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Derivation of the spin-glass order parameter from stochastic thermodynamics
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A fluctuation relation is derived to extract the order parameter function q(x) in weakly ergodic systems. The
relation is based on measuring and classifying entropy production fluctuations according to the value of the
overlap q between configurations. For a fixed value of q, entropy production fluctuations are Gaussian distributed
allowing us to derive the quasi-FDT so characteristic of aging systems. The theory is validated by extracting the
q(x) in various types of glassy models. It might be generally applicable to other nonequilibrium systems and
experimental small systems.
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I. INTRODUCTION

Dynamically frustrated systems (DFSs) include a wide
category of soft matter and solid-state systems (e.g., poly-
mers, gels, superconductors, magnetic alloys, biomolecules,
etc.) exhibiting strong nonequilibrium effects characterized by
slow relaxational kinetics, aging, and memory effects [1–3].
Such a rich phenomenology has been predicted by weak
ergodicity-breaking models, yet resists interpretation in terms
of equilibrium-based statistical thermodynamics approaches.
Experimentally, a spatial correlation length mildly growing
in time spanning a few intermolecular distances has been
identified in DFS suggesting that some kind of ordering takes
place [4]. The order parameter in DFS, originally introduced
in the context of spin glasses as a time-dependent correlation
function [5], still eludes direct experimental measurement. In
contrast to homogeneous systems where one or a few single
order parameters quantify the degree of macroscopic order, in
DFS a whole function q(x) is required. Roughly speaking, q(x)
quantifies the degree of correlation q between different states
that share a common fraction x of thermalized degrees of free-
dom in a corrugated free-energy landscape with many states
separated by high free-energy barriers [6]. The mathematical
description of such a landscape is often known as the replica-
symmetry-breaking solution of the mean-field spin glass [7]. A
key aspect of q(x) is the possibility to define it from statics and
dynamics reflecting the fact that some kind of thermalization,
characteristic of equilibrium systems, still operates under
weakly ergodic conditions [8]. In fact, DFS partially equilibrate
among the many states comprised by the q(x); however, they do
so only for finite observation times because they intermittently
change state during the relaxation process. For systems with a
nontrivial q(x), its inverse function x(q) has been interpreted
in terms of frozen, i.e., not relaxed, degrees of freedom [9,10]
with P (q) = dx(q)/dq positively defined. In spin-glass theory
P (q) is defined as the probability of states having overlap q,
dx being the probability measure for the states. To extract
the equilibrium x(q) requires monitoring the overlap between
the state of the system at time t and an initially equilibrated

state and calculate the overlap distribution P (q) (Fig. 1).
However, in DFS such measurement is hard because one cannot
equilibrate nor efficiently sample the different states.

A different route to extract q(x) is to use a modified version
of the fluctuation-dissipation theorem (referred to as quasi-
FDT [11–14]) to measure time-dependent correlations and
responses and extracting the so-called fluctuation dissipation
ratio (FDR) x̃(q) [Eq. (6) below]. The dynamical FDR x̃(q)
has been shown to be equal to the x(q) from statics [15],
however its experimental measurement remains difficult [16].
Here we present a novel approach to measure q(x) in weakly
ergodic systems based on noise measurements. A first step in
this direction was presented a few years ago [17] by deriving a
fluctuation relation (FR) for the aging state. Here we make
a step further and introduce a FR for entropy production
fluctuations at fixed overlap q from which we derive the quasi-
FDT. A novel mathematical relation for the order parameter
x(q) from entropy production fluctuations is also obtained [cf.
Eqs. (2) and (8) below].

II. FLUCTUATION RELATION AND THE GAUSSIAN
UNIVERSALITY HYPOTHESIS

The key idea of the approach is to measure the entropy pro-
duced by an external perturbation of strength h that is applied
to the system at a given time tw during the relaxational process
(e.g., following a T quench). The field h is conjugated to the
macroscopic observable M that is experimentally accessible
by following its time evolution, M(t), up to a maximal time.
The experiment is then repeated many times and the proba-
bility distribution Ptw,q(�S) = 〈δ(�S − �Stw,t )〉q=C(t,tw) with
�Stw,t = h�M/T and �M = M(t) − M(tw) is measured.
The average 〈. . .〉q=C(t,tw) is constrained to those paths with
C(t,tw) = q for t > tw, an average that we will refer to as q

statistics (or simply q stat). In Ref. [17] we proved that the
unconstrained distribution Ptw (�S), defined as the probability
of observing the value �Stw,t after tw (i.e., without classifying
states) satisfies a FR with a large deviation parameter xtw . In
the q-stat scheme we can introduce the large deviation function
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FIG. 1. The order parameter q(x). (a) Illustration of a path
in phase space. The time evolution of correlations qi = C(S0,Si)
between different states Si and state S0 at tw is collected to build
a histogram P (q) = 〈δ(q − qi)〉 where 〈. . .〉 denotes the average over
paths [panel (b), top]. x(q) is related to P (q), P (q) = dx(q)/dq

[panel (b), bottom].

xtw (q) through the following FR:

xtw (q) = kB

�S
ln

(
Ptw,q(�S)

Ptw,q(−�S)

)
, (1)

with kB being the Boltzmann constant. In a weak ergodicity-
breaking scenario, q is the appropriate parameter to partition
phase space into partially equilibrated regions. We hypothesize
that Ptw,q(�S) is Gaussian for a system with a sufficiently large
number of degrees of freedom. We will call this the Gaussian
universality hypothesis (GUH) for Ptw,q(�S). Its simplicity
resonates with its importance: GUH provides an operational
definition of partially equilibrated states in nonequilibrium
weakly ergodic systems. Its range of validity might go beyond
DFS, from noninteracting systems to nonequilibrium steady
states. Note that the validity of the GUH is restricted to
q-stat classification and should not hold for other types of
classification among paths, such as fixing the time t after tw
at which �Stw,t is measured (referred to as t stat) or in the
procedure of Ref. [17] (where no classification is made). In
fact, in these latter cases the intermittent dynamics mixes states
with different values of q and x(q) and partial equilibration
does not hold anymore. In what follows we show that such
q-stat classification of partially equilibrated states and the
GUH imply the validity of the quasi-FDT in DFS [Eq. (6)].

Equation (1) has a simple solution for a Gaussian Ptw,q(�S)
of mean 〈�S〉 and variance σ 2

�S ,

xtw (q) = 2kB〈�S〉
σ 2

�S

. (2)

The advantage of Eq. (2) with respect to Eq. (1) is clear.
To measure xtw (q) one does not need to sample the leftmost
tails of Ptw,q(�S) (i.e., the �S < 0 events) but just the mean
and variance of the distribution; a more amenable task in
experiments and simulations.

From Eq. (2) we now derive the quasi-FDT. In the linear-
response regime we have,

〈�S〉 = h〈�M〉
T

= h

T

[
h

∫ t

tw

dsG(t,s) + O
(
h3

)]
, (3)

where we have used the response function definition, G(t,s) =
δ〈M(t)〉
δh(s) . Moreover,

σ 2
�S =

(
h

T

)2

[C̃(t,t) + C̃(tw,tw) − 2C̃(t,tw)]

=
(

h

T

)2

[C̃0(t,t) + C̃0(tw,tw) − 2C̃0(t,tw)] + O(h2),

(4)

with C̃(t,s) = 〈M(t)M(s)〉 being the two-times correlation
function of the macroscopic observable M in the presence of a
field h (the subscript 0 denotes the same correlation at h = 0).
Substituting Eqs. (3) and (4) into Eq. (2) we obtain,

xtw (q) = 2kBT
∫ t

tw
dsG(t,s)

C̃0(t,t) + C̃0(tw,tw) − 2C̃0(t,tw)
+ O(h2). (5)

Let us now consider the quasi-FDT given by [13,14]

kBT G(t,s) = θ (t − s)x̃[C̃0(t,s)]∂sC̃0(t,s), (6)

with x̃[C̃0] the fluctuation-dissipation ratio (FDR) which de-
pends on times t , s only through the value of C̃0(t,s). Next we
derive a relation between x̃(C̃0) (6) and xtw (q) (1). Inserting
Eq. (6) into Eq. (5) we get to first order in h,

xtw (q) =
2

∫ C̃0(t,t)
C̃0(t,tw) dq̃x̃(q̃)

C̃0(t,t) + C̃0(tw,tw) − 2C̃0(t,tw)
+ O(h2), (7)

with x̃(q̃ = C̃0) the FDR in Eq. (6). If we now as-
sume C̃0(tw,tw) = C̃0(t,t) = N (e.g., for Ising-type systems
with N the total number of spins) and define C(t,s) =
C̃(t,s)/C̃(s,s) = C̃(t,s)/N , then we have q = C0(t,tw) and

xtw (q) = 1

1 − q

∫ 1

q

dq ′x̃(q ′) + O(h2). (8)

By taking the derivative of Eq. (8) with respect to q simple
algebra leads to

x̃(q) = xtw (q) − (1 − q)
dxtw (q)

dq
+ O(h2), (9)

directly relating x̃(q) and xtw (q). Note that Eq. (8) can be
rewritten as

∫ 1
q

dq ′x̃(q ′) = xtw (q)(1 − q) + O(h2) meaning

that, if we neglect O(h2) corrections, x̃(q) equals the local
slope of the curve xtw (q)(1 − q) versus 1 − q.

Equation (2) provides a way to directly extract the static
quantities x(q) and q(x) solely from noise �M = M(t) −
M(tw) measurements. The easiest procedure is to collect
statistics of the stochastic variable �S = h�M/T for a fixed
value of q, apply Eq. (2) and extract the local slope of the curve
xtw (q)(1 − q) versus 1 − q. Note that this is the equivalent
of the quasi-FDT representation (5) where one plots the
susceptibility versus the correlation [13,14]. Alternatively, one
can calculate the derivative of the average entropy production
with respect to its variance,

x(q) = 2kB

∂〈�S〉
∂σ 2

�S

= 2kBT

h

∂〈�M〉
∂σ 2

�M

. (10)
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FIG. 2. Numerical test for ROM and fit to the 1RSB model.
(a) q-stat and t-stat distributions for tw = 210 and values of t and q

such that C(t,tw) � q. Cases are C(t = 211,tw) = 0.95 (red), C(t =
218,tw) = 0.85 (gray). Black lines are Gaussian fits that are good
only for q stat. (b) (1 − q)xtw (q) versus q from Eq. (2). Results have
been fit to the 1RSB model: (1 − q)xtw (q) = 1 − q for q � qEA (gray
line) and 1 − qEA + m(qEA − q) for q � qEA with qEA and m fitting
parameters. We get qEA = 0.99, m = 0.30 (tw = 210, light red) and
qEA = 0.98, m = 0.33 (tw = 214, light blue). (c) Alternative method
based on Eq. (10) with fits taken from panel (b). (d) x(q) obtained
from the results in panel (b) by using Eq. (9) and compared with the
1RSB model (light-color lines). Panels (c) and (d) use the same color
code as in panel (b). Simulations with T = 0.2, N = 1000, h = 0.1
and 10M quenches with one sample per quench.

III. SIMULATION TESTS

To test the validity of the theory we carried out extensive
numerical simulations of three types of DFS. The first example
is the random orthogonal model (ROM), a mean-field spin-
glass model with one-step replica symmetry breaking (1RSB),
defined by [14]

H = −
∑

1�i<j�N

Jijσiσj , (11)

where σi = ±1 are Ising spins and Jij = Jji are quenched
Gaussian variables of zero mean and variance 1/N satisfying∑

k JikJkj = 16δij , with Jii = 0. The system is perturbed by
applying a uniform magnetic field of strength h conjugated to
the total magnetization M(t) = ∑

i σi(t).
The ROM has a dynamical transition at Td = 0.536 where

the order parameter jumps from 0 above Td to qEA(Td ) =
0.96. Below Td the system is dynamically confined into one
of the exponentially many metastable states with q(x) =
qEA(T )θ (x − m(T )). Both qEA(T ) and m(T ) monotonically
decrease with T , indicating the gradual freezing of degrees
of freedom as T → 0. Results for the ROM are shown in
Figure 2 after quenching the system from T = ∞ to T = 0.2
for two values of tw. As shown in Fig. 2(a) P (�S) for q stat
are Gaussian whereas they are not for t stat [17]. Figure 2(b)
plots xtw (q)(1 − q) versus 1 − q [from Eq. (2)] fit to the
theoretical prediction (8) with x̃(q) the inverse of q(x) =
qEA(T )θ (x − m(T )), i.e., x(q � qEA) = m; x(q > qEA) = 1.
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FIG. 3. Numerical test in the SK model and self-averaging be-
havior. (a) q-stat distributions for tw = 100 for three values of q such
that C(t,tw) � q. Light-color lines are Gaussian fits. (b) (1 − q)xtw (q)
and x(q) (inset) versus q from Eq. (2) for tw = 100 (red) averaged
over 10 samples. Results are compared with exact 1RSB and full RSB
models [18] showing excellent agreement with the latter. (c) The same
as in panel (b) but for the 10 samples showing large sample-to-sample
fluctuations. (d) As a comparison we show the same as in panel (c) for
the ROM where sample-to-sample fluctuations are small. Details of
the fit are given in the caption of Fig. 2(b). Simulations for SK were
done with T = 0.3, N = 300, h = 0.1.

Figure 2(c) shows the construction based on Eq. (10) where
each point in the plot was obtained by extracting the mean and
variance of Ptw,q(�M) for a given value of q. Finally, Fig. 2(d)
shows the x(q) obtained by any of the two methods.

Our second example is the Sherrington–Kirkpatrick (SK)
mean-field model described by Eq. (11) with uncorrelated
Gaussian couplings of zero mean and variance 1/N , which
exhibits full RSB. Figure 3(a) shows again that P (�S) for q

stat are Gaussian. From Eq. (2) we extract the xtw (q)(1 − q)
which, averaged over 10 samples, excellently fit the full RSB
theoretical prediction [18] [Fig. 3(b), main panel and inset]. A
main feature of spin-glass theory is the presence of sample-to
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FIG. 4. Numerical test in the BMLJ model. (a) q-stat distributions
for tw = 1000. Light-color lines are Gaussian fits. (b) (1 − q)xtw (q)
and x(q) (inset) versus q from Eq. (2) for tw = 1000 (red) compared
with 1RSB with parameters taken from FD plots [17]. Energy and
length parameters of the BMLJ (12) are measured in units of σAA

and εAA: εBB = 0.5, εAB = 1.5, σBB = 0.88, and σAB = 0.80, and are
taken to prevent crystallization [19]. The system has a reduced density
ρ = 1.2 and exhibits a glass transition at Tg � 0.435. Simulation
parameters: T = 0.3, N = 500, h = 0.1, 20k runs.
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sample fluctuations which are large for SK [Fig. 3(c)] as
compared with ROM [Fig. 3(d)].

The x(q) describes the statistics of the free-energy land-
scape of DFS at the level of individual samples, being also
applicable to systems without quenched disorder. This is shown
in Fig. 4 where we extract the x(q) for the 80 : 20 binary
mixture of type A and B particles interacting via a Lennard–
Jones pair potential (BMLJ):

Vαβ(r) = 4εαβ

[(σαβ

r

)12
−

(σαβ

r

)6
]
, (12)

where α, β = A,B; r is the distance between the two particles;
and the parameters σαβ , εαβ stand for the effective diameters
and well depths between species α, β. Remarkably, the x(q) in
the BMLJ [Fig. 4(b), inset] shows combined features of 1RSB
(plateau at q � 0.8) and full RSB (q � 0.8).

IV. CONCLUSIONS

We have introduced a FR to extract the order parameter q(x)
in DFS based on measuring entropy production fluctuations
at a fixed value of the overlap q. Equation (1) and the GUH
should be seen as key features of a weak-ergodicity-breaking
scenario where q-stat classification of paths provides a
operational definition of partially equilibrated states in rugged
free-energy landscapes with quasi-FDT dynamics [cf. Eq. (6)].
The approach has been validated for three kinds of glassy sys-
tems being potentially applicable to other models and scenarios
such as the low-temperature Gardner-like RSB phase. Initially

discovered in the Ising p-spin glass [20], the Gardner transition
has been shown to describe the spectrum of low-energy
excitations in jamming systems [21,22]. Moreover, it should
be applicable to small systems [23], such as biomolecules
[24] or microspheres trapped in random media [25], where
thermal forces induce measurable energy fluctuations. A main
difficulty in experiments is the measurement of the overlap
between microscopic configurations, q = x(t)x(s) where x

stands for a reaction coordinate. Recent experimental studies
[26] have shown the way to extract such quantities by measur-
ing and testing the validity of the quasi-FDT in microspheres
and single molecules mechanically driven to nonequilibrium
steady states using steerable optical traps. Such measurements
and the identification of suitable molecular systems exhibiting
slow relaxational behavior reminiscent of DFS remains an
exciting route to pursue in the near future. Nearly half a
century ago, while mean-theory of the spin glass and replica
symmetry breaking were developed, it was expected that mean-
field results could ultimately be applied to finite-dimensional
systems. The present work will hopefully shed light into this
fundamental and still-unanswered question.
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