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Exploring the diluted ferromagnetic p-spin model with a cavity master equation
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We introduce an alternative solution to Glauber multispin dynamics on random graphs. The solution is based
on the recently introduced cavity master equation (CME), a time-closure turning the, in principle, exact dynamic
cavity method into a practical method of analysis and of fast simulation. Running CME once is of comparable
computational complexity as one Monte Carlo run on the same problem. We show that CME correctly models
the ferromagnetic p-spin Glauber dynamics from high temperatures down to and below the spinoidal transition.
We also show that CME allows an alternative exploration of the low-temperature spin-glass phase of the model.
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Nature abounds in systems of interacting units with non-
trivial dynamical properties. This leads to similar questions
in condensed-matter physics [1], systems biology [2], neuro-
science [3], and neural networks [4] but also in many practical
applications in computer science [5] and engineering [6].
Not surprisingly, the study of such systems has led to the
development and the use of similar techniques across different
scientific communities.

A common starting point is a Markovian dynamics in
continuous time of N discrete interacting variables σ =
{σ1, . . . σN }. Such a system is described by a master equation
defining the evolution of the probability of the states of the
system P (σ ) [3,7,8]:

dP (σ )

dt
=

∑
σ ′

[r(σ ′ → σ )P (σ ′) − r(σ → σ ′)P (σ )], (1)

where r are transition probabilities from states and P (σ )
depends on time, but for simplicitly, we will not write this
dependence explicitly.

The solution of the master equation, Eq. (1), is in general
a cumbersome task and exact results on both stationary states
and transients are limited to some special cases [3,8–10]. For
fully connected [11] and diluted graphs [12] it is possible to
resort to hierarchical schemes to derive dynamical equations
for the probability of some macroscopic observables. A very
general one of this type is the dynamical replica analysis
[13–15]. With this reduction of the dimensionality the problem
becomes tractable, but one loses the detailed information about
the microscopic state of the system and the results are not
exact for fully connected [16], nor for the transients in 1D
ferromagnetic systems [17].

A frequently made approximation reduces Eq. (1) to a
simpler master equation for the probabilities of single-spin
variables P (σi). However, this is only valid in mean-field-like
models [3] or at very high temperatures. An alternative solution
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that successfully describes the local dynamics of these systems
in a wide range of the parameter space was recently suggested
in Ref. [18]. The problem is then reduced to the solution
of a master equation for a conditional probability that is
subsequently used to recover P (σi).

In this work we generalize this last approach to systems with
multiparticle interactions and explore its potential to describe
processes both near to equilibrium and deep into a phase with
multiple minima. We show also that it can be exploited to obtain
the ground state of models with a complex energy landscape.
To keep the notation simple, and to conveniently explore the
features of our solution, we study the diluted ferromagnetic
p-spin model with Glauber dynamics. However, the ideas
behind our derivation should be clear enough to allow the
straightforward application of our method to other dynamical
rules and other Hamiltonians.

The ferromagnetic p-spin model is defined by the Hamil-
tonian

H = −
∑

i1,i2,...ip

Ji1i2i3...ipσi1σi2σi3 ...σip , (2)

where Ji1,i2,...ip = 1 for all p-tuplets in the set of hyperedges of
a Bethe lattice and zero otherwise, and σi ∈ {−1,1} are binary
variables. This model is a natural intermediary between spin
glasses and structural glasses. Like the former, it is defined by
binary variables and fixed in an infinite lattice. With the latter
it shares a crystalline state, the absence of quenched disorder,
and a finite range of the interactions.

A standard dynamics for this model uses a single-spin tran-
sition rule between states r(σ → σ ′) = ri(σ1, . . . σi, . . . →
σ1, . . . −σi, . . .). In addition, we will consider that the tran-
sition rate of spin i depends only on the state of the spin and
its neighborhood; in this case, all p-tuplets it belongs to. Let
us define ∂i as the set of p-tuplets that include spin i and use
σ∂i as a notation for the set of spins in ∂i excluding σi and
denote σa as the group of spins forming the p-tuplet a. The
transition rate for spin i will be then, for a Glauber dynamics:
ri(σi,σ∂i) = α

2 [1 − σi tanh(β
∑

a∈∂i Jaσa\i)], where α defines
the time scale of the problem.
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Under these general settings the local dynamics of spin i is
described by a local master equation:

dP (σi)

dt
= −

∑
σ∂i

[ri(σi,σ∂i)P (σi,σ∂i)

− ri(−σi,σ∂i)P (−σi,σ∂i)]. (3)

Equation (3) looks simpler than Eq. (1), but it is not a
closed set of equations. To close it we need to resort to
proper approximations. In this case we first write P (σi,σ∂i) =∏

a∈∂i P (σa\i |σi)P (σi), which is exact at equilibrium for trees
and random graphs with large loops, and substitute it in Eq. (3).
The goal in what follows is to find a proper approximation
for the dynamics of the conditional probability P (σa\i |σi) that
substituted back in Eq. (3) makes the calculation of P (σi,t)
straightforward.

We build our equations with the help of the theory of random
point processes [7,19], where the dynamics of the spin variable
σi is encoded in a trajectory {Xi} that is parametrized by the
number of jumps si of the corresponding spin in the studied
interval [t0,t] and the times {t i1,t i2, . . . ,t isi

}. Very generally
for spins interacting through Hamiltonians defined on factor
graphs the joint probability density Q of these trajectories can
be written as Q(X1 . . . XN ) = ∏N

i=1 �i(Xi |X∂i), where

�i(Xi |X∂i) =
si∏

l=1

ri(σi(tl),σ∂i(tl))

× exp

[
−

∫ t

t0

ri(σi(τ ),σ∂i(τ ))dτ

]
. (4)

For locally treelike graphs this parametrization leads to a
message-passing equation (see Supplemental Material at [20]
for a detailed derivation), structurally identical to the belief
propagation equations used to approximate an equilibrium
Gibbs-Boltzmann distribution [5]:

μa→(i)(Xa\i |Xi) =
∏

j∈a\i

∑
Xb|b∈∂j \ a

�j (Xj |X∂j )

×
∏

b∈∂j\a
μb→(j )(Xb\j |Xj ). (5)

Formally, Eq. (5) defines a set of fixed point equations for the
probabilities μa→(i)(Xa\i |Xi) of the histories in the set Xa\i in
terms of equivalent objects in the neighborhood of the spins
in a \ i, considering that the history Xi is given. One must
notice that this is not the only possible choice. At this point,
μa→(i)(Xi |Xa\i) also looks like a valid alternative to proceed
through the derivation in Ref. [18], however, it does not lead
to a closed set of equations.

Unfortunately, the histories, defined by the variables X

are cumbersome arguments to treat beyond formal state-
ments, and actual solution of Eq. (5) is hopeless. One
can, however, marginalize this quantity via p(σa\i |Xi,t) =∑

Xa\i
σa\i (t) = σa\i

μa→(i)(Xa\i |Xi) and then take the proper time

derivative (see Supplemental Material [20]) to obtain

ṗ(σa\i |Xi)

= −
∑
j∈a\i

∑
{σb\j }

b ∈ ∂j \ a

r+
j p({σb\j }b∈∂j\a,σa\i |Xi)

+
∑
j∈a\i

∑
{σb\j }

b∈∂j \ a

r−
j p({σb\j }b∈∂j\a,Fj [σa\i]|Xi), (6)

where r
+/(−)
j = rj ((−)σj ,{σb\j }b∈∂j\a,σa\j ) and {σb\j } with

b ∈ ∂j \ a is the set of instantaneous variables that characterize
the nodes neighboring j , except those in a and Fj [σa\i] is an
operator that inverts the sign of spin j in σa\i .

Note that although Eq. (6) is exact in treelike graphs,
it still contains spin histories as conditional arguments.
In principle, these histories could be taken as parameters
to be tracked during the solution of Eq. (6). However,
it is convenient to go further, assuming first that vari-
ables factorize around factor nodes: p({σb\j }b∈∂j\a,σa\i |Xi) =
p({σb\j }b∈∂j\a|σa\i ,Xi)p(σa\i |Xi) ≈ ∏

b∈∂j\a p(σb\j |σa\i)
p(σa\i |Xi), which is exact in treelike graphs in equilibrium.
Then, to close the system of equations it is enough to consider
that locally the system has short time memory, p(σ |Xi) ∼
p(σ |σi), which is equivalent to a Markov hypothesis.

With these approximations, Eq. (6) transforms into a master
equation but conditioned to neighboring (cavity) spins. We call
this the cavity master equation (CME):

ṗ(σa\i |σi)

= −
∑
j∈a\i

∑
{σb\j }

b∈∂j \ a

r+
j

∏
b∈∂j\a

p(σb\j |σj ) p(σa\i |σi)

+
∑
j∈a\i

∑
{σb\j }

b ∈ ∂j \ a

r−
j

∏
b∈∂j\a

p(σb\j | − σj ) p(Fj [σa\i]|σi).

(7)

Under very general conditions [18] p(σa\i |σi) becomes a
good proxy for the actual conditional distribution P (σa\i |σi).
Then, to obtain the observables of the system one just solves
the set of Eqs. (7), plugs the result in the local master equation,
Eq. (3), and integrate to obtain the local probabilities at
the nodes of the network. This gives the joint probability
distribution of all the variables in every plaquette as a function
of time, the same outcome which would require averaging
over many realizations using kinetic Monte Carlo (KMC).
The numerical integration of Eq. (7) can be done without
great difficulty by means of any good numerical integrator
such as Runge-Kutta. The integration stepsize affects mainly
the running time and has no considerable influence in final
results. The natural error accumulation effect for long times is
not relevant for the system under study because the long-term
behavior of the equations is always stationary. This could be
relevant, though, for other systems not reaching equilibrium.
Although we will not pursue this issue here, let us note that a
similar approach could also, as for standard belief propagation,
be used to describe the evolution of the marginal probability
of a simply connected subset of nodes in the graph.
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FIG. 1. Top: Dynamics of the average magnetization using CME
(lines and symbols) and KMC (symbols). In the inset: Equilibration
time near the spinodal transition temperature. Bottom: Dynamical
behavior of the local error between CME and KMC. System size: N =
99 999 spins. In the inset: Temperature dependence of the maximum
local error. At time t = 0 the system is fully magnetized and then
begins to interact with a heat bath at a given temperature. KMC curves
represent an average over 5000 samples.

Let us now discuss in more detail some of the properties
of the p-spin ferromagnetic model with p = 3 in a random
regular graph with k = 3. As discussed in Ref. [21] it shows
three different phases. For T > Tms = 1.63 it is paramagnetic.
At Tms emerges a ferromagnetic metastable consistent with a
spinodal transition. This ferromagnetic state becomes stable at
Tfm = 1.21. For lower temperatures T < TK = 0.655 [22] the
system has a thermodynamic phase transition to a spin-glass
state. This spin-glass state can be understood as a result of the
competition between the ferromagnetic ground state and the
presence of local configurations that guarantee the same (local)
energy of the ferromagnetic state but produce frustration. For
example, when a spin is down, it puts an effective negative
interaction on the other k − 1 = 2 neighbors that will act as an
effective antiferromagnetic interaction. Since there are many
different realizations of such configurations, the interactions
may not be fully satisfied because of existing loops leading to
fluctuations in the system dynamics and eventually to the spin
freeze characteristic of a glassy phase for Td < 0.757 [22].
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FIG. 2. Dynamical behavior of the planted model for N = 10 002
near Td . In the plot are represented curves for a single planted graph.
In the inset we show the fraction of the samples (n = 100) in which
the magnetization decays to zero as a function of T .

We know from previous results that the CME fails to predict
KMC results deep into the SG phase and for intermediate
timescales near second-order phase transitions [18]. There-
fore, we will focus first our attention in the behavior of the
method around the spinodal transition. We compare CME to
KMC starting at t = 0 from a totally ordered configuration
with magnetization one. Then we observe the evolution of
the average magnetization after a quench to a temperature
T and quantitatively compare the CME and KMC using
the mean-square difference of local magnetizations δm(t) =√

1
N

∑
i(m

CME
i (t) − mKMC

i (t))2.
Results for both quantities are reported in panels of Fig. 1.

In this numerical experiment, below the spinodal transition
(Tms < 1.63), and deep in the high-temperature region (T >

1.90) CME and KMC produce similar output. In the first case
the system stays trapped in the magnetized state, while in the
latter case the system relaxes exponentially to a paramagnetic
phase. Only above and near the spinodal transition and at
intermediate times do the algorithms differ; the long-term
results, however, are also very similar. Note that even around
the spinodal transition the errors ultimately become zero
supporting the idea that the CME properly reproduces the
long-time behavior of the system. The residual error presented
in the inset is due to the finite number of samples used and
reflects the statistics of the KMC (see Suplemental Materials
at [20] for supporting numerical results). One must also remark
that these results consider samples where finite-size effects are
small on the timescale of interest.

We also tested our CME in a planted model [23] near the
dynamical phase transition of the model Td . The planted model
is built fixing the ground state, all σi = 1, and then choosing
the value of the links in the graph following the rule: P (Ja =
1) = 1+tanh(β)

2 and P (Ja = −1) = 1−tanh(β)
2 . The results of the

evolution of the magnetization in this graph are shown in
Fig. 2. In this case our dynamics evolves toward the correct
paramagnetic state for T > 0.78 a temperature that is close
to but slightly above the expected Td = 0.757. However, one
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FIG. 3. Comparison between the quasiequilibrium evolution of
the CME (continuous lines) and KMC (dots). The CME was applied
to a N = 1002 system, and KMC to a N = 10 002 system. The
temperature step is in both cases 	T = 0.02. Both approaches
reproduce the existence of Tms ≈ 1.62. Below Td both dynamics
differentiate.

most notice that these results are strongly affected by sample
to sample fluctuations, as the inset in Fig. 2 shows.

Motivated by the long-time behavior of the CME we
explored the behavior of the observables of the system in an
adiabatic protocol. Although the set of differential Eqs. (7) was
written with the aim to study dynamical processes one can also
make the system evolve to see if it reaches a fixed point. This
idea is used here to reproduce adiabatic heating and cooling
experiments in the model. In Fig. 3 we show the result of
these experiments and compare them with KMC. The heating
process reflects quite well the existence of Tms. Starting from
an homogeneous ferromagnetic configuration at low T , the
temperature is increased in small steps. Both CME and KMC
remain in the ferromagnetic state until it disappears beyond the
spinodal temperature and then jumps to the paramagnetic state.

However, if we start cooling the system from a paramagnetic
state at high temperatures (Fig. 3), the CME and KMC will
coincide only down to the temperature Td ≈ 0.757 for which
the spin-glass phase dynamically traps the stochastic simula-
tion [21]. Below this temperature the behavior of the CME
depends on the criterion adopted to define the convergence
of the algorithm. Our criterion is to stop whenever for each
plaquette |p(σk,σj |σi,t + dt) − p(σk,σj |σi,t)| � δ, where δ

is a parameter controlling the time that the system spends at
a given temperature. The smaller the δ the larger the time we
gave the system to equilibrate. Remarkably, if δ is small enough
the overall energy value obtained at the end of the cooling
experiment is very close to the ferromagnetic prediction. In this
case the final probability distribution in each plaquette weighs
equally the four states that satisfying the local interactions. As
a consequence of symmetry, the local magnetization is then
zero. This suggests that the CME is averaging out the glassy
states in this regime.

This low temperature structure is indeed one of the most in-
teresting features of the model, since despite the clear presence
of a crystalline state it cannot be reached by any known local
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FIG. 4. Final magnetization of a system as a function of the
number of fixed spins at T = 0.12 following the dynamics of the CME
N = 2001 and KMC N = 3000. The symbols represent the average
over 100 configurations of the local fields.

dynamical rule. In that scenario, we decided to fix a fraction of
the spins using strong local fields pointing in the same direc-
tion. We then inquired how large should be the fraction of spins
aligned to obtain the correct crystalline state after a quench
to a very low temperature. The results are shown in Fig. 4.
KMC dynamics converges to the proper equilibrium state when
almost 30% of the spin are oriented in the ferromagnetic state,
while the pseudodynamics of the CME at low temperature
recognize the ground state of the model with only a 15% of the
spins correctly oriented. The smaller number of spins needed
to drive the dynamics of the model into the ground state of
the system for the CME suggests that it can be used as proper
proxy for similar problems in combinatorial optimization.

In summary, we have presented a formal approach to
study the continuous dynamics of a discrete system with
multiple-particle interactions. We illustrate the power of this
approach studying the dynamical behavior of thep-spin diluted
ferromagnet. We have shown that the cavity master equation
reproduces the long-time behavior of kinetic Monte Carlo
simulations in a wide temperature range. CVM also reproduces
exactly the spinodal temperature Tms and provides a very
good approximation for the exact value of the dynamical
temperatureTd . BelowTd , where the spin-glass states dominate
the dynamics the CME fails to predict the KMC results.
However, this allows a deeper exploration of the structure of
the glassy phase and in particular to find the ground state of
the system by fixing a small number of spins.
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