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Discrete-spin systems with maximally random nearest-neighbor interactions that can be symmetric or
asymmetric, ferromagnetic or antiferromagnetic, including off-diagonal disorder, are studied, for the number
of states q = 3,4 in d dimensions. We use renormalization-group theory that is exact for hierarchical lattices
and approximate (Migdal-Kadanoff) for hypercubic lattices. For all d > 1 and all noninfinite temperatures, the
system eventually renormalizes to a random single state, thus signaling q × q degenerate ordering. Note that
this is the maximally degenerate ordering. For high-temperature initial conditions, the system crosses over to
this highly degenerate ordering only after spending many renormalization-group iterations near the disordered
(infinite-temperature) fixed point. Thus, a temperature range of short-range disorder in the presence of long-range
order is identified, as previously seen in underfrustrated Ising spin-glass systems. The entropy is calculated for
all temperatures, behaves similarly for ferromagnetic and antiferromagnetic interactions, and shows a derivative
maximum at the short-range disordering temperature. With a sharp immediate contrast of infinitesimally higher
dimension 1 + ε, the system is as expected disordered at all temperatures for d = 1.
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I. INTRODUCTION: ASYMMETRIC AND SYMMETRIC
MAXIMALLY RANDOM SPIN MODELS

Spin models such as Ising, Potts, and ice models show a
richness of phase transitions and multicritical phenomena [1,2]
that is qualitatively compounded with the addition of frozen
(quenched) randomness. Examples are the emerging chaos in
spin glasses with competing ferromagnetic and antiferromag-
netic (and more recently, without recourse to ferromagnetism
versus antiferromagnetism, competing left and right chiral
[3]) interactions, the conversion of first-order phase transitions
to second-order phase transitions, and the infinite multitude of
accumulating phases as devil’s staircases. In the current study,
frozen randomness is taken to the limit, in q = 3,4 state models
in arbitrary dimension d, and the results are quite unexpected.

Thus, changes in the critical properties and the phase-
transition order are the effects of quenched randomness as
well as the appearance of new phenomena such as chaotic
rescaling and devil’s staircase topologies of phase diagrams.
A key microscopic ingredient in these phenomena is the
occurrence of frustration, in which all interactions along closed
paths in the lattice cannot be simultaneously satisfied. The
renormalization-group transformation that we use in this study
is equipped to study frustrated systems (and thus has been
extensively used in spin-glass systems), as can be seen below
from the equivalent hierarchical lattice where closed loops
occur corresponding to bond moving following decimation.

The systems that we study are quenched maximally random
q-state discrete spin models with nearest-neighbor interac-
tions, with Hamiltonian

−βH = −
∑
〈ij〉

βHij , (1)

where the sum is over nearest-neighbor pairs of sites
〈ij 〉.

The maximal randomness is best expressed in the transfer
matrix Tij , e.g., for q = 3,

Tij ≡ e−βHij

=
(

1 eJ 1
1 1 eJ

eJ 1 1

)
,

(
1 1 eJ

eJ 1 1
1 eJ 1

)
,

(
eJ 1 1
1 1 eJ

1 eJ 1

)
,

(
1 1 eJ

1 eJ 1
eJ 1 1

)
,

(
1 eJ 1
eJ 1 1
1 1 eJ

)
, or

(
eJ 1 1
1 eJ 1
1 1 eJ

)
, (2)

where each row and each column has, randomly, a single eJ

element, so that there are six such possibilities (for q = 4,
also studied here, there are 24 such possibilities), and J > 0
or J < 0, respectively, for ferromagnetic or antiferromagnetic
interactions, both of which are treated in this study. The last
matrix corresponds to the usual Potts model. In fact, taken
by itself as a pure (nonrandom) model, each of these transfer
matrices can be mapped to a Potts model by relabeling the
spin states in one of the two sublattices, in hypercubic lattices
and corresponding hierarchical lattices. Thus, for the ferro-
magnetic case, for d > 1, a low-temperature ferromagnetic
phase and a high-temperature disordered phase occur. For the
antiferromagnetic case, the low-temperature phase is a critical
phase and appears at a higher dimension [4,5].

In Hamiltonian terms, the currently studied quenched ran-
dom model is

−βHi,j = Jδσi ,P (σj ), (3)

where P is a random permutation of {a,b,c}. Thus, at a
given site i, for a given spin state, say, si = a, randomly any
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one of the spin states sj = a,b, or c of the nearest-neighbor
site j is energetically favored (unfavored) for ferromag-
netic (antiferromagnetic) interactions. This favor (unfavor) is
independently random for each of the nearest neighbors j .
Under renormalization-group transformation, all elements of
the transfer matrices across the system randomize. Therefore,
we have not included in our renormalization-group initial
conditions the cases where there is a difference between the
less favored two states, to keep the enunciation of the model
simple. However, since our renormalization-group trajectories
traverse the latter states, we are confident that our results will
not be affected by such a subdiscrimination.

The first two possible transfer matrices on the right side of
Eq. (1) represent asymmetric interaction, in the sense that the
nearest-neighbor states (si,sj ) = (a,b) and (b,a) have different
energies, where si = a, b, or c are the q = 3 possible states of
a given site i. Asymmetric interactions occur in neural network
systems [6] and are largely unexplored in statistical mechanics.
On the other hand, the last four possible transfer matrices on
the right side of Eq. (1) exemplify symmetric interaction, the
nearest-neighbor states (si,sj ) = (a,b) and (b,a) having the
same energies. As also explained below, even when starting
with only symmetric interactions (the last four matrices),
asymmetric interactions are generated under renormalization-
group transformations [as can be seen, e.g., by multiplying
the third and fifth matrices in Eq. (2), corresponding to a
renormalization-group decimation] and the same ordering re-
sults are obtained. Thus, asymmetric interactions are generated
by off-diagonal (symmetric) disorder. The generalization of the
above model to arbitrary q is obvious.

II. RENORMALIZATION-GROUP TRANSFORMATION

The renormalization-group method is readily implemented
to the transfer matrix form of the interactions. The quenched
randomness aspect of the problem is included by randomly cre-
ating 500 transfer matrices from the six possibilities of Eq. (1)
and perpetuating these random 500 transfer matrices through-
out the renormalization-group steps given below. Note that we
start with a single initial value of J , which is proportional to the
inverse temperature. Quenched randomness comes from the
positioning within the matrix. Under renormalization-group
transformation, each matrix element evolves quantitatively
quenched randomly.

The renormalization-group transformation begins with the
“bond-moving” step in which bd−1 transfer matrices, each ran-
domly chosen from the 500, have their corresponding matrix
elements multiplied. This operation is repeated 500 times, thus
generating 500 new transfer matrices. The final, “decimation”
step of the renormalization-group transformation is the matrix
multiplication of b transfer matrices, again each randomly
chosen from the 500. This operation is also repeated 500
times, again generating 500 renormalized transfer matrices.
The length rescaling factor is taken as b = 2 in our calculation.
At each transfer-matrix calculation above, each element of
the resulting transfer matrix is divided by the largest element,
resulting in a matrix with the largest element being unity. This
does not affect the physics, since it corresponds to subtracting
a constant from the Hamiltonian. These subtractive constants

(the natural logarithm of the dividing element) are scale-
accumulated, as explained below, for the calculation of entropy.

The above transformation is the approximate Migdal-
Kadanoff [7,8] renormalization-group transformation for
hypercubic lattices and, simultaneously, the exact renormal-
ization-group transformation of a hierarchical lattice [9–11].
This procedure has been explained in detail in previous work
[3]. For most recent exact calculations on hierarchical lattices,
see Refs. [12–19], including finance [18] and DNA-binding
[19] problems.

III. ASYMPTOTICALLY DOMINANT
ALL-TEMPERATURE FREEZING IN d > 1 WITH

HIGH-TEMPERATURE SHORT-RANGE DISORDERING

Figure 1 shows the renormalization-group trajectories for
the system with q = 3 states in d = 3 dimensions, starting
at three different temperatures T = J−1, where J refers to
the renormalization-group-trajectory initial conditions shown
in Eqs. (2) and (3). Shown are the second (J2) and third
(J3) largest values of the energies (dimensionless, being
temperature-divided) that appear exponentiated in the transfer
matrix elements,

Jij = ln(Tij ), (4)

averaged over the quenched random distribution, where Tij are
the elements of the q × q transfer matrix Tij . The matrix aver-
age of the eight nonleading energies < J2−9 >, averaged over
the quenched random distribution, is also shown. The leading
energy is J1 = 0 by subtractive overall constant, as explained
above. As seen in this figure, starting at low temperature T = 2,
the system renormalizes to a state in which the leading energy is
totally dominant, all other energies renormalizing to −∞. The
matrix position of the single asymptotically dominant element
occurs randomly among the q × q possibilities, including
off-diagonal and therefore necessarily asymmetric, but is the
same across the quenched random distribution. The number
of possible dominant transfer-matrix elements gives the de-
generacy of the ordered phase, so that with q × q, maximal
degeneracy is achieved. A diagonal element of the transfer
matrix being dominant means that one state, e.g., si = c,
dominates at the strong coupling fixed point and characterizes
the ordered phase. This does have the usual permutational
symmetry of the Potts model, being physically equivalent to all
diagonal elements dominating, but with nondiagonal elements
zero so that only one spin state dominates the entire physical
system. The equivalence is not complete only in the fact that the
latter picture allows different domains in the system, whereas
the former does not. A nondiagonal element Tkm = 1 being
dominant maintains itself by having Tim,Tkj , where i �= k,j �=
m, being small, decreasing under renormalization group, but
nonzero. The corresponding spin state is highly degenerate, as
can be seen from the renormalization-group solution, where
each spin has a degeneracy of 2 (still less than the disordered
number of q), seen at decimation transformations, and the
system is randomly populated by two spin states corresponding
to the indices k and m of the dominant Tkm.

Moreover, starting at high temperatures, as seen, e.g., in
the left and center panels of Fig. 1, the system spends many
renormalization-group iterations near the infinite-temperature
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FIG. 1. Renormalization-group trajectories for the system with q = 3 states in d = 3 dimensions, starting at three different temperatures
T = J −1 from Eqs. (2) and (3), namely starting with (a) J = 0.02, (b) J = 0.20, (c) J = 0.50. Shown are the second (J2) and third (J3)
largest values and the matrix average of the eight nonleading energies < J2−9 > of the transfer matrix [Eq. (4)], averaged over the quenched
random distribution. The leading energy is J1 = 0 by subtractive choice. The different starting values can be seen on the left axis of each panel
(corresponding to renormalization-group step 0). Starting at any nonzero temperature, the system renormalizes to a state in which the leading
energy is totally dominant, all other energies renormalizing to −∞. The matrix position of the single asymptotically dominant element occurs
randomly among the q × q possibilities including off-diagonal and therefore necessarily asymmetric, but is the same across the quenched random
distribution. However, starting at high temperatures, as seen, e.g., in the left and center panels, the system spends many renormalization-group
iterations near the infinite-temperature fixed point (where all energies are zero), before crossing over to the ordered fixed point. Since the
energies at a specific step of a renormalization-group trajectory directly show the effective couplings across the length scale that is reached at
that renormalization-group step, this behavior indicates islands of short-range disorder at the short length scales that correspond to the initial
steps of a renormalization-group trajectory. These islands of short-range disorder nested in long-range order have been explicitly calculated and
shown in spin-glass systems in Ref. [20]. These islands of short-range disorder occur in the presence of long-range order, since the trajectories
eventually flow to the strong-coupling fixed point. As temperature is increased (changing the renormalization-group initial condition), these
short-range disordered regions order, giving rise to the smooth specific heat peak but no phase transition singularity, as there is no additional
fixed-point structure underlying this short-range ordering.

fixed point (where all energies are zero), before crossing over to
the ordered fixed point. This signifies short-range disorder, in
the presence of long-range order, as also reflected in the specific
heat peaks caused by short-range disordering as discussed
below. A similar smeared transition to short-range disorder
in the presence of long-range order has previously been seen
in underfrustrated Ising spin-glass systems [22].

We have repeated our calculations for noninteger spatial
dimensions approaching d = 1 from above, by keeping the
bond-moving number bd−1 = 2 and increasing the decimation
number b. The behavior described above obtains for all d � 1,
albeit with an increasing high-temperature range of short-range
disorder, and higher number of renormalization-group steps to
strong coupling, as d = 1 is approached. At d = 1, the infinite-
temperature fixed point is the sole attractor, and the system is
disordered at all temperatures.

IV. FREE ENERGY, ENTROPY, AND SPECIFIC HEAT

The renormalization-group solution gives the complete
equilibrium thermodynamics for the systems studied. The
dimensionless free energy per bond f = F/kN is ob-
tained by summing the additive constants generated at each
renormalization-group step,

f = 1

N
ln

∑
{si }

e−βH =
∑
n=1

G(n)

bdn
, (5)

where N is the number of bonds in the initial unrenormalized
system, the first sum is over all states of the system, the
second sum is over all renormalization-group steps n, G(n)

is the additive constant generated at the nth renormalization-
group transformation averaged over the quenched random
distribution, and the sum quickly converges numerically.

From the dimensionless free energy per bond f , the entropy
per bond S/kN is calculated as

S

kN
= f − J

∂f

∂J
, (6)

and the specific heat C/kN is calculated as

C

kN
= T

∂(S/kN )

∂T
= −J

∂(S/kN )

∂J
. (7)

Figures 2–4 give the calculated free energies f , entropies
S/kN , and specific heats C/kN per bond as functions of
temperature T = J−1, for q = 3,4 states in d = 3,4 dimen-
sions. The expected T = ∞ values of f = ln q/(bd − 1) and

FIG. 2. Calculated free energy per bond as a function of tem-
perature T = J −1. The curves are, from top to bottom, for (q =
4,d = 2), (q = 3,d = 2), (q = 4,d = 3), and (q = 3,d = 3). The
expected T = ∞ values of f = F/kN = ln q/(bd − 1) are given by
the dashed lines and match the calculations.
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FIG. 3. Calculated entropy per bond as a function of temperature
T = J −1, for q = 3,4 states in d = 3,4 dimensions. The curves are,
from top to bottom, for (q = 4,d = 2), (q = 3,d = 2), (q = 4,d =
3), and (q = 3,d = 3). The expected T = ∞ values of S/kN =
ln q/(bd − 1) are given by the dashed lines and match the calculations.

S/kN = ln q/(bd − 1) are given by the dashed lines and match
the calculations.

As explained in Fig. 1, the specific heat maximum occurs at
the temperature of the short-range disordering. In this figure,
starting at high temperatures, as seen, e.g., in the left and
center panels, the system spends many renormalization-group
iterations near the infinite-temperature fixed point (where all
energies are zero), before crossing over to the ordered fixed
point. Since the energies at a specific step of a renormalization-
group trajectory directly show the effective couplings across
the length scale that is reached at that renormalization-group
step, this behavior indicates islands of short-range disorder
at the short length scales that correspond to the initial steps
of a renormalization-group trajectory. These islands of short-
range disorder nested in long-range order have been explicitly
calculated and shown in spin-glass systems in Ref. [20].
These islands of short-range disorder occur in the presence
of long-range order, since the trajectories eventually flow to

FIG. 4. Calculated specific heat as a function of temperature
T = J −1, for q = 3,4 states in d = 3,4 dimensions. The curves are,
from top to bottom, for (q = 4,d = 2), (q = 3,d = 2), (q = 4,d =
3), (q = 3,d = 3). A specific heat maximum occurs at short-range
disordering.

FIG. 5. Calculated specific heat as a function of temperature T =
|J |−1 for ferromagnetic (J > 0), full curves, and antiferromagnetic
(J < 0), dashed curves, systems, for q = 3,4 states in d = 3,4 di-
mensions. The curves are, from top to bottom in each panel, for d = 2
and d = 3. The quantitatively same short-range disordering behavior
is seen for both ferromagnetic and antiferromagnetic systems.

the strong-coupling fixed point. As temperature is increased
(changing the renormalization-group initial condition), these
short-range disordered regions order, giving rise to the smooth
specific heat peak, but no phase transition singularity, as there is
no additional fixed-point structure underlying this short-range
ordering. Specific heat maxima away from phase transitions,
due to short-range ordering, have been calculated in a variety
of systems [21,22].

V. ANTIFERROMAGNETIC MAXIMALLY
RANDOM SYSTEMS

We have repeated our calculations for antiferromagnetic
(J < 0) systems and obtained quantitatively similar behavior.
Figure 5 shows the calculated specific heats as a function of
temperature T = |J |−1 for ferromagnetic (J > 0) and anti-
ferromagnetic (J < 0) systems, for q = 3,4 states in d = 3,4
dimensions. The full-temperature range (T < ∞) maximally
degenerate long-range ordering and a quantitatively same
short-range disordering at high temperature are seen for both
ferromagnetic and antiferromagnetic systems.

VI. CONCLUSION

We have studied maximally random discrete-spin systems
with symmetric and asymmetric interactions and have found,
quite surprisingly, (1) quenched random long-range order at
all noninfinite temperatures for d > 1 and (2) short-range
disordering at high temperatures, via a smeared transition and
a specific-heat peak, while sustaining long-range order. The
latter behavior has also been seen in underfrustrated Ising
spin-glass systems [22].
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