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Heteroclinic switching between chimeras
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Functional oscillator networks, such as neuronal networks in the brain, exhibit switching between metastable
states involving many oscillators. We give exact results how such global dynamics can arise in paradigmatic phase
oscillator networks: Higher-order network interactions give rise to metastable chimeras—localized frequency
synchrony patterns—which are joined by heteroclinic connections. Moreover, we illuminate the mechanisms that
underly the switching dynamics in these experimentally accessible networks.
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Networks of (almost) identical nonlinear oscillators give
rise to fascinating collective dynamics where populations of
localized oscillators exhibit distinct frequencies and levels
of phase synchronization [1,2]. In neuronal networks, the
location of such localized frequency synchrony patterns can
encode information [3–5]. Thus, sequential switching between
distinct localized dynamics has been associated with neural
computation [6–9]; sequential dynamics in the hippocampus
in the absence of external input [10] are a striking example.
Most efforts to understand switching dynamics between local-
ized frequency synchrony patterns rely on averaged models
which neglect the contributions of individual oscillators to
the network dynamics [11–15] or are statistical [16]. For
finite networks, however, the dynamics of individual oscillators
cannot be neglected.

In this Rapid Communication we give explicit results for the
emergence of switching between synchrony patterns that are
characterized by localized frequency synchrony—commonly
known as (weak) chimeras [17,18]—in phase oscillator net-
works with higher-order interactions. More precisely, we prove
the existence of saddle weak chimeras which are joined by
heteroclinic connections; nearby trajectories exhibit sequen-
tial switching of localized frequency synchrony. Our results
directly relate two distinct dynamic phenomena, heteroclinic
switching and chimeras, and thus give a number of insights
into the global dynamics of oscillator networks. First, they
elucidate how network topology and the functional form of the
oscillator coupling facilitate switching dynamics: The hetero-
clinic structures arise through an interplay of higher harmonics
in the phase coupling function and interaction terms which
depend on the phase differences of more than two oscillators
(nonpairwise interaction). Although such generalized forms
of network coupling arise naturally in phase reductions of
generically coupled limit cycle oscillator networks [19], they
are neglected in classical Kuramoto-type networks [20,21].
Hence, our results emphasize how higher-order interaction
terms can shape the phase dynamics of many physical systems
from oscillator networks [22–24] to ecological systems [25].
Second, switching between metastable chimeras is an explicit
dynamical mechanism how networks of neural oscillators
may encode sequential information and give rise to dynamics

similar to hippocampal replay. Third, we provide a theoretical
foundation to understand self-organized switching between
chimeras that was recently observed in numerical simulations
[26,27]. Finally, relating heteroclinic switching and chimeras
opens up a range of questions; for example, whether any given
itinerary can be realized as a heteroclinic structure between
chimeras.

In the following, we consider networks of M popula-
tions of N phase oscillators. Let θσ,k ∈ T := R/2πZ de-
note the phase of oscillator k in population σ . Write
θ = (θ1, . . . ,θM ) ∈ TMN where θσ = (θσ,1, . . . ,θσ,N ) ∈ TN

is the state of population σ . The set S := {(φ1, . . . ,φN ) ∈
TN |φk = φk+1} corresponds to phase synchrony and D :=
{(φ1, . . . ,φN ) ∈ TN |φk+1 = φk + 2π

N
} denotes the splay phase

where phases are distributed uniformly on the circle. Following
Ref. [28] we use the shorthand notation

θ1 · · · θσ−1Sθσ+1 · · · θM = {θ ∈ TMN |θσ ∈ S}, (1a)

θ1 · · · θσ−1Dθσ+1 · · · θM = {θ ∈ TMN |θσ ∈ D} (1b)

to indicate that population σ is phase synchronized or in
splay phase. Hence, S · · · S (M times) is the set of cluster
states, and D · · · D is the set where all populations are in splay
phase. Given a dynamical system on TMN and a trajectory
θ (t) with initial condition θ (0) = θ0, define the asymptotic
average angular frequency �σ,k(θ0) := limt→∞ 1

t
θσ,k(t). The

characterizing feature of a weak chimera as an invariant set
A ⊂ TMN is localized frequency synchrony: for all θ0 ∈ A

we have oscillators (σ,k),(τ,j ),(ρ,	) such that �σ,k(θ0) =
�τ,j (θ0) �= �ρ,	(θ0); see also Refs. [29–31].

Heteroclinic cycles in small networks. Consider a network
of M = 3 populations of N = 2 identical phase oscillators
where the interaction within populations is pairwise and
determined by the coupling function

g(ϑ) = sin(ϑ + α) + r sin(2[ϑ + α]) (2)

parametrized by α,r ∈ R, whereas different populations in-
teract with coupling strength K through the sinusoidal
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FIG. 1. Heteroclinic networks appear in networks of M = 3 populations of N = 2 oscillators (5) with coupling function (2) and α = π

2 ,

r = −0.1, K = 0.1. Panel (a) shows the heteroclinic cycle between saddle weak chimeras (the solid lines); stability is indicated by arrows.
Panel (b) shows switching of localized frequency synchrony close to the heteroclinic cycle for δ = 0 in the presence of noise η = 10−7: The
oscillators’ phases (shading; black if θσ,k = π , white if θσ,k = 0) and frequencies (colors; shading indicates a population’s frequency range
[mink θ̇σ,k, maxk θ̇σ,k], a line its average 〈θ̇σ,k〉k) are plotted over time. The frequencies of different populations synchronize and desynchronize
sequentially. Panel (c) shows irregular switching dynamics without noise η = 0 when the symmetries are broken, δ = 0.01.

nonpairwise interaction function

snp(φ,ϑ ; θτ ) = cos(θτ,1 − θτ,2 + φ − ϑ + α)
(3)

+ cos(θτ,2 − θτ,1 + φ − ϑ + α).

More specifically, the dynamics of population σ ∈ {1,2,3} is
given by

θ̇σ,1 = ω + g(θσ,2 − θσ,1) − K snp(θσ,2,θσ,1; θσ−1)
(4a)

+K snp(θσ,2,θσ,1; θσ+1) =: Xσ,1(θ ),

θ̇σ,2 = ω + g(θσ,1 − θσ,2) − K snp(θσ,1,θσ,2; θσ−1)
(4b)

+K snp(θσ,1,θσ,2; θσ+1) =: Xσ,2(θ ),

where ω is the oscillators’ intrinsic frequency [32] and indices
are taken modulo M .

The coupling induces symmetries of the oscillator network.
For each of the M populations, let T act by shifting all
phases of that population by a common constant, and let the
symmetric group SN permute its N oscillators. Suppose that
ZM := Z/MZ permutes populations cyclically. The equations
of motion (4) are invariant under the group of transformations
(SN × T)M � ZM of TMN . The semidirect product “�” in-
dicates that actions do not necessarily commute [33]. These
symmetries induce invariant subspaces [34]: in particular
SSS, DDD as well as DSS, DDS and their images under
permutations of populations are dynamically invariant.

We can now give conditions for (4) to have the heteroclinic
cycle depicted in Fig. 1(a) between saddle weak chimeras DSS,
DDS and their symmetric counterparts. Because of symmetry,
it suffices to consider DSS, DDS. We proceed in three steps.
First, we want DSS, DDS to be weak chimeras. Second, we
give conditions for the invariant sets to be saddles. Third, we
show that they are connected by heteroclinic orbits. Here we
focus on the case of α = π

2 and refer to Ref. [35] for more
generality and a proof that there is in fact an open set of
parameters (α,K,r) for which this heteroclinic cycle between
weak chimeras exists.

First, for DSS, DDS to be weak chimeras, we calculate
the frequencies �σ,k for (4). For K = 0 we have �1,k(θ0) =
ω + 1 for θ0 ∈ Sθ2θ3 and �2,k(θ0) = ω − 1 for θ0 ∈ θ1Dθ3.

In other words, without coupling between populations, the
frequency difference between a synchronized and an antiphase
population is |(ω + 1) − (ω − 1)| = 2. With coupling K > 0,
the maximal change in frequency difference is proportional
to K . Specifically, using the triangle inequality in (4) yields
that �1,k(θ0) �= �2,k(θ0) for θ0 ∈ SDθ3 if 2 − 8K > 0. At
the same time, �σ,k(θ0) = �σ,j (θ0) for all θ0 ∈ TMN with
θ0
σ ∈ S,D. Hence, DSS, DDS are weak chimeras for (4) on

TMN if 2K < 1
2 .

Second, we need DSS, DDS to be saddle invariant sets.
Reduce the phase-shift symmetries by rewriting (4) in terms
of phase differences ψσ,k := θσ,k+1 − θσ,1, k = 1, . . . ,N − 1.
[Consequently, we may replace all θs by the phase differences
ψ in (1).] Since N = 2 here, ψσ = ψσ,1 determines the state
of population σ , and the effective dynamics of (4) are three-
dimensional. In the reduced system DSS = (π,0,0), DDS =
(π,π,0) are equilibria. Linearizing at DSS yields eigen-
values λDSS

1 = 4r, λDSS
2 = 8K + 4r, λDSS

3 = −8K + 4r that
correspond to linear stability of the first, second, and third
populations, respectively. Similarly, for DDS we obtain
the eigenvalues λDDS

1 = 8K + 4r, λDDS
2 = −8K + 4r,

λDDS
3 = 4r . Observe that if 0 < −r < 2K we have

λDSS
1 = λDDS

3 < 0, λDSS
2 = λDDS

1 > 0, λDSS
3 = λDDS

2 < 0 and
thus DSS, DDS are saddle invariant sets with two-dimensional
stable and one-dimensional unstable manifolds.

Third, we obtain conditions for heteroclinic connections
between DSS, DDS given their stability above. Observe
that λDSS

2 > 0, λDDS
2 < 0 imply that the unstable manifold

of DSS and the stable manifold of DDS both intersect the
invariant subspace Dψ2S on which the dynamics reduce to
ψ̇2 = sin(ψ2)[8K − 4r cos(ψ2)]. Thus, if −r < 2K there are
no equilibria other than ψ2 ∈ {0,π} (these are DSS and DDS)
in Dψ2S, and we have a heteroclinic connection. Indeed, we
get the same condition for there to be no additional equilibria
in ψ1DS. To summarize, for α = π

2 the heteroclinic cycle
sketched in Fig. 1(a) exists if 0 < −r < 2K < 1

2 . Moreover,
one can show by evaluating the saddle values that for K < −r

the cycle is expected to attract nearby initial conditions [35].
The switching dynamics between weak chimeras persists

when the particular nonpairwise coupling scheme of (4) is
broken. With noise given by a Wiener process Wσ,k (Brownian
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motion) and a symmetry breaking coupling term Sσ,k(θ ) =
�ωσ,k + 1

MN

∑M
τ=1

∑N
j=1 sin(θτ,j − θσ,k) with normally dis-

tributed frequency deviations �ωσ,k (mean zero and variance
one), we integrated the system

θ̇σ,k = Xσ,k(θ ) + δSσ,k(θ ) + ηWσ,k (5)

numerically in XPP [36] where Xσ,k as in (4). For η > 0, δ = 0
we obtain heteroclinic switching where transition times scale
with the noise amplitude η as expected [37]; cf. Fig. 1(b).
Setting δ > 0 breaks all symmetries to a single phase-shift
symmetry acting as a common phase shift for all oscillators.
Although this breaks the invariant subspaces containing the
heteroclinic connections, we still obtain sequential dynamics
prescribed by the heteroclinic network as shown in Fig. 1(c).

Order parameter-dependent coupling induces switching.
The dynamical mechanism which leads to heteroclinic cycles
in (4) can be best understood if the oscillator network is seen as
individual populations coupled through their mean fields. Let
i = √−1. The absolute value of the Kuramoto order parameter
Rσ := R(θσ ) = | 1

N

∑N
j=1 exp(iθσ,j )| gives information about

synchronization: θσ ∈ S iff R(θσ ) = 1 and θσ ∈ D implies
R(θσ ) = 0. For a ∈ N let

g(ϑ) = sin(ϑ + α) + r sin(a[ϑ + α]) (6)

generalize the coupling function (2). Now consider a system of
M populations of N phase oscillators each where the dynamics
of oscillator k in population σ are given by

θ̇σ,k = ω + 1

N

∑

j �=k

g(θσ,j − θσ,k + �ασ ), (7)

and �ασ modulates the phase-shift α of the coupling function
(6). If r = 0 then either full synchrony S or the phase configura-
tions with Rσ = 0 are globally attracting for (7) depending on
the value of α + �ασ [38]. In particular, the global attractors
swap stability at α + �ασ = ±π

2 . Hence, for r = 0 and α ≈ π
2

the order parameter-dependent modulation of �ασ by

�ασ = K
[(

1 − R2
σ−1

) − (
1 − R2

σ+1

)]
, (8)

0 < K � π
2 yields a mechanism for sequential synchroniza-

tion: If population σ − 1 is synchronized (Rσ−1 = 1) and
population σ + 1 is in splay phase (Rσ+1 = 0), then S is
asymptotically stable for populationσ . Conversely, ifRσ+1 = 1
and Rσ−1 = 0, then Rσ = 0 is asymptotically stable for popu-
lation σ . Whereas the system is degenerate for Rσ−1 = Rσ+1

if α = π
2 and r = 0, an appropriate choice of a and r �= 0 to

induce bistability of S and D will resolve the degeneracy below.
A network with nonpairwise coupling approximates the

system (7) with state-dependent phase-shift (8). We have

g(ϑ + �ασ ) = g(ϑ) + K
(
R2

σ+1 − R2
σ−1

)
cos(ϑ + α)

+O(K2) + O(Kr). (9)

Generalizing (3), define the sinusoidal nonpairwise scaled
interaction function,

snps(φ,ϑ ; θτ ) = 1

N2

N∑

p,q=1

cos(θτ,p − θτ,q + φ − ϑ + α).
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FIG. 2. Switching between localized frequency synchrony is
observed in networks of M = 3 populations of N = 11 oscillators
with dynamics (5) and vector field (11). As in Fig. 1 the evolution of
phases and order parameters the oscillators populations synchronize
in frequency sequentially. Coupling for K = 0.2 is given by (6) with
a = 22, r = −0.001, α = π

2 , symmetry breaking δ = 0.001 and no
noise η = 0.

Note that R2
τ = 1

N2

∑N
p,q=1 cos(θτ,p − θτ,q) which implies

R2
τ cos(θσ,j − θσ,k + α) = snps(θσ,j ,θσ,k; θτ ). (10)

Substituting (9) and (10) into (7) and dropping the
O(K2), O(Kr) terms yields the phase dynamics

θ̇σ,k = ω + 1

N

∑

j �=k

[g(θσ,j − θσ,k) − K snps(θσ,j ,θσ,k; θσ−1)

+K snps(θσ,j ,θσ,k; θσ+1)] =: Xσ,k(θ ), (11)

as an approximation of (7). Note that, for M = 3, N = 2, the
system (4) with coupling function (2) is—up to rescaling of
K and time—exactly this approximation (11) with (6) and
harmonic a = 2 that yields hyperbolic saddles.

Switching dynamics for larger networks. The derivation of
the nonpairwise coupling suggests a general mechanism to
obtain switching dynamics in systems with population sizes
N > 2. Indeed, we obtain sequential switching dynamics, for
example, for M = 3, N = 11: Integrating (5) with Xσ,k as in
(11) yields sequential switching even when the system sym-
metries are broken, δ > 0; cf. Fig. 2. Note that the transitions
now take place along high-dimensional invariant subspaces.

From heteroclinic cycles to networks. Generalizing the
order parameter-dependent coupling (8) for the dynamics (7)
leads to switching similar to those observed for the Kirk-Silber
heteroclinic network [39] which contains more than one cycle;
cf. Fig. 3(a). Similar to (8), set

�α1 = −K
(
1 − R2

2

) + K
(
1 − R2

3

) + K
(
1 − R2

4

)
, (12a)

�α2 = K
(
1 − R2

1

) − K
(
1 − R2

3

) − K
(
1 − R2

4

)
, (12b)

�α3 = −K
(
1 − R2

1

) + K
(
1 − R2

2

) − K
(
1 − R2

4

)
, (12c)

�α4 = −K
(
1 − R2

1

) + K
(
1 − R2

2

) − K
(
1 − R2

3

)
. (12d)

Consider M = 4 populations of N = 2 oscillators where os-
cillator (σ,k) evolves according to

θ̇σ,k = ω + g(θσ,3−k − θσ,k + �ασ ) + ηWσ,k, (13)
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FIG. 3. The network of M = 4 populations of N = 2 oscillators
with dynamics (13) shows noise induced random switching from
SDSS to either SSDS or SSSD. This relates to a Kirk-Silber type
network sketched in panel (a). Panel (b) depicts evolution of phases
and frequencies (populations 3 and 4 are highlighted in color) for
coupling (2) with r = −0.1, α = π

2 , K = 0.35, and η = 10−4.

with coupling function g as in (2). The �ασ given by (12)
are now chosen to allow for switching from SDSS to either
SSDS or SSSD: If population 2 is desynchronized, R2 = 0,
and all other populations are synchronized, Rσ = 1 for σ �= 2,
then D will be attracting for both populations 3 and 4 (in
the limiting case r = 0). Figure 3(b) shows noise-induced
switching in (13). A full analysis of this system (and its
nonpairwise approximation) is beyond the scope of this Rapid
Communication.

Discussion. Phase oscillator networks with nonpairwise
coupling have surprisingly rich dynamics [19,22–24]; here,
nonpairwise interactions allow to show the existence of hete-
roclinic connections between weak chimeras. The nonpairwise
coupling arises through a bifurcation parameter that depends
on local order parameters of different populations. By contrast,
the dynamics of a network with a bifurcation parameter
depending on the global order parameter has been studied
in their own right [40] and exploited for applications [41].

In contrast to sequential switching of phase synchrony for
nonidentical oscillators [42], here we observe switching of
localized frequency synchrony in a network of indistinguish-
able phase oscillators (the symmetry action is transitive).
Moreover, since the system is close to bifurcation for small
K , small perturbations to the vector field allow for going from
one switching sequence to another.

Our results open up a range of questions relating both
chimeras and heteroclinic networks. Are there heteroclinic
cycles between saddle weak chimeras with chaotic dynamics
[30]? Is it possible to realize any heteroclinic network in a
phase oscillator network where the saddles are weak chimeras,
see also Refs. [43,44]? How do the dynamics of (13) relate to
results obtained for the Kirk-Silber network [45]?

Heteroclinic switching between localized frequency syn-
chrony patterns is of direct relevance for real-world systems.
On the one hand, note that the small networks considered here
are accessible for experimental realizations: weak chimeras
have recently been observed in electrochemical systems [46]
with linear and quadratic interactions interactions [47]. Thus,
we are interested in whether switching of localized frequency
synchrony is observed these experimental setups. On the other
hand, sequential switching of localized frequency synchrony
may be an important aspect of functional dynamics in networks
of neurons. Our results elucidate the features of network
interaction (e.g., symmetries and nonpairwise interactions) and
the dynamical mechanisms that facilitate switching dynamics.
Thus, our insights may open up ways to restore and control
functional dynamics, for example, if the network becomes
pathologically synchronized.
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