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Ordering statistics of four random walkers on a line
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We study the ordering statistics of four random walkers on the line, obtaining a much improved estimate for
the long-time decay exponent of the probability that a particle leads to time t , Plead(t) ∼ t−0.91287850, and that a
particle lags to time t (never assumes the lead), Plag(t) ∼ t−0.30763604. Exponents of several other ordering statistics
for N = 4 walkers are obtained to eight-digit accuracy as well. The subtle correlations between n walkers that lag
jointly, out of a field of N , are discussed: for N = 3 there are no correlations and Plead(t) ∼ Plag(t)2. In contrast,
our results rule out the possibility that Plead(t) ∼ Plag(t)3 for N = 4, although the correlations in this borderline
case are tiny.
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I. INTRODUCTION

Imagine N random walkers on the line, each stepping to the
right or left at equal rates (or all diffusing with the same diffu-
sion constant D), initially started at locations x1(0) < x2(0) <

· · · < xN (0). For the case of “vicious walkers,” the process
terminates as soon as any two walkers cross one another,
thus violating the initial ordering. The probability that the
vicious walkers process lasts to time t decays asymptotically
as t−βN , with βN = N (N − 1)/4 [1,2]. The algebraic decay
with time is typical of the survival of other kinds of ordering.
For example, for the “leader” problem, the probability that
the leading particle remains in the lead at all times, i.e., that
x1(t) < xi(t), i = 2,3, . . . ,N (regardless of the ordering of the
remaining particles), decays also as t−βN , but with different
values of the exponent βN .1 In this case, only β2 = 1

2 and
β3 = 3

4 [3–6], as well as the limit βN ∼ (ln N )/4 as N → ∞
[7–10], are known exactly. For the “laggard” problem, the
asymptotic probability that particle i (i > 1) never assumes the
lead (xi ≮ x1, . . . ,xi−1,xi+1, . . . ,xN ) is known exactly only
for β2 = 1

2 , β3 = 3
4 , and for βN ∼ (ln N )/N in the limit of

N → ∞ [10], etc.
Apart from the obvious applications to probabilistic ques-

tions, such as the “ballot problem,” or how polling leads might
change during a voting process [3,11], the problem of ordering
of random walks on the line is important to various chemical
and physical systems, including reaction-diffusion processes
[12] and the motion of colloidal particles in narrow channels
[13,14], wetting [1,2], dynamics of interacting spins and
domain-growth models [15,16], and the untangling of knots in
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1There is no accepted consensus on the notation for the exponents

pertaining to the various orderings. We use the notation β for all cases,
making the distinction clear by context.

polymer chains [17], and it plays a role in such unexpected ar-
eas as three-dimensional (3D) Lorentzian quantum cosmology
[18]. Ordering problems fit squarely within the broader class
of persistence and first-passage problems in nonequilibrium
systems (see [19], for a recent, comprehensive review).

For N = 2 the probability that the two particles retain
their original ordering up to time t decays as t−1/2. For
N > 2, the coordinates x1(t),x2(t), . . . ,xN (t) may be regarded
as representing a single random walker inN -dimensional space
[4]. In this representation, the constraint that particles i and j

never cross corresponds to the surface xi = xj : as long as the
walker remains to one side of that surface, the ordering between
the two particles is conserved. Motion of the single walker
along the axis x1 = x2 = · · · = xN does not affect the distances
between the original particles, thus for ordering statistics
it suffices to focus on the (N − 1)-dimensional subspace
perpendicular to that axis. The two-dimensional subspace for
the case of N = 3 is shown in Fig. 1. Each of the six wedges in
the figure represents a particular ordering of the particles (for
example, the wedge labeled “132” corresponds to the ordering
x1 < x3 < x2) and crossing any of the walls (or lines, in the
perpendicular subspace) results in a reversal of the ordering
of the corresponding particles. Vicious walks correspond to
the case that the single walker remains confined to the “123”
wedge. For the leader problem, the single walker must remain
within the adjacent 123 and 132 wedges, etc. It is clear from
these considerations that for N = 3 there are only six types
of ordering statistics, corresponding to the number of adjacent
wedges that the single walker is allowed to visit:2

2One could think of more involved statistics, though. For example,
all wedges are allowed, but crossing directly between 123 and 132 is
disallowed (β = 1

4 ); or crossings might be allowed only in a particular
sequence of events, etc. Here, we limit discussion to the simplest case
that if adjacent wedges are allowed, so are the crossings between
them.
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FIG. 1. Two-dimensional subspace for the single walker repre-
senting the case of N = 3. The xi = xj surfaces appear as lines in
this subspace. The six wedges demarcated by these lines are labeled
according to the ordering of the three particles in the original problem.

(1) wedge: This is the case of vicious walkers, for which
β = 3

2 .
(2) wedges: This is the “leader” problem, that 1 remains

ahead (to the left) of 2 and 3. The decay exponent is β = 3
4 .

(3) wedges: The particles may be in any of the orderings
123, 213, or 231, say. Put differently, 2 must remain ahead
of 3, while the location of 1 is irrelevant. This is the ordering
statistics for N = 2, with β = 1

2 .
(4) wedges: The “laggard” problem, where a particle is

never allowed to assume the lead, for which β = 3
8 .

(5) wedges: The particles are not allowed to meander into
a particular ordering (321, say) but are allowed all other
orderings. In this case β = 3

10 .
(6) wedges: The trivial case, where the particles are al-

lowed to freely explore all orderings. In this case the process
never terminates, so β = 0.

In other words, the case of N = 3 is well understood. (This
remains true even for the more general case that the walkers
have different diffusion constants [5,10].) In contrast, relatively
little is known for N > 3.

For N = 4 the orthogonal subspace for the single walker is
three dimensional, the various ordering statistics correspond-
ing to semi-infinite triangular pyramidal wedges, or combina-
tions of adjacent wedges (Fig. 2). Apart from the case of vicious
walkers (which can be solved by the method of images) and
some trivial “degenerate” statistics (e.g., the location of one
of the particles is ignored, so that effectively N = 3) there
seem to be no other known analytical solutions, but numerical
estimates of β are available for a few types of ordering statistics
[10,20,21]. In [20] Ben-Naim and Krapivsky study the general
question that a specific walker (out of a field of N walkers)
never falls bellow rank n. Their numerical simulations for N =
4 yield β4 = 0.913 for the problem of the “leader” (n = 1) and
β4 = 0.306 for the “laggard” (n = 3). (They also introduce
the useful “cone approximation” for the evaluation of decay
exponents, as well as a scaling analysis of ordering statistics
as a function of n/N .) In [10], the four-walker problem is
studied by mapping it into a three-dimensional electrostatic
analog and solving that problem numerically. Their result for
the leader, β4 = 0.91342(8), requires numerical extrapolation,
casting some doubt on the accuracy of the last few digits.
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FIG. 2. Three-dimensional subspace of the single walker for
N = 4. (a) A cardboard model showing how the six constraint walls
xi = xj divide the space into 24 wedges. The walls extend to infinity
but are shown only within the confines of a cube, to highlight their
orientations and symmetries. (b) Schematic redrawing of the 24
wedges. Each wedge is labeled with its pertinent ordering and the
“1234” wedge (with the original ordering) is highlighted in bold font.
The wall x1 = x4 is partially extended: crossing this wall particles 1
and 4 reverse their order. The combined six wedges around vertex i

are those where particle i leads; around i ′ particle i is last (i is the
rightmost particle). Only 12 of the wedges are visible in the figure.
The back branch of wedge “ijkl,” corresponds to the reverse ordering
“lkj i.”

In this paper, we study the problem of N = 4 numeri-
cally. The four-walkers problem is first mapped onto a three-
dimensional electrostatic analog, as in [6,8,10,22], and we then
use an ansatz for the solution [10] to further reduce the problem
to a two-dimensional finite domain. The latter can be solved
numerically with great accuracy, yielding eight significant
digits for the decay exponents of the various ordering statistics.
Thus, for example, we find β4 = 0.91287850 for the leader
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and β4 = 0.30763604 for the laggard problem. This is to
be contrasted with the typical three-digit accuracy achieved
by direct simulations of the process [10,20,21]. (It remains
to be seen how effective accelerated simulations methods
[5,23,24] might be at improving upon this level of accuracy.)
In addition, we explore several other ordering statistics for
the four-walkers problem. Finally, we explore the issue of
correlations between the walkers: For N = 3 walkers there
seem to be no correlations; the probability for two walkers
to lag jointly equals the product of their probabilities to lag
independently (in the long-time limit). Also for N = 4, the
best numerical estimates are consistent with no correlations;
the probability for two or three walkers to lag together seems
to closely match the product of their probabilities to lag
independently. The analytic asymptotic results, for N → ∞,
for the leader and laggard problems [8–10] seem to suggest
that correlations should arise. However, there is no rigorous
proof available yet of these asymptotic results. Our present
numerical work shows very clearly that for N = 4 small cor-
relations between laggards arise, and we analyze their effect in
detail.

II. METHODS

Instead of solving the diffusion problem

∂

∂t
P (r,t) = D∇2P (r,t) ,

P (r,0) = δ(r − r0) , P (r,t) = 0 for r ∈ ∂W (1)

for the single walker (starting at r0 within the wedge W ), one
can look at the analogous electrostatic problem [6,8,10,22]

∇2V (r) = −δ(r − r0), V (r) = 0 for r ∈ ∂W. (2)

The single walker in (1) survives with probability S(t) =∫
P (r,t) ddr ∼ t−β , while the potential V in (2) falls off at

large distance r � r0 as V (r) ∼ r−μ. Because

∫ t

0
S(t) dt ∼

∫ √
Dt

V (r)rd−1 dr, (3)

we have

β = 2 − d + μ

2
= 3 − N + μ

2
, (4)

where for the last relation we put d = N − 1 since W is in the
orthogonal subspace for the single walker. The equivalence
(3) arises from the integral of (1) over all time, which yields
essentially Eq. (2), and from the fact that the single walker has
an effective reach of length r ∼ √

Dt . Solving the problem for
V (r), rather than for P (r,t), is easier because of the absence
of the time variable t .

For N = 3, for example, the wedges W are two dimensional
(Fig. 1) and V (r) can be expressed in polar coordinates, as
V (r,θ ). Although the equation for V can be solved exactly,
a further simplification is achieved with the ansatz V (r,θ ) ∼
r−μf (θ ), as r → ∞. Substituting this form in Eq. (2),
we get

d2

dθ2
f (θ ) = −μ2f (θ ) (5)

(for r 
= r0), with the boundary conditions

f (0) = 0, f (γ ) = 0,

where γ is the opening angle of the W domain in question.
The lowest eigenfunction solution f (θ ) = sin(πθ/γ ) yields
the eigenvalue (and the sought after asymptotic behavior)

μ = π

γ
and β = π

2γ
, (6)

the value for β following from (4). This method was used in
[10] to obtain the various ordering exponents for N = 3. In
what follows, we use the very same technique for the case
of N = 4. Writing Eq. (2) for V in spherical coordinates and
applying the ansatz V (r,θ,φ) = r−μf (θ,φ), as r → ∞, we
obtain

μ(μ − 1)f (θ,φ) + 1

sin θ

∂

∂θ
sin θ

∂

∂θ
f (θ,φ)

+ 1

sin2 θ

∂2

∂φ2
f (θ,φ) = 0. (7)

The domain S for this equation is the {θ,φ} region of the unit
sphere cut out by ∂W : the walls of the domainW for the original
problem of V (r,θ,φ). The eigenvalue problem of Eq. (7) is thus
subject to the boundary condition f (θ,φ) = 0, for (θ,φ) ∈ ∂S

(the borders of the domain S). The domain corresponding to
a single wedge is shown in Fig. 3. When neighboring wedges
are merged, the Dirichlet boundary condition can be replaced
by Neumann boundary conditions along some of the borders,
to exploit the symmetry of the combined, larger domain.

Numerical approach

To solve the eigenvalue problem defined by (7), a continu-
ous hp-finite element method was used that is based on [25].
We used an unstructured mesh of triangles and a polynomial
space of degree p = 4 on each element. The polynomial space
was defined by

T (p) = {span[xαyβ]| 0 � α,β & α + β � p},
and was represented by the modified Dubiner basis [26]. The
weak form of (7) was written by multiplying the equation by
sin θ then integrating over the θ,φ domain:∫

S

[
λv sin θf + ∂v

∂θ
sin θ

∂f

∂θ
+ ∂v

∂φ

1

sin θ

∂f

∂φ

]
dφ dθ = 0,

where λ = μ(μ − 1) and v is a test function. Using the global
space of functions defined by T (p) on each element and the
interelemental continuity constraints for bothv andf , the weak
form was used to generate a discrete generalized eigenvalue
problem.

The generalized eigenvalue problem was solved using
SLEPC(www.slepc.upv.es) with the Rayleigh quotient conju-
gate gradient algorithm [27–30] to obtain the smallest real
eigenvalue. The convergence tolerance was set to 1 × 10−10.

To reduce the errors stemming from the finite resolution
of the triangular mesh, a mesh adaption routine was used
[31,32]; after each eigenvalue solution, the truncation error
in the solution for the first eigenvector was employed in a
solution-based mesh adaption scheme that tried to maintain
the truncation error lower than a specified tolerance over the
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FIG. 3. Eigenfunctions obtained with the numerical solver for
case C of Table II (a) and intermediate resolution adapted finite
element mesh (b). The mesh is visible only upon enlargement (of
the electronic version). We use the basic triangular domain of one
particular ordering (e.g., 1234), and symmetry is exploited in the
analysis of each case by imposing appropriate boundary conditions:
for our case C, Dirichlet conditions on the top and right sides, and a
Neumann condition on the curved side.

entire mesh. After each eigenvalue solution, the mesh was then
adapted to reduce the truncation error. This was repeated four
times, for increasing numbers of degrees of freedom in the
mesh (NDOF). In addition, for each mesh size the generalized
eigenvalue problem was solved three times with different initial
guesses for the eigenvector, and the variations in the output
eigenvalue λ were recorded. Results for a case with Dirichlet
boundary conditions on the top and right of the domain and
a symmetry boundary condition on the bottom left (which
is Case C of Table II below) are shown, as an example, in
Table I. As seen from this example, different guesses for the
initial eigenvector affect λ only beyond the eighth digit. By
comparing the values for the two last mesh sizes, one can also
conclude that mesh size effects have converged to better than
eight to nine significant digits.

Figure 3 shows the final estimate of the eigenfunction
solution for this case and mesh. Although difficult to see

TABLE I. Precision of eigenvalues with changing mesh refine-
ment and repeated eigenvalue solutions with three different guesses
for the initial eigenvector.

NDOF λ

1231 1.77913047045631e+01
1231 1.77913047378482e+01
1231 1.77913046668994e+01
86485 1.77912995337541e+01
86485 1.77912994085778e+01
86485 1.77912994552660e+01
210207 1.77912994944804e+01
210207 1.77912994029586e+01
210207 1.77912993511336e+01
268591 1.77912994472011e+01
268591 1.77912994761774e+01
268591 1.77912994046798e+01

without enlarging the figure, the mesh is not uniform in
resolution. The resolution increases in the top left and bottom
right corners of the domain because the second derivative
goes to infinity there. This singular behavior makes obtaining
accurate solutions difficult using a uniform mesh resolution.
The cause of the singularity is an incompatibility between the
boundary conditions; along the straight sides of the domain, a
homogeneous Dirichlet boundary condition is enforced which
means that isocontours of the eigenfunction must be parallel
to these surfaces. On the curved boundary, a homogeneous
Neumann boundary condition is enforced which means that
isocontours must be perpendicular to the curved side. Because
the curved surface is not perpendicular to the straight surfaces
at their intersection points, it is impossible to satisfy both
conditions. This drives an infinite second derivative in the
eigenfunction as the two intersection points are approached.
The mesh adaption routine detects the increased truncation
error that occurs at these points and refines the mesh near the

TABLE II. Numerical results for the various cases discussed in
the text. The probability to maintain the particular ordering in each
case decays as t−β . Alternatively, the electrostatic potential within the
W domain corresponding to that case falls off as r−μ at large r , and the
relation β = (μ − 1)/2 holds (for N = 4). The entries are arranged
by decreasing order of the solid angle � sustained by the domain W

(last column). The well-known exact result for vicious walkers (case
A) [1,2] has been included for completeness.

Case Ordering statistics β μ �/4π

A Vicious walkers (1234) 3 (exact) 7 (exact) 1/24
B 12 • • 2.0716054 5.1432108 1/12
C “Bookends” (1 • •4) 1.8737525 4.7475050 1/12
D 1 leads, and 2 ahead of 3 1.6204515 4.2409030 1/8
E “Teams” (• • | • •) 1.1949400 3.3898800 1/6
F Leader (1 • ••) 0.91287850 2.8257570 1/4
G 1&2 or 1&3 team lead 0.93265225 2.8653045 1/3
H 1 leads or 2 leads 0.61257504 2.2251500 1/2
J 1 in 1st or 2nd place 0.55480541 2.1096108 1/2
K Team excluded from edges 0.81433951 2.6286790 2/3
L Laggard (2 never leads) 0.30763604 1.6152721 3/4
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corners. For the final mesh for this case, the ratio of the largest
to smallest edge length in the mesh is 100.

III. RESULTS

Enumerating all the possible ordering statistics for N = 4
is already in itself a nontrivial problem (that we do not fully
attempt here). Instead, we focus on ordering statistics that have
been studied to date (e.g., leader, laggard) as well as some
“new” statistics that seem to illustrate a specific point. Our
findings are summarized in Table II.

The first and simplest case (case A), where the single walker
is confined to the 1234 wedge, corresponds to the problem of
vicious walkers. The solution μ = 7 and β = (μ − 1)/2 = 3
is known exactly (through the method of images). We ran
the numerical solver for this case as a test, finding agreement
with the exact result to better than eight digits. As described
earlier, the S domain corresponding to a single wedge is the
isosceles right angle triangle, on the unit sphere, shown in Fig. 3
(with Dirichlet boundary conditions on all three sides). It is
easiest to describe all the other cases in terms of combinations
of this basic triangle. The results in Table II are arranged
in order of the number of basic triangles involved for each
statistics or, equivalently, by the fraction�/4π of the total solid
angle covered by the domain S of each case (last column). A
straightforward prediction of the cone approximation [20,21]
is that μ and β get smaller the larger the fraction of the solid
angle covered.

There are two distinct combinations of two basic triangles,
depending on wether they join along one of the legs or along the
hypotenuse. The former, case B, corresponds to the adjacent
orderings 1234 and 1243 (and symmetric variations). We write
this ordering statistics symbolically as “12 • •,” the bullets
denoting the fact that particles 3 and 4 are free to exchange
positions. The other option, case C, of joining two triangles
through an hypotenuse, “1234” and “1324” for example, yields
the “bookends” statistics “1 • •4”: particles 1 and 4 retain
their first and last position, respectively, bookending particles
2 and 3 in-between (which may cross one another). While the
domains for both cases B and C span the same solid angle
( 1

12 of the total sphere), the results for μ and β are somewhat
different, with the higher values corresponding to the more
irregular, or more elongated shape of the domain for case B.
(The smallest possible values of β and μ would be achieved for
a circular domainS, the one assumed in the cone approximation
[20,21].)

There are two ways to join three adjacent triangles, but we
consider only the more regular-shaped case D, consisting for
example of the orderings 1234, 1324, and 1342 (the neglected
possibility has a concave-shaped domain). There is no simple
way to describe this ordering statistics, aside from perhaps that
particles 1, 3, and 4 retain their relative ordering, while particle
2 can be anywhere but never ahead of 1. A particular interest in
this case arises from the fact that its domain is exactly one-half
of the domain for the leader problem (case F). Thus, the first
(lowest) mode for case D corresponds to the second mode of
case F, yielding the leading correction for the latter (see below).

There are six ways to join four basic triangles and again
we consider only the most compact-shaped possibility, case
E, consisting of the orderings making one face of the cube in

Fig. 2, for example, 1234, 1243, 2143, and 2134. In this case
particles 1 and 2 “team lead”: they occupy the first and second
positions but not necessarily in that order. Particles 3 and 4
“team lag,” occupying the last two positions (without regard
to their relative ordering). We denote this, symbolically, as
• • | • •.

Of the many statistics available for six adjacent orderings,
we focus on the popular leader problem, case F. The domain
S for particle i to lead consists of all of the six orderings
surrounding the vertex labeled “i” in Fig. 2(b) (see caption).
The best approximation available to date for the corresponding
exponent is β = 0.913 [10,20]. In fact, more than three-digit
accuracy is claimed in [10] but the extra digits are inconsistent
with our present findings. The result in [10] relies on an
extrapolation that assumes r−4 for the leading correction of
V (r) ∼ r−μ, instead of the more accurate leading correction
∼r−4.2409030 suggested by our case D, and this may partly
explain the discrepancy.

In case G, either particles 1 and 2 team lead or particles 1
and 3 team lead, at any given time. The domain consists of
all eight orderings in the two faces visible at the bottom of
the cube in Fig. 2(b). An interesting fact is that the β and μ

exponents are not smaller than those for the leader problem,
even though the fraction of solid angle covered is larger ( 1

3 , as
opposed to 1

4 for the leader). This may be the result of the more
irregularly shaped (elongated) domain of case G.

Case H describes the probability that at any given time,
either particle 1 leads or particle 2 leads (alternatively, particles
3 and 4 never lead, or lag jointly). The domain S consists of
the union of the domains for “particle 1 leads” and “particle 2
leads,” comprising of 12 basic triangles and spanning a solid
angle of 2π , or 1

2 of the sphere. Case J concerns the ordering
statistics for particle i never to fall below the second place.
The domain encompasses all of the 12 orderings visible in
Fig. 2(b) (for the choice of i = 1). The exponents for both
cases are somewhat larger than μ = 2 and β = 1

2 predicted
by the cone approximation [20,21]. This, and the fact that the
exponents for case H are larger than those for case J is explained
from the irregularity of the domains (domain J more irregular
than H, which in turn is more irregular than the half-sphere).
Ben-Naim and Krapivsky [20] studied the probability that in
an N -walkers field a particle does not fall below the nth place.
Our case J is quite in agreement with their simulations result
of β = 0.556, for N = 4 and n = 2.

Case K describes the statistics for a team of particles to
be excluded from the edges. For example, particles 1 and 2
are not allowed to team lead (occupy the first two positions)
nor to team lag (occupy the last two positions). The domain
consists of four faces on the envelope of the cube in Fig. 2(b):
the bottom-left face where 1 and 2 team lead, and the opposite
(nonvisible) face where 1 and 2 team lag are excluded. The
exponents for this ring-shaped, highly irregular domain are
quite larger than expected from the solid angle covered ( 2

3 of
the sphere) and almost on par with the exponents for case G
whose domain is only half as large ( 1

3 of the sphere).
Finally, case L is that of the laggard. The domain comprises

of all of the orderings where particle i does not lead, covering
3
4 of the solid angle of the sphere. Our results here are
consistent with β = 0.30 [10] and β = 0.306 [20] obtained
from numerical simulations in previous studies. The fact that
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βlaggard ≈ ( 1
3 )βleader (cases L and F, respectively) is intriguing

and we look into this next.

Correlations and n out of N laggards

In the general case of N walkers, the probability that particle
1 leads to time t equals the joint probability that particles
2,3, . . . ,N lag, that is, that none of them lead to time t :

Plead(1) = Plag(2,3, . . . ,N). (8)

If correlations could be ignored, the joint probability for the
laggards would simplify to

Plag(2,3, . . . ,N) = Plag(2)Plag(3) . . . Plag(N )

= Plag(2)N−1, (9)

the last equation resulting from the fact that all particles are
equally likely to lag. Denoting the ordering exponents for
leading and lagging as Plead(1) ∼ t−βlead and Plag(2) ∼ t−βlag ,
we then get

βlead = (N − 1)βlag. (10)

This seems to be the case for N = 3, where βlead = 3
4 , βlag = 3

8 ,
and βlead = 2βlag, but it cannot be generally true; in the limit
of N → ∞, for example, βlead ∼ (ln N )/4 < (N − 1)βlag ∼
ln N . Are there no correlations in the case of N = 3, and
if so, at what N do correlations creep in? Our results show
quite convincingly that correlations creep in already for
N = 4. Indeed, using the exponents for cases F (leader) and
L (laggard) of Table II, we get βlead = 0.91287850 < 3βlag =
0.92290812, although the difference is tiny (it could barely be
intimated from the previously [20] best available estimate of
βlag = 0.306).

We can, in fact, probe correlations somewhat more deeply.
The probability that particle 1 leads can be written exactly as

Plead(1) = Plag(2)Plag(3|2)Plag(4|2,3)

× . . . Plag(N |2, . . . ,N − 1), (11)

where we have used the notation

Plag(i|j,k, . . . ,n) = Plag(i,j,k . . . ,n)

Plag(j,k, . . . ,n)
(12)

for the conditional probability that particle i lags, given that
particles j,k, . . . ,n lag as well. In the absence of correlations,
all these conditional probabilities are equal to Plag(2), as is the
case for N = 3. For N = 4, we obtain the pertinent ordering
exponents from Table II: Plag(2) is case L, Plag(2,3) is case
H, and Plag(2,3,4) is the same as Plead(1), or case F. We thus
obtain

Plag(3|2) ∼ t−0.30493900 and Plag(4|2,3) ∼ t−0.30030346.

The differences from Plag(2) ∼ t−0.30763604 are tiny and show
only with better than three-digit accuracy, but the effect is
undeniable.

That the correlations are small can be understood intuitively
from the following argument. If we have the constraint that
particles j,k, . . . ,n lag, it might mean one of two things: either
these particles are unusually “slow” (hence they lag) or some
of the remaining particles are unusually “fast” (leaving them
behind). In the first case, it would be more difficult for particle

i to compete with the laggards and lag as well, whereas in the
second case it would be easier for it to lag, in comparison to
the fast particles .... These two contradicting tendencies seem
to balance out for N = 3, but our numerical results suggest
that for N = 4 it is somewhat easier to lag given the constraint
that one other particle is lagging, and easier still if two other
particles are lagging. It is plausible that this trend is general for
N � 4, that is, that Plag(i|j,k, . . . ,n) is larger the greater n is,
but we are unable to prove this notion. Finally, we note that the
delicate balance for the case of N = 3 seems to be accidental;
indeed correlations clearly arise as soon as the particles are
given slightly different diffusion constants [10].

IV. DISCUSSION

In summary, we have provided numerical estimates, accu-
rate to eight digits, for the decay exponent β of various ordering
statistics for N = 4 random walkers on the line. The results
were found by examining an analogous problem in electrostat-
ics; the actual numerical computations yield an estimate for the
exponent μ in V (r) ∼ r−μ, for the long-range decay (r → ∞)
of the electric potential V within three-dimensional wedges
with absorbing boundary conditions (V = 0 on the walls of the
wedges). Employing the ansatz V (r,θ,φ) ∼ r−μf (θ,φ) results
in an eigenvalue equation for f (θ,φ) and the eigenvalue μ

can be then found numerically with great accuracy since the
domain for f is finite (in contrast to the infinite domain for the
problem in V ). The same technique has been used before for
N = 3 walkers, as reviewed in Sec. II.

Some of the domains that we have considered display a
high degree of symmetry. For example, the domain for the
leader problem is a tetrahedral wedge with a solid angle of
exactly 1

4 of the sphere (the laggard problem involves the
complementary space, outside of this domain); the “teams”
ordering statistics (case E) involves a square pyramidal wedge,
with a solid angle of 1

6 of the sphere, etc. To our surprise
and despite our best efforts, we have failed to find analytical
solutions to these problems in the literature. An interesting case
in point (but unrelated toN = 4 walkers) is that of the Cartesian
corner x,y,z > 0. If the walls are absorbing (or V = 0), the
potential inside such a domain falls off as V (r) ∼ r−4, and
a random walker that dies on the walls survives to time t

with probability P (t) ∼ t−3/2, as can be found exactly through
the method of images. But, what about the complementary
domain? What if the walker or the electric charge reside outside
of the first octant? Using our numerical techniques, we were
able to estimate that V ∼ r−1.45417 and P ∼ t−0.227086 (to six
significant digits) but we were unable to track an analytic
answer in the literature even for this seemingly simple case.

For N = 3 the probability that particles 2 and 3 lag jointly
(neither of them ever becomes the leader) are uncorrelated
in the long-time limit, equaling the square of the probability
that a single particle lags. In contrast, our numerical analysis
shows that for N = 4 the simultaneous lagging of two or
three particles is correlated, although the correlations are small
and manifest only in the third digit of the corresponding
probability-decay exponents. The more general problem of the
probability thatnout ofN particles lag simultaneously (none of
thenparticles leads, to time t) might be of interest. In particular,
it might be nice to establish how the decay exponents scale with
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n and N , in a similar fashion to that obtained by Ben-Naim and
Krapivsky [20,21] for other ordering statistics.

Finally, we have focused on only the small subset of order-
ing statistics summarized in Table II, without even attempting

to count how many cases we have left out. Enumerating the
distinct types of ordering statistics for N � 4 (in the restricted
sense of this work) remains an interesting combinatorial
problem.

[1] M. E. Fisher, J. Stat. Phys. 34, 667 (1984).
[2] D. A. Huse and M. E. Fisher, Phys. Rev. B 29, 239 (1984).
[3] H. Niederhausen, Eur. J. Combinatorics 4, 161 (1983).
[4] M. E. Fisher and M. P. Gelfand, J. Stat. Phys. 53, 175 (1988).
[5] D. ben-Avraham, J. Chem. Phys. 88, 941 (1988).
[6] S. Redner, A Guide to First-Passage Processes (Cambridge

University Press, Cambridge, 2001).
[7] H. Kesten, Seminar on Stochastic Processes, 1991 (Springer,

New York, 1992), pp. 59–72.
[8] P. Krapivsky and S. Redner, J. Phys. A: Math. Gen. 29, 5347

(1996).
[9] S. Redner and P. Krapivsky, Am. J. Phys. 67, 1277 (1999).

[10] D. ben-Avraham, B. Johnson, C. Monaco, P. Krapivsky, and
S. Redner, J. Phys. A: Math. Gen. 36, 1789 (2003).

[11] W. Feller, An Introduction to Probability Theory and Its
Applications, Vol. 1 (Wiley, New York, 1968).

[12] B. Lee, J. Phys. A: Math. Gen. 27, 2633 (1994).
[13] Q.-H. Wei, C. Bechinger, and P. Leiderer, Science 287, 625

(2000).
[14] B. Cui, H. Diamant, and B. Lin, Phys. Rev. Lett. 89, 188302

(2002).
[15] B. Derrida, V. Hakim, and V. Pasquier, Phys. Rev. Lett. 75, 751

(1995).
[16] S. N. Majumdar, Current Science 77, 370 (1999).
[17] E. Ben-Naim, Z. A. Daya, P. Vorobieff, and R. E. Ecke, Phys.

Rev. Lett. 86, 1414 (2001).
[18] B. Dittrich and R. Loll, Phys. Rev. D 66, 084016 (2002).
[19] A. J. Bray, S. N. Majumdar, and G. Schehr, Adv. Phys. 62, 225

(2013).
[20] E. Ben-Naim and P. Krapivsky, J. Phys. A: Math. Theor. 43,

495008 (2010).

[21] E. Ben-Naim, Phys. Rev. E 82, 061103 (2010).
[22] F. Spitzer, Principles of Random Walk, 2nd ed. (Springer, New

York, 1976).
[23] P. Grassberger, Comput. Phys. Commun. 147, 64 (2002).
[24] T. Oppelstrup, V. V. Bulatov, A. Donev, M. H. Kalos, G. H.

Gilmer, and B. Sadigh, Phys. Rev. E 80, 066701 (2009).
[25] B. T. Helenbrook, Comput. Methods Appl. Mech. Eng. 191, 273

(2001).
[26] M. Dubiner, J. Sci. Comput. 6, 345 (1991).
[27] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K.

Buschelman, L. Dalcin, V. Eijkhout, W. D. Gropp, D. Kaushik,
M. G. Knepley, L. C. McInnes, K. Rupp, B. F. Smith, S. Zampini,
H. Zhang, and H. Zhang, PETSc Users Manual, Technical Report
No. ANL-95/11- Revision 3.7, Argonne National Laboratory
(unpublished).

[28] J. E. Roman, C. Campos, E. Romero, and A. Tomas, SLEPc
Users Manual, Technical Report No. DSIC-II/24/02-Revision
3.7, D. Sistemes Informàtics i Computació, Universitat Politèc-
nica de València (unpublished).

[29] V. Hernandez, J. E. Roman, and V. Vidal, ACM Trans. Math.
Software 31, 351 (2005).

[30] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith,
in Modern Software Tools in Scientific Computing, edited by
E. Arge, A. M. Bruaset, and H. P. Langtangen (Birkhäuser, Basel,
1997), pp. 163–202.

[31] B. Helenbrook and J. Hrdina, Comput. Fluids 167, 40
(2018).

[32] B. T. Helenbrook and T. J. Baker, in Proceedings of the 2002
Joint ASME/European Fluids Engineering Division Summer
Conference FEDSM2002-31227, Montreal, Quebec, Canada,
2002 (ASME, New York, 2002).

052105-7

https://doi.org/10.1007/BF01009436
https://doi.org/10.1007/BF01009436
https://doi.org/10.1007/BF01009436
https://doi.org/10.1007/BF01009436
https://doi.org/10.1103/PhysRevB.29.239
https://doi.org/10.1103/PhysRevB.29.239
https://doi.org/10.1103/PhysRevB.29.239
https://doi.org/10.1103/PhysRevB.29.239
https://doi.org/10.1016/S0195-6698(83)80046-8
https://doi.org/10.1016/S0195-6698(83)80046-8
https://doi.org/10.1016/S0195-6698(83)80046-8
https://doi.org/10.1016/S0195-6698(83)80046-8
https://doi.org/10.1007/BF01011551
https://doi.org/10.1007/BF01011551
https://doi.org/10.1007/BF01011551
https://doi.org/10.1007/BF01011551
https://doi.org/10.1063/1.454174
https://doi.org/10.1063/1.454174
https://doi.org/10.1063/1.454174
https://doi.org/10.1063/1.454174
https://doi.org/10.1088/0305-4470/29/17/011
https://doi.org/10.1088/0305-4470/29/17/011
https://doi.org/10.1088/0305-4470/29/17/011
https://doi.org/10.1088/0305-4470/29/17/011
https://doi.org/10.1119/1.19115
https://doi.org/10.1119/1.19115
https://doi.org/10.1119/1.19115
https://doi.org/10.1119/1.19115
https://doi.org/10.1088/0305-4470/36/7/301
https://doi.org/10.1088/0305-4470/36/7/301
https://doi.org/10.1088/0305-4470/36/7/301
https://doi.org/10.1088/0305-4470/36/7/301
https://doi.org/10.1088/0305-4470/27/8/004
https://doi.org/10.1088/0305-4470/27/8/004
https://doi.org/10.1088/0305-4470/27/8/004
https://doi.org/10.1088/0305-4470/27/8/004
https://doi.org/10.1126/science.287.5453.625
https://doi.org/10.1126/science.287.5453.625
https://doi.org/10.1126/science.287.5453.625
https://doi.org/10.1126/science.287.5453.625
https://doi.org/10.1103/PhysRevLett.89.188302
https://doi.org/10.1103/PhysRevLett.89.188302
https://doi.org/10.1103/PhysRevLett.89.188302
https://doi.org/10.1103/PhysRevLett.89.188302
https://doi.org/10.1103/PhysRevLett.75.751
https://doi.org/10.1103/PhysRevLett.75.751
https://doi.org/10.1103/PhysRevLett.75.751
https://doi.org/10.1103/PhysRevLett.75.751
https://doi.org/10.1103/PhysRevLett.86.1414
https://doi.org/10.1103/PhysRevLett.86.1414
https://doi.org/10.1103/PhysRevLett.86.1414
https://doi.org/10.1103/PhysRevLett.86.1414
https://doi.org/10.1103/PhysRevD.66.084016
https://doi.org/10.1103/PhysRevD.66.084016
https://doi.org/10.1103/PhysRevD.66.084016
https://doi.org/10.1103/PhysRevD.66.084016
https://doi.org/10.1080/00018732.2013.803819
https://doi.org/10.1080/00018732.2013.803819
https://doi.org/10.1080/00018732.2013.803819
https://doi.org/10.1080/00018732.2013.803819
https://doi.org/10.1088/1751-8113/43/49/495008
https://doi.org/10.1088/1751-8113/43/49/495008
https://doi.org/10.1088/1751-8113/43/49/495008
https://doi.org/10.1088/1751-8113/43/49/495008
https://doi.org/10.1103/PhysRevE.82.061103
https://doi.org/10.1103/PhysRevE.82.061103
https://doi.org/10.1103/PhysRevE.82.061103
https://doi.org/10.1103/PhysRevE.82.061103
https://doi.org/10.1016/S0010-4655(02)00205-9
https://doi.org/10.1016/S0010-4655(02)00205-9
https://doi.org/10.1016/S0010-4655(02)00205-9
https://doi.org/10.1016/S0010-4655(02)00205-9
https://doi.org/10.1103/PhysRevE.80.066701
https://doi.org/10.1103/PhysRevE.80.066701
https://doi.org/10.1103/PhysRevE.80.066701
https://doi.org/10.1103/PhysRevE.80.066701
https://doi.org/10.1016/S0045-7825(01)00275-4
https://doi.org/10.1016/S0045-7825(01)00275-4
https://doi.org/10.1016/S0045-7825(01)00275-4
https://doi.org/10.1016/S0045-7825(01)00275-4
https://doi.org/10.1007/BF01060030
https://doi.org/10.1007/BF01060030
https://doi.org/10.1007/BF01060030
https://doi.org/10.1007/BF01060030
https://doi.org/10.1145/1089014.1089019
https://doi.org/10.1145/1089014.1089019
https://doi.org/10.1145/1089014.1089019
https://doi.org/10.1145/1089014.1089019
https://doi.org/10.1016/j.compfluid.2018.02.028
https://doi.org/10.1016/j.compfluid.2018.02.028
https://doi.org/10.1016/j.compfluid.2018.02.028
https://doi.org/10.1016/j.compfluid.2018.02.028



