initially for k = 1 the observable is
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negative and then increases when the flow starts; this is due to
short-range steric repulsion, between neighboring Cα atoms.
But when k � 2 both flows become decreasing, initially. We
note that while the initial k = 1 profile in Fig. 20(a) deviates
visibly from the homopolymer distribution and resembles the
RW distribution (see the inset), after only a few steps in k the
two flows are very similar as shown in the k = 4 Fig. 20(b).

Note that the value k = 14 in Fig. 20(c) is equal to the aver-
age length of the helical segments in myoglobin. Nevertheless,
the ensuing profile is clearly in a collapsed phase. It is even
more deeply in the collapsed phase than the homopolymer
distribution, as shown in Fig. 20(c). When we inspect the flow
profiles with nearby values of k, we observe that there is an
apparent self-similarity when k stays within the range between
k = 8 and k = 25. Thus for the ensuing range of distance scales
in k, the myoglobin structure displays the stable self-similar
characteristics of a collapsed phase.

Starting after around k = 25 we observe a transition from
the collapsed phase towards an apparent SARW phase in
myoglobin. The flow profile begins to convert towards the
k = 37 profile shown in Fig. 20(d).

2. SARW phase for values of k above 32 but below 57

For this range of cutoff values k the structure is firmly in
the SARW phase: The initial value of the observable (47) is
positive and increases during the initial stages of the coarse
graining flow, as expected in the SARW phase. The flow
profile is solidly positive valued and qualitatively akin to
the homopolymer SARW profile when the number of coarse
graining steps remains below ∼50 in the case of k = 37, as
shown in Fig. 20(d). In fact, as shown in this panel when
the number of coarse graining steps is ∼20 the flow profile
is clearly above the SARW profile; apparently the structure
approaches the straight rod phase, for these values of coarse
graining. When the coarse graining proceeds beyond ∼50
steps the ensuing values of the observable turns negative, i.e.,
apparently enters the collapsed phase: For a large number of
coarse graining steps the flow starts to probe the phases that will
eventually dominate the structure at much larger values of k.
We also note that there is apparent self-similarity over several
k values suggesting that the SARW phase is quite stable.

3. Collapse phase for values of k above 57 but below 83

In this range of k the initial value and the evolution of
the observable during the early coarse graining steps has
the characteristics of a collapsed phase, as shown in the
representative Fig. 20(e). In the panel we observe that the
coarse grained observable turns positive valued after around
∼38 coarse graining steps; the flow starts to probe the SARW
phase that will dominate the structure at values of k above
k = 83.

4. SARW and eventual RW phases for values of k above 84

In the range from k = 84 to around k = 109 the profile
first returns to the SARW phase as shown in Fig. 20(f) for
k = 95. It then starts slowly evolving towards the asymptotic
RW phase when k exceeds the value ∼110, in line with our
general arguments.

FIG. 21. Cα backbone of PDB structure 1Q6Z prepared with
WebGL [15].

5. 1ABS summary

In summary, we find that in the case of the relatively
short α-helical myoglobin the analysis of the coarse graining
flow displays four different phase regimes: There is an initial
collapsed phase which is followed by a SARW phase. Then
we have again a collapsed phase, followed by a final SARW
phase that slowly evolves towards the terminal RW phase.
Remarkably, we do not observe any dramatic transition when
the value of k is in the vicinity of the average length of helical
structures; at these values of short-distance cutoff scale k the
profile is self-similar and resides deeply in the collapsed phase.

We note that in experiments, the myoglobin folding pro-
ceeds in two stages from the high-temperature random coil to
the low-temperature native collapsed state [45]: The first to
fold as the temperature decreases are helices B,C,D, and E.
Then, the helices A,G, and H fold. The structure then becomes
a molten globule, which is followed by a slow stabilization of
the remaining F helix when temperature further decreases. It
would be interesting to see whether the length scales that are
associated with our two collapsed k regimes somehow relate to
the two temperature scales where first the B,C,D,E and then
the A,G,H helices are formed.

B. An example of α-β proteins

The second example we choose is a priori much more
complex: We consider the 528 residue protein with PDB
code 1Q6Z shown in Fig. 21. There are 27 helices with
around 39% of residues in these helical structures, and 25
strands that contain around 17% of residues according to
DSSP classification [15,43]. Thus, the total number of residues
located in the regular rodlike structures (∼56%) is clearly
smaller than in the case of myoglobin (∼74%). Moreover, the
helices have an average length of around 8 residues (there are
∼27 helices in ∼208 residues); i.e., the helices in 1Q6Z are
on average clearly shorter than in the case of myoglobin. The
average length of a strand is even shorter; there are on average
only ∼4 residues; according to DSSP [15,43] there are 25
strands with a total of 93 residues in 1Q6Z. Thus the average
length of a regular rodlike structure is around 6 residues which
sets an intrinsic scale. Since this scale is quite smaller from the
corresponding scale in myoglobin while 1Q6Z is a much longer
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FIG. 22. Coarse graining flow of the observable (47), for 1Q6Z. In panel (a) for k = 3 and in panel (b) with k = 8 subtraction, both together
with the collapsed phase homopolymer distributions. In panel (c) with k = 21 and in (d) with k = 65 subtractions, together with both collapsed
phase and SARW phase homopolymer distributions. The panels for all values of k are available as Supplemental Material [44].

chain, a priori the phase structures of 1Q6Z and myoglobin
should be different.

1. Initial collapse from k = 1 to k = 18

When k � 18 the Cα backbone is in a collapsed phase in the
sense that the observable (47) vanishes. However, the value of
the observable increases during the initial stages of the coarse
graining flow, for all values of k in this phase. Thus the profile
of the flow is different from that in the case of collapsed-phase
homopolymers, suggesting that the collapsed phase of 1Q6Z
is also different.

2. The values k from k = 19 to k = 143

Starting at k ∼ 19 there is a crossover to a phase that re-
sembles the SARW phase, as the initial value of the observable
becomes positive. Moreover, the observable increases during
the initial stages of the flow and the profile converges towards
the one shown in Fig. 22(c) with with k = 21. The flow profile
shows very persistent self-similarity over a wide range of k

values, slowly converging towards the RW phase.

3. The values k from k = 143 to k = 157

For the range between k = 143 and k = 157 there is a short
regime where the initial value becomes negative, in line with
the collapsed phase. However, the negative values are small
and the profile returns to one that resembles the profiles with
k < 143.

4. The values k above k = 157

For large values of k we observe slow convergence towards
the asymptotic large-k RW phase profile.

5. 1Q6Z summary

In summary, 1Q6Z does not appear to have any clear and
persistent collapsed regime of k values; there is a collapsed
regime only for k < 18 but with an increasing observable
during initial stages of the flow. The profile quickly converges
to an apparent SARW profile that persist for a long period,
slowly converging towards the large-k RW asymptote. The
results propose that despite its apparent structural complexity,
1Q6Z might collapse with very few folding intermediates.

C. An example of β-stranded protein

The third example we consider is the β-stranded 452 residue
protein with PDB code 2VK5 shown in Fig. 23. There are 4
helices that contain 3% of residues and 39 strands that contain
48% of residues according DSSP classification [15,43]. The
average length of regular rodlike substructures, ∼6 residues,
is much smaller than in the case of myoglobin but comparable
to that in 1Q6Z. The total number of residues in the regular
structures of ∼51% is also clearly smaller than in the case of
myoglobin but comparable to 1Q6Z.
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FIG. 23. Cα backbone of PDB structure 2VK5 prepared with
WebGL [15].

1. The values k from k = 1 to k = 18

As shown in Fig. 24(a) already with k = 1 we observe
more diversity in the profile of the flow than in the previous
two examples. The flow profile is clearly in a collapsed
phase, with quick convergence towards the collapsed phase
homopolymer distribution as shown in Fig. 24(b) with k = 6:
As in the case of myoglobin, when k coincides with the average
length of the regular rodlike substructures—in this case mostly
strands—the chain is deeply in the collapsed phase. Starting
at k = 9 the flow profile starts increasing, but the collapsed
phase persists until k = 17. At that point the initial value of
the observable becomes positive valued and increases during
the initial stages of the flow, suggesting that a transition to a
SARW phase takes place.
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FIG. 24. Coarse graining flow of the observable (47), for PDB structure 2VK5. In panel (a) for k = 1 together with the ensuing homopolymer
collapsed phase distribution. In panel (b) with k = 6 subtraction, together with the collapsed phase homopolymer distributions. In panel (c)
with k = 22, in panel (d) with k = 35, in panel (e) with k = 55, and in panel (f) with k = 170 subtractions, in all these with both collapsed
phase and SARW phase homopolymer distributions. The panels for all values of k are available as Supplemental Material [44].
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2. The values k from k = 19 to k = 29

Between k = 19 and 29 we observe a SARW phase and in
Fig. 24(c) we show the ensuing flow profile when k = 22. It
is notable that the flow profile is very similar to that shown
in Fig. 22(c). But unlike in the case of 1Q6Z the apparent
SARW phase becomes quickly converted back to a collapsed
phase.

3. The values k from k = 30 to k = 53

The flow profile proposes that the chain enters a col-
lapsed phase akin that of the homopolymer, when k = 30. In
Fig. 24(d) we show a typical flow profile in this range of k

values; the panel corresponds to k = 35.

4. The values k from k = 54 to k = 61

There is an apparent SARW phase from k = 54 to k = 61.
A generic flow profile is shown in Fig. 24(e); it is quite similar
to the flow profile in Fig. 24(c).

5. The values k with k = 62 and above

When k grows above 62 the flow profile will mostly stay
in the collapsed phase, except for very short fluctuations into
the SARW phase for example when k is between 86 and 90.
Figure 24(f) shows a generic flow profile; it is obtained for
k = 170. This collapsed phase then converges slowly towards
the asymptotic RW phase.

6. 2VK5 summary

There is apparent similarity between the evolution of
the 2VK5 and myoglobin flow profiles as the cutoff value
k increases: In both cases we observe repeated transitions
between collapsed and SARW phases. However, while large-k
myoglobin appears to reside in the SARW phase and ap-
proaches the RW phase when k increases, the large-k limit
of 2VK5 appears to reside predominantly in a collapsed
phase which asymptotically approaches the RW phase with
increasing k.

In both 2VK5 and 1Q6Z the regular rodlike substructures,
helices, and strands in the case of 1Q6Z, and strands in the case
of 2VK5, have a similar average length ∼6 residues. Moreover,
in both cases the initial collapsed phase extends only to k values
∼13–14. At the same time, in the case of myoglobin where the
average helical length is much longer, around ∼14 residues,
the initial collapsed phase extends all the way to k ∼ 32.

VIII. CONCLUDING REMARKS

The equilibrium phase diagram of a linear homopolymer
chain can be highly elaborate [34], even though in essence the
chain can only reside in one of the four phases that we have
listed in (3). The phase where a particular homopolymer chain
resides can often be determined using a single, simple global
order parameter such as the radius of gyration (1), even though
for a finite chain there can be corrections that are characterized
by the universal exponents �i in (2) which can be different for
different homopolymer chains.

In the case of a heteropolymer chain such as a protein Cα

backbone, it is commonly assumed that the phase structure
is akin that of a homopolymer: The space-filling collapsed
phase is found to be distinct to biologically active globular
proteins, while proteins such as type 1 collagen form fibrils
that commonly reside in the rigid rod phase under physiological
conditions. When the environmental variables become altered
the protein may change its phase; for example when the
ambient temperature is very high most protein structures
become denatured and start resembling a self-avoiding random
chain.

In the case of a heteropolymer it is usually very difficult
to pinpoint the phase where a chain resides, beyond visual
inspection. Moreover, there are arguments that different folded
proteins might actually reside in different collapsed phases
[16–19]. The reason is that there is no apparent simple order
parameter such as the radius of gyration that can unambigu-
ously detect the phase of a heteropolymer chain: Unlike in
the case of a homopolymer, the length of a heteropolymer
chain cannot be categorically extended, as is required by a
scaling law such as (1). Moreover, the phase where a protein
chain appears to reside often depends on the distance scale at
which the chain is inspected: At short distance scales a protein
chain is often dominated by regular rodlike helices and strands,
even though at large distance scales the protein appears to be
space filling. The existence of multiple characteristic length
scales along the chain is a characteristic feature of biologically
active proteins; their biological activity is driven by an interplay
of different length scales. This presence of multiple scales
brings about the possibility that a folded and an apparently
space-filling protein chain might simultaneously support the
coexistence of several distinct phases, and with a phase
structure that depends on the length scale at which the chain is
inspected.

In this article we have addressed the problem of how
to detect and identify the various different phases that can
be supported by a linear polymer chain, in a manner that
circumvents a need to extend its length as required by a scaling
law such as (2). For this we have first introduced an observable
that relates to the geometry of the chain in terms of local angles
instead of length scales. We have also introduced a chain-
specific variant of the Kadanoff block-spin transformation,
that enables us to investigate the scaling properties of a given
chain, without the need to increase the number of vertices and
increase the length of the chain as required by the scaling
law of radius of curvature. We have developed our method-
ology by studying the universal properties of homopolymers,
including the analysis of the phase structure in terms of a
computational model. We have shown how to identify the
phase structure of a homopolymer using our observable and
its scaling properties, effectively and in an unambiguous
manner.

Finally, we have proceeded to analyze the properties of our
observable in the case of crystallographic protein structures,
using three representative examples. We have shown in terms
of the examples how our approach enables us to identify the
presence of multiple length scales, and to detect coexisting
phases and the way these phases dominate the chain geometry
at different length scales: Multiple length and time scales
are a prerequisite for the emergence of the kind of complex
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structures and structural self-organization that takes place in
proteins of live matter. However, our understanding of the
relevance and physical origin of the diverse scales that are
observed in larger globular proteins remains incomplete. The
methodology we have introduced and analyzed clearly reveals
how a protein chain can support different phase characteristics,
in coexistence, at different length scales. Accordingly, we look
forward to developing our approach into a systematic method
for inspecting the multiple phases and the phenomenon of
phase coexistence in the case of proteins and other linear
heteropolymers.

IX. CODE

The code which we used for coarse graining and calculating
the observable for polymer chains is accessible online [46].
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