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Dimensional coupling-induced current reversal in two-dimensional driven lattices
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We show that the direction of directed particle transport in a two-dimensional ac-driven lattice can be
dynamically reversed by changing the structure of the lattice in the direction perpendicular to the applied driving
force. These structural changes introduce dimensional coupling effects, the strength of which governs the timescale
of the current reversals. The underlying mechanism is based on the fact that dimensional coupling allows the
particles to explore regions of phase space which are inaccessible otherwise. The experimental realization for
cold atoms in ac-driven optical lattices is discussed.
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I. INTRODUCTION

The ratchet effect allows one to create a directed particle
transport in an unbiased nonequilibrium environment and thus
to extract mechanical work from a fluctuating bath [1–3].
Such a conversion is impossible for macroscopic equilib-
rium systems and makes the ratchet effect a fundamental
nonequilibrium phenomenon. While originally conceived as
proof-of-principle examples of rectification schemes produc-
ing work from fluctuations [4–7] and as possible explanations
for the mechanism allowing molecular motors to show directed
motion along cytoskeleton filaments [8,9], ratchets now form
a widespread paradigm with a large realm of applications in
atomic, condensed matter, and biophysics.

Specific applications range from the rectification of atomic
[10], colloidal [11], and bacterial motion [12–15] to the
transportation of fluxons in Josephson junction arrays [16,17]
and vortices in conformal crystal arrays [18,19]. Very recently,
it has been demonstrated that ratchets also allow one to control
the dynamics of topological solitons in ionic crystals [20],
enhance photocurrents in quantum wells [21], can rectify
the chirality of magnetization in artificial spin ice [22], and
create a light modulated electron transport across organic bulk
heterojunctions [23].

While the fact that a specific setup creates a directed
particle transport can typically be predicted based on symmetry
properties [24,25], the strength and even the direction of the
emerging currents are far less immediate. In fact, the current
direction can often be reverted by changing the value of a
certain control parameter or the properties of the rectified
objects (e.g., their mass or mobility), without changing the
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symmetry of the underlying equations. Achieving such current
reversals is the key aim of many investigations, as they allow
segregation of particle mixtures by transporting particles of,
e.g., different mass or mobility in opposite directions, where
they can be collected.

While most ratchets are still studied in one spatial dimension
(1D) [3,26], particularly those operating in the Hamiltonian
regime [24,25,27–30], recent experiments have significantly
progressed regarding the construction of highly controllable
two-dimensional (2D) ratchet devices. These include cold
atoms in ac-driven optical lattices [31–33] and the very recent
example of a fully configurable 2D ratchet based on colloids
in holographic optical tweezers [34]. Conceptually, the key
new ingredient in 2D ratchets is the coupling between the
dimensions, which has been shown to allow, in the overdamped
regime, for a directed transport at an angle relative to the driving
law [34,35] and may also involve transportation completely
orthogonal to the driving [36]. In the present work, we
demonstrate that dimensional coupling can even lead to current
reversals.

A 2D potential landscape having a periodic potential
along, e.g., the x direction but without any potential variation
along the perpendicular y direction (henceforth referred to as
“quasi-1D lattice”) allows for directed particle transport when
driven by an appropriately chosen ac-driving force in the x

direction [see Fig. 1(a), upper panel]. Keeping the driving
unchanged but performing a structural change of the lattice
along the y direction introduces dimensional coupling effects.
We show that this coupling does not affect the directed particle
current for short timescales, but reverts its direction at longer
timescales as compared to the quasi-1D lattice [see Fig. 1(a),
lower panel]. These dimensional coupling-induced current
reversals (DCIR) occur dynamically in time [30], as opposed
to the standard scenario of asymptotic current reversals due to
a change of system parameter where the direction of current is
time independent [37–39]. We show that the reversal timescale
can be varied by thousands of driving periods by varying the
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FIG. 1. (a) Schematic diagram of the setup demonstrating the phenomenon of dimensional coupling-induced current reversal. The filled
dots denote particles and the colors (red/blue) indicate the sign of the x component of their velocities (right/left). In a driven quasi-1D lattice
(upper panel), most particles travel in the negative x direction resulting in an average transport in this direction. However, in the driven 2D
lattice (middle and lower panels) having nonzero dimensional coupling β, most particles initially travel toward the negative x direction but
at later times revert their movement, resulting in a dynamical current reversal. Larger values of the coupling β reduces the timescale of the
current reversal (lower panel). (b) Mean transport velocity of the ensemble along the x direction as a function of time for different values of β

for a linear and logarithmic (inset) timescale. The gray circles correspond to the reversal timescales tr,β for different values of β. Remaining
parameters: U = 0.88, a = 0.48, α = 9.61, and γ = 0.62. There is no directed transport of particles along the y direction.

structure of the lattice perpendicular to the driving direction
[see Fig. 1(a), middle panel]. The underlying mechanism of
these current reversals uses the fact that changing the structure
of the lattice along the second dimension allows the particles to
explore different regions of phase space which are inaccessible
in the quasi-1D lattice.

II. SETUP

We consider N noninteracting classical particles in a 2D
lattice of elliptic Gaussian barriers laterally driven along the
x direction via an external biharmonic driving force f (t) =
dx[sin ωt + 0.25 sin(2ωt + π/2)]. Here, dx and ω are the
amplitude and the frequency of the driving, thereby introducing
a temporal periodicity of T = 2π/ω. The system is described
by the Hamiltonian:

H = p2
x

2m
+ p2

y

2m

+
+∞∑

i,j=−∞
V e−{βx [x−f (t)−(i+ 1

2 )Lx ]2+βy [y−(j+ 1
2 )Ly ]2}, (1)

where the potential barriers have a height V and the equilibrium
distances between them along x and y are given by Lx and Ly .
respectively. This potential breaks both the parity x → −x +
χ symmetry along the x direction and the time-reversal t →
−t + τ symmetry (for all possible constants χ and τ ), while
preserving parity symmetry along the y direction. Possible
realizations of this setup include cold atoms in optical lattices,
at microkelvin temperatures, where a classical description is
appropriate [33] and which to a good approximation represents
a Hamiltonian setup.

Introducing dimensionless variables x ′ = x
Lx

, y ′ = y

Ly
, and

t ′ = ωt and dropping the primes for simplicity, the equa-
tion of motion for a single particle at position r with

momentum p reads

r̈ =
+∞∑

m,n=−∞
U [r − F (t)ex − Rm,n]e−G[r−F (t)ex−Rm,n], (2)

where F (t) = [a sin t + 0.25a sin(2t + π/2),0] is the effec-
tive driving law, ex = (1,0), Rm,n = (m,n) denotes the po-
sitions of the maxima of the Gaussian barriers where (m −
1
2 ),(n − 1

2 ) ∈ Z and U (r) = (Ux,βUy), G(r) = α(x2 + γy2).
The parameter space of our system is therefore essentially five
dimensional, where the dimensionless parameters are given
by a reduced barrier height U = 2Vβx

mω2 , an effective driving
amplitude a = dx

Lx
, as well as the two parameters, α = βxL

2
x

and γ = βyL
2
y

βxL2
x
, characterizing the localization of the Gaussian

barriers along the x and y directions. A final key control
parameter is β = βy

βx
which measures the coupling between

the two dimensions. The limits β → 0 and β → ∞ both
correspond to quasi-one-dimensional lattices.

III. RESULTS

To explore the transport properties of our setup, we initial-
ize N = 104 particles with small random velocities vx,vy ∈
[−0.1,0.1] such that their initial kinetic energies are small
compared to the potential height of the lattice. In order to
mimic a localized loading of particles into the lattice, we
initialize the particles within the square regions [−0.1,0.1] ×
[−0.1,0.1] centered around the potential minima of the lattice.
Subsequently, we time evolve our ensemble up to t = 104 by
numerical integration of Eq. (2) using a Runge-Kutta Dormand
Prince integrator.

For β = 0, the lattice is quasi-1D [upper panels in Fig. 1(a)]
and produces a nonzero mean velocity pointing in the negative
x direction [Fig. 1(b)]. This behavior is expected since the
system breaks both the parity and time-reversal symmetry
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along the x direction, thus satisfying the necessary criteria
for a nonzero directed transport [24,27,28]. Since there is no
driving in the y direction, the symmetries are preserved and
hence there is no directed transport along this direction. The
transport in the x direction accelerates until it finally saturates
at v̄x � −1.4.

We now vary β to explore the impact of dimensional cou-
pling effects on the directed transport. As shown in Fig. 1(b),
for β = 0.03, the early time transport velocity is negative and
approaches a similar speed of v̄x � −1.35, as in the quasi-
1D case at around t � 1.5 × 102. Remarkably, thereafter the
transport begins to slow down and vanishes at t = tr,β=0.03 �
1.5 × 103. Further on, it changes sign which leads to a current
reversal. Finally, it approaches an asymptotic constant value of
v̄x � 1.2. Therefore, the structural change of the lattice in the
direction orthogonal to the driving force reverts the transport
direction.

To study this dimensionality-induced current reversal in
more detail, we perform our simulations for a stronger di-
mensional coupling β = 0.15 and β = 0.62, which leads to
a qualitatively similar behavior [see Fig. 1(b)]. However, we
find that the timescale at which the reversal occurs strongly
depends on the strength of the dimensional coupling coefficient
β. Specifically for β = 0.62, we obtain tr � 3 × 102 showing
that the reversal timescale can be tuned by at least a factor of
5. We have performed longer simulations up to t = 105 and
found that the transport velocity does not reverse again during
this timescale.

IV. DISCUSSION

The underlying mechanism of the DCIR effect depends
on two generic ingredients: (i) the existence of a mixed
phase space (containing regular and at least two disconnected
chaotic components) in the underlying quasi-1D lattice and
(ii) the diffusional spreading dynamics in the 2D lattice along
the orthogonal direction. We now discuss the occurrence of
negative transport in the quasi-1D lattice (β = 0) and will then
analyze how the dimensional coupling effect can revert the
transport direction.

Due to the absence of forces acting along the y direction,
the dynamics in the quasi-1D lattice [Fig. 1(a)] can be decom-
posed into a constant drift in the y direction and a motion
in a 1D lattice driven along the x axis. The latter case is
described by a three-dimensional (3D) phase space illustrated
by taking stroboscopic snapshots of x(t),vx(t) at t = n(n ∈ N)
of particles with different initial conditions. This leads to
Poincáre surfaces of section (PSOS) as shown in Fig. 2(a)
where the reflection symmetry about vx = 0 is broken. This
PSOS is characterized by two prominent chaotic components
or “seas”: the upper sea CU between 0.75 � vx � 6.0 and the
lower sea CL between −3.5 � vx � 0.2. These chaotic seas
are separated from each other by regular invariant spanning
curves at vx � 0.2 preventing particles from traveling between
the chaotic components. Hence, particles initialized with low
initial energies vx ∈ [−0.1,0.1] and occupying CL, matching
the initial conditions used in our simulations, undergo chaotic
diffusion through the lattice with negative velocities along
the x direction until they are uniformly distributed over CL.
As a result, we observe a negative directed transport of the

FIG. 2. The particle distribution as a function of position x mod
1 and vx (in colormap) of all the N = 104 particles propagating in the
2D lattice with β = 0.03 superimposed on the PSOS of the quasi-1D
driven lattice (regular islands in black and chaotic seas in green) at
(a) t = 50 and (b) t = 104. The region of invariant spanning curves
separating the two chaotic seas has been highlighted by the thick
black dashed line. (c) The particle distribution as a function of y and
t showing the spreading of the ensemble along the y direction with
time.

ensemble. The magnitude of the transport velocity for the
quasi-1D lattice can also be estimated using the “sum rule”
involving the location and size of the regular islands embedded
in CL [27,28].

Let us now explore the mechanism allowing dimensional
coupling (β > 0) to revert the transport direction: In this
case, the phase space is five-dimensional (5D) characterized
by (x,vx,y,vy,t) which complicates both the illustration and
analysis of the transport based on the phase-space structures.
However, up to a certain timescale, the dynamics of the
particles even in this higher dimensional phase space can be
effectively understood in terms of the dynamic occupation
of the ensemble in the quasi-1D PSOS. To show this, we
superpose the snapshots of the ensemble particle coordinates
(x,vx) for β = 0.03 on the quasi-1D PSOS at two different
times t = 50 and t = 104 (Fig. 2). At t = 50, well before the
reversal timescale tr,β=0.03 = 1.5 × 103, the ensemble popula-
tion is confined to CL in a similar way as we have observed
for β = 0 [Fig. 2(a)]. Physically, this results from the fact that
at shorter timescales the particles experience comparatively
strong driving forces which allow them to quickly move along
the x direction while in the y direction they move only very
slowly with a velocity largely dictated by the initial conditions.
Therefore, for a long time, they stay close to the potential
valleys at y = 0 [Fig. 2(c)] where they hardly experience the
2D landscape of the potential.

As time evolves, particles experience more and more of
the 2D character of the potential which effectively transfers
motion in the x direction into motion along the y direction
leading to a symmetric spreading of the ensemble along
the y direction [Fig. 2(c)]. Particles are therefore no longer
dictated by the structure of the 3D phase space but can
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FIG. 3. The time dependence of (a) position and (b) velocity of
a typical particle in the 2D lattice with β = 0.03 initialized in the
lower chaotic sea CL [Fig. 2(a)] demonstrating the crossover to the
upper chaotic sea CU [Fig. 2(b)]. Remaining parameters are the same
as in Fig. 1(b). Note that for this particular trajectory, the crossover
happens at t � 5 × 103, which is larger than the average reversal
timescale tr,β=0.03 = 1.5 × 103 of the ensemble.

explore the entire 5D phase space. They can, in particular,
now freely cross the invariant spanning curves at vx � 0.2
of the 3D phase space to attain significant positive velocities
[Fig. 2(b)]. During the phase of temporal evolution when the
particles can cross the invariant curve, the directed current
slows down and reduces to zero. It finally becomes positive,
since the asymptotic average velocity of the particles along
the positive x direction is higher than that along the negative
x direction. A typical trajectory demonstrating the crossover
from CL to CU is shown in Fig. 3. We checked that the current
reversal and the underlying phase-space structures (especially
the invariant spanning curves separating the chaotic layers)
is robust against moderate variations of the setup parameters,
hence no parameter fine-tuning is necessary to observe the
phenomena.

V. CONTROL OF THE CURRENT REVERSAL

Let us finally discuss the dependence of the current reversal
time tr,β on the parameter β. Following the above-outlined
physical picture, the current reversal occurs at time scales
comparable to the time a particle needs to experience a
significant deviation from the neighborhood of the minimum of
the lattice potential along the y direction. For a particular value
of β and a given set of initial conditions, one can thus expect the
reversal timescale tr,β to depend linearly on the average time τβ

the particles need to cross one lattice site along the y direction
for the very first time. In order to estimate τβ for different values
of β, we simulate ensembles of 104 particles each with initial
conditions identical to that used in our setup (Fig. 1), but for
different β values and calculate the corresponding probability
density P (t) of the first crossing time (FCT) t required by a
particle to cross one lattice site along the y direction [Fig. 4(a)].
As β increases, the particles are likely to have shorter FCT and
hence can experience the 2D landscape of the potential much
earlier. This can be clearly seen in Fig. 4(b) (blue) which shows
that the mean FCT τβ decreases with increasing β following
a τβ ∼ β−0.6 power law. Confirming our expectation, a linear
fit is shown to describe the relation between tr,β and τβ to
a good approximation [see Fig. 4(b) (inset)] and hence tr,β
follows a similar inverse power law tr,β ∼ β−0.55 [Fig. 4(b),
red]. The reversal timescale depends also (weakly) on the initial

FIG. 4. (a) The probability density P (t) of the FCT t required by
a particle to cross one lattice site along the y direction for the first
time. (b) The mean FCT τβ (in blue) and the reversal timescale tr,β
(in red) as functions of β with corresponding inverse power-law fits.
The inset shows the linear relationship between tr,β and τβ .

velocities of the particles and we verified that a decrease of
the initial velocity by a factor of 0.01 increases the reversal
timescale approximately by a factor of 1.34.

VI. EXPERIMENTAL REALIZATION

A setup to experimentally observe dimensional coupling-
induced current reversals are cold atoms in optical lattices
generated by laser beams in the regime of microkelvin tem-
peratures where a classical description is appropriate [33].
Setups based on holographic trapping of atoms [40–43] might
also provide an interesting and highly controllable alternative.
The resulting lattice can be driven by phase modulation using
acousto-optical modulators and radio-frequency generators.
Translating our parameters to experimentally relevant quanti-
ties for an optical lattice setup with cold rubidium (Rb87) atoms
and 780 nm lasers, we obtain the lattice height V ∼ 22Er , the
width 1√

βx
∼ 252 nm, the driving frequency ω ∼ 10ωr , and

the driving amplitude dx ∼ 390 nm, where Er and ωr are the
recoil energy and recoil frequency of the atom, respectively.
Interaction, disorder, and noise effects would probably lead to
a slow accumulation of particles within the regular portions
of the phase space [30,44,45], which may also aid them in
crossing the regular barrier confining the initial conditions
in the quasi-2D case to negative and only weakly positive
velocities and may therefore lead to a slight decrease of the
reversal time.

VII. CONCLUDING REMARKS

Dimensional coupling effects in two-dimensional lattices
create another route to produce current reversals. Conversely
to most other cases, the current reversal occurs dynamically
here with a characteristic timescale that can be controlled by the
strength of the coupling. The underlying mechanism is generic,
in the sense that it depends only on the mixed phase-space
structure of the underlying uncoupled quasi-1D lattice and
may therefore apply to a variety of physical systems. Possible
future perspectives include an extensive characterization and
visualization of the four-dimensional PSOS [46,47] in order
to analyze the effect of the dimensional coupling on the
underlying invariant manifolds and directed transport.
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