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A quantum error correcting protocol can be substantially improved by taking into account features of the
physical noise process. We present an efficient decoder for the surface code which can account for general noise
features, including coherences and correlations. We demonstrate that the decoder significantly outperforms the
conventional matching algorithm on a variety of noise models, including non-Pauli noise and spatially correlated
noise. The algorithm is based on an approximate calculation of the logical channel using a tensor-network
description of the noisy state.
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Introduction. The surface code represents a promising
route toward universal quantum computing. It achieves high
performance with a simple, two-dimensional physical layout
and it is therefore the focus of many current experimental
efforts [1,2]. While the emphasis is often placed on making
greater distance surface codes with more physical qubits, in
this Rapid Communication we demonstrate that the error-
correcting power of the surface code may be substantially
improved merely by upgrading the classical control software,
without expending any additional hardware resources.

The control software operates a decoding algorithm, which
selects a correction given the error syndrome. The original
decoder for the surface code is minimum-weight perfect
matching (MWPM), which selects the correction with the
smallest weight compatible with the syndrome [3]. While
MWPM’s simplicity is appealing, it does not consider the
underlying noise process and, as a result, will generally
perform suboptimally.

Some simple noise properties ignored by matching include
error degeneracy (i.e., the fact that distinct errors have the same
effect on the code) and correlations between single-qubit errors
in conjugate basis (Pauli X and Z errors). Improved decoders
have been devised which account for these properties. For
instance, [4] accounts for degeneracy with an exact decoder
built on matchgate circuits and X-Z correlations using an
approximate mapping to a one-dimensional quantum chain.

Real noise has many additional features which may be
used to further improve decoding. For instance, using in-
efficient brute-force calculations, it has been shown that a
non-negligible improvement can be obtained over MWPM
by accounting for spatial noise correlations [5]. Even when
restricted to local noise, other noise features can greatly impact
a code’s performance [6,7].

A number of other decoders have been developed with
advantages over MWPM in terms of speed or accuracy
[8–21]. However, the noise processes considered in those
works were always assumed to be uncorrelated Pauli noise,
with the exception of [22] which is tailored to a specific form
of correlated Pauli noise.

In this Rapid Communication, we present a decoding algo-
rithm for the surface code which can account for general noise,
including non-Pauli noise and spatially correlated noise. A
general noise model is specified by an N -qubit completely pos-
itive trace-preserving (CPTP) map N . Our decoder is tailored
to any CPTP map representable by a two-dimensional tensor
network, which includes arbitrary local noise, as well as quite
general spatially correlated noise. In essence, such noise mod-
els describe any noise process where spatial correlations are
mediated by short-range interactions directly between qubits or
indirectly through localized environmental degrees of freedom.

Our decoder performs an approximate calculation of the
logical channel that has affected the encoded data, and chooses
the correction which best inverts it so that the overall action
on the encoded data is as close as possible to the identity.
This calculation relies on the projected entangled pair operator
(PEPO) description of the noisy state, which is guaranteed by
the above assumption about the noise.

We apply our decoder to examples of non-Pauli and spatially
correlated noise and observe orders of magnitude improvement
over MWPM. For the local noise models tested the decoder
appears to perform near optimally. The cost of the decoder
is O(ND3χ3), where N is the number of physical qubits, D

is the bond dimension of the noise CPTP map (D = 1 for
uncorrelated noise), and χ is the bond dimension used in the
approximate tensor network contraction. In the noise models
studied, a small constant value ofχ of about 8 appears sufficient
to substantially outperform matching.

Our paper is structured as follows. We first introduce basic
concepts and outline the decoding algorithm. We then present
numerical results, and discuss future research directions.

Surface code. The surface code, for our purposes, consists
of a square lattice of N qubits with open boundary conditions
on which a set of commuting check operators is defined. The
layout of check operators follows that of [23] and is illustrated
in Fig. 1. On every white face f , an x-check operator is
defined as Af = ∏

i∈f Xi , where the product is taken over all
vertices surrounding the face. Likewise, on every orange face
f a z-check operator is defined as Bf = ∏

i∈f Zi . There are
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FIG. 1. Layout of the surface code where qubits are located at
vertices. Orange faces represent Af checks and white faces represent
Bf checks. The logical Z operator is a product of Z along the dashed
blue and the logical X operator is a product of X along the dashed
red line.

N − 1 checks, all of which commute, and the group generated
by all check operators is called the stabilizer of the code.
The codespace is defined as the simultaneous +1 eigenspace
of all check operators. By definition, any operator in the
stabilizer acts as the identity operator on the codespace. With
the specified check layout, the codespace is two dimensional;
in other words, the surface code encodes a single qubit. The
logical Z operator is given as a string of Pauli Z operators along
the left boundary of the code. This operator commutes with the
every check, and therefore preserves the codespace. However,
it is not contained in the stabilizer of the code, and its action
on the codespace is not the identity. The encoded qubit states
|0〉L and |1〉L can be defined as the +1 and −1 eigenstates,
respectively, of Z in the codespace. Therefore Z acts as Pauli
Z on the encoded qubit. Likewise, a logical X operator, which
acts as Pauli X on the encoded qubit, is given as a product of
Pauli X operators along the bottom boundary of the code.

During a round of error correction, every check is measured.
When physical qubits are affected by noise, −1 measurement
outcomes will occur with nonzero probability and the set of
measurement outcomes s is called the syndrome. Using the
syndrome one then applies further operations to the code
qubits to return the state to the codespace, and undo any
undesired transformation to the encoded information that may
have occurred. The decoding problem is to determine the best
correction operation to apply, based on this syndrome and
knowledge of the noise model. We make this more precise
in the following section.

Decoding. Here we define the decoding problem, which we
express in a general form that is not restricted to stochastic Pauli
noise. For concreteness, we decompose the physical evolution
of the system during error correction into three distinct opera-
tors: noise N , recovery Rs , and decoder correction Ds,N . The
latter two stages are dependent on the observed syndrome s,
and the decoder correction can also depend on the noise model.

The noise operation consists of application of the CPTP
map N to the physical qubits of the surface code. After noise
application, the code is no longer in the codespace.

The recovery map is then the operation that returns the
noisy state to the codespace. This consists of the syndrome
measurement, which yields syndrome s with probability p(s)
and which projects the state into an eigenspace of every check
operator, followed by a Pauli operator that returns the state

to the +1 eigenspace of every check operator. Note that this
recovery simply returns the state to the codespace, without
attempting to minimize the probability of a logical error. Given
a syndrome s, we take this Pauli operator to be a product
of strings of Z operators that connect every flipped x check
to the top boundary and a product of strings of X operators
that connect every flipped z check to the left boundary. The
combined effect of the noise and recovery Es,N := Rs ◦ N is
thus a map from the codespace to itself, so it is a single-qubit
CPTP map. However, depending on the measured syndrome
and the noise model, this Es,N may act on the encoded qubit in
a nontrivial way. The goal of error correction is to preserve the
state of the logical qubit, i.e., to make the overall transformation
of the logical qubit as close to the identity as possible. For this,
the final decoding step is necessary.

In the final decoding step, a classical algorithm takes the
measured syndrome and some description of the noise process
and outputs a logical Pauli operator Ds,N ∈ {I ,X,Y ,Z}. The
target output of the decoding algorithm is the Ds,N that best
inverts Es,N , i.e., minimizes the logical error ε = ||Ds,N ◦
Es,N − I ||. The norm defining ε can be taken to be any operator
norm.

The computed decoder correction can be thought of as being
applied to the code after recovery; however, we remark that the
Pauli operators involved in the recovery and decoding steps
need not actually be applied in practice: keeping track of them
is sufficient.

The problem of finding a Ds,N given s and N that exactly
minimizes the error appears hard. With the exception of
some specific noise models, most decoders will only yield an
approximation, so that for a nonzero fraction of the syndromes
s, the selectedDs,N does not minimize ||Ds,N ◦ Es,N − I ||. We
can quantify the performance of the decoder by the averaged
logical error rate over all possible syndromes

∑
s p(s)||Ds,N ◦

Es,N − I ||.
Decoding algorithm. Here we describe our surface-code

decoding algorithm. The essential idea is to compute an
approximation Ẽs,N of the logical channel Es,N given the syn-
drome s and a CPTP map N of the noise. Once Ẽs,N is known,
the approximate logical error rate ε̃ := ||L ◦ Ẽs,N − I || is
calculated for each L ∈ {I ,X,Y ,Z}. The decoder correction
Ds,N is then chosen to be the Pauli operator that minimizes ε̃.1

The nontrivial part of the algorithm is calculating a suffi-
ciently accurate approximation of the logical channel Ẽs,N . For
this, we draw on a simulation algorithm that we developed in
[25]. The key idea is that Es,N can be exactly expressed as a
square-lattice tensor network.

We start with a PEPO description of the codespace projector
�C and from this we compute a PEPO description of the noisy
stateN (�C).2 This is possible if the noiseN is an operator that
maps PEPOs to PEPOs, so naturally any noise model N that

1Note that in principle, this decoding algorithm could select a
correction among all allowed logical operations of the code [6,24];
however, we restrict to Pauli corrections to be on the same footing as
MWPM.

2Note that in [25] we started with a PEPO description of a half-
encoded Bell state, rather than the code projector. However, these
two descriptions are ultimately equivalent.
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can itself be represented by a two-dimensional tensor network
will do. This is the only assumption we make about the noise.
The recovery map, consisting of check measurements and a
Pauli operator, can also be represented by a two-dimensional
tensor network because it is built from a finite-depth local cir-
cuit. Thus, the output Es,N (�0) = Rs ◦ N (�0) of the recovery
is also a PEPO, which is simple to calculate.

The map Es,N if fully characterized by its corresponding
Choi matrix Cij = tr[LiEs,N (Lj�C)] describing the action of
the channel on the Pauli basis, where Li = (I ,X,Y ,Z) are log-
ical Pauli operators. The operator LiEs,N (Lj ) is representable
as a PEPO, and can be obtained for each i,j by inserting
tensors appropriately into the PEPO describing Es,N (�C). Full
details of how these tensors are inserted are provided in [25]
and accompanying material. Given LiEs,N (Lj ), the target Cij

can then be calculated by taking the trace of each pair of
physical indices then contracting all indices in the resulting
square-lattice tensor network.

Contracting a square-lattice tensor network is, in general,
#P-complete [26], and therefore no efficient algorithm is
believed to exist. However, several algorithms exist that can
output an approximate contraction in polynomial time [27–32].
We use an approximate algorithm for the contraction which
involves treating the left-hand boundary of the tensor network
as a one-dimensional spin chain, and approximately tracking
its evolution as columns are applied to it [33]. This contraction
algorithm was also used in the context of surface-code error
correction in other work [4,25]. It has a time complexity of
O(Nχ3) where χ is the bond dimension that controls the
accuracy of the approximate contraction. Exact contraction
requires that χ grows exponentially with N ; however, as we
will show, we have found that fixing χ to a small constant
yields very accurate results.

Noise models. We now describe the noise models that
we have used to benchmark our decoder. We focus on two
models to highlight noise features not considered in previous
work. One feature is our decoder’s ability to fully incorporate
non-Pauli noise. To illustrate the performance of the decoder
on non-Pauli noise we consider the amplitude-damping (AD)
channel EAD(ρ) = ∑

i KiρK
†
i , which has two Kraus operators,

K0 = |0〉〈0| +
√

1 − γ |1〉〈1|, K1 = √
γ |0〉〈1|, (1)

where γ ∈ [0,1] is the damping parameter. The full noise
model is the N -fold tensor product of this single-qubit am-
plitude damping channel NAD = E⊗N

AD .
Another feature of our decoder is that it can incorporate

quite general spatial noise correlations. To demonstrate the
performance of the decoder on spatially correlated noise, we
define a correlated bit-flip noise model as follows.

We specify an error on the surface code with a configuration
of N binary variables σ = σ1σ2 · · · σN where σi = 1 means
that the qubit i is unaffected while σi = −1 means that qubit i

is flipped. For this noise model, an error σ occurs on the surface
code with Boltzmann probability p(σ ) = e−βE(σ )/Z , where
Z = ∑

σ ′ e−βE(σ ′) is the partition function, β is the inverse
temperature parameter, and the energy E(σ ) is given by

E(σ ) = −h
∑

i

σi − J1

∑
〈i,j〉

σiσj − J2

∑
f

⎛
⎝∏

i∈f

σi

⎞
⎠. (2)

The first sum is over all sites, the second sum is over all pairs
of neighboring sites, and the final sum is taken over all white
faces. The probability distribution p(σ ) therefore depends on
three parameters h, J1, and J2 and the inverse temperature β

is an overall scaling parameter. The h parameter influences the
number of bit flips, with larger positive h favoring configura-
tions with fewer flipped spins. The J1 parameter influences
correlations between neighboring bit flips: if J1 > 0, then
the probability that a bit flip will occur at a site increases
with the number of neighbors that are also flipped. Finally,
the J2 parameter influences the number of checks with −1
outcomes: larger J2 favors configurations corresponding to
syndromes with fewer flipped checks. Equivalently, increasing
J2 decreases the number of detectable error strings.

This correlated bit-flip (CBF) noise model can be expressed
as the nonlocal CPTP map

NCBF(ρ) =
∑

σ

p(σ )U (σ )ρU (σ )†, (3)

where U (σ ) is the unitary map that applies an X bit flip to sites
i with σi = −1, and the identity to every other site. Because
any Boltzmann distribution of a local Hamiltonian is a local
tensor network [34], it is straightforward to show that NCBF

can be expressed as a two-dimensional tensor network.
We remark that, while the J2 term affects p(σ ), it does

not affect decoding since, once the syndrome s is fixed, the
probability of any error σ consistent with the syndrome s is
independent of J2. Hence, the noise model input to the decoder
NCBF can be replaced with one with J2 = 0, which simplifies
the corresponding tensor network. The bond dimension of the
noise tensor network is D = 2.

Results. We tested our decoder on the above noise models at
both high and low noise rates. While our decoding algorithm is
efficient and can handle large lattices, verifying the quality of
the decoder requires a full quantum-mechanical simulation.
Amplitude damping and correlated bit-flip noise cannot be
simulated in the same way and therefore require different
benchmarking methods.

In general, it is not possible to efficiently simulate non-Pauli
noise, like amplitude damping. Therefore we have performed
simulations on small system sizes where simulation is possible.
We have used the exact (albeit inefficient) simulation algorithm
described in [25] which is essentially the same as the present
decoding algorithm except that the logical channel is calculated
exactly using an exact contraction of the tensor network,
rather than an approximate contraction. With this algorithm,
benchmark simulations could be performed on system sizes of
up to 9 × 17. Since the simulation algorithm outputs the exact
logical channel, it is possible to compare our decoder with an
optimal decoder, in which the correction is chosen using the
exact logical channel, rather than an approximate one.

For correlated bit-flip noise, it is possible to efficiently
simulate the noise by sampling errors σ from the probability
distribution p(σ ) = e−βE(σ )/Z . Sampling from the distribu-
tion p(σ ) can be done efficiently using standard Markov chain
Monte Carlo algorithms. For any sampled error, the syndrome
is unambiguous and the correction can be calculated using
the decoding algorithm. The logical error is determined by
calculating the resulting homology of the error combined
with the recovery and decoding correction. If the resulting
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FIG. 2. Decoder performance under high-strength amplitude
damping (a), low-strength amplitude damping (b), and correlated
bit-flip noise (c). For amplitude damping, the logical error rate is
expressed in terms of the diamond distance of the logical channel from
the identity, which we have computed using our surface-code simu-
lation algorithm [25]. In (a), error rates are close to optimal threshold
(γ = 39 ± 1%) [25], and γ is varied. In (b), a low error rate γ = 9% is
fixed, and the lattice width W is varied. In both cases, an asymmetric
lattice with length 2W − 1 (i.e., longer logical X) was used because
amplitude damping has a greater tendency to flip z checks than
x checks. For correlated bit-flip noise (c), the y axis is the probability
of a logical error, which is estimated by sampling over physical error
configurations. For the TN decoder, no logical errors were observed
for 1/β � 0.7, implying logical error rates of less than 3 × 10−5.

homology is trivial no logical error occurred, otherwise an
undesired logical X error was applied to the encoded qubit.

In all of the following calculations the accuracy in the
approximate algorithm χ = 8 was fixed. Between 1.2 × 104

and 1.2 × 105 samples were taken for each data point. In
Figs. 2(a) and 2(b) we present results for high- and low-strength
amplitude damping. In the low-strength case, the performance
of our tensor-network (TN) decoder was indistinguishable
from that of the optimal decoder, and corresponds to an
improvement of several orders of magnitude over MWPM.
In the high noise case, for the largest system size tested,
the difference in error rate (as measured by the diamond
distance from the identity) between the TN decoder and
optimal decoder was less than 0.01, compared to around 0.6
for MWPM.

In Fig. 2(c) we show the results for correlated bit-flip noise.
We fixed J1 = 1, J2 = −1.5, B = 0.01 and controlled the
noise strength by varying the inverse temperature β. Noise
strength was varied from high (above an apparent threshold) to
low (where logical errors became undetectable). We observed
a substantial improvement over matching for the entire range
of noise strengths.

Conclusion. We have presented a decoder for the surface
code which achieves high performance by exploiting informa-
tion about the noise process. The decoder can account for a
wide variety of noise properties, including spatial correlations
and coherences. We have tested the decoder on spatially
correlated bit-flip noise and amplitude damping, and have
observed a large improvement over MWPM.

Since our algorithm essentially maps the general decoding
problem to the problem of contracting a tensor network, a
wide range of tensor-network techniques may be employed
to further improve the algorithm. For instance, the tensor
contraction could be parallelized using a renormalization
strategy to contract the network [31,32]. This would reduce the
runtime scaling in N from O(N ) to O(log N ). Furthermore,
generalization of our decoder to other local stabilizer codes
is straightforward and depends only on whether there exists
an efficient contraction algorithm for the tensor network
representing the code’s codespace.

We have assumed that syndrome measurements are per-
formed noiselessly. To generalize the decoding algorithm to
imperfect measurements, the syndrome needs to be observed
over time. For our decoder, this effectively requires the con-
traction of a three-dimensional, rather than a two-dimensional,
tensor network. Algorithms for such calculations have been
developed in the context of condensed-matter physics [35–40],
and could potentially be applied here.
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